System Identification

Size: px
Start display at page:

Download "System Identification"

Transcription

1 System Identification Lecture : Statistical properties of parameter estimators, Instrumental variable methods Roy Smith

2 Statistical basis for estimation methods Parametrised models: G Gp, zq, H Hp, zq (pulse response, ARX, ARMAX,......, state-space) Estimation ˆ argmin Jp, Z q, (Z : finite-length measured noisy data) Examples: Least squares (linear regression) Prediction error methods Correlation methods How do the statistical properties of the data (i.e. noise effects) influence our choice of methods and our results? Maximum likelihood estimation Basic formulation Consider observations, z,..., z. Each is a realisation of a random variable, with joint probability distribution, fp looooomooooon x,..., x ; random variables q ÐÝ family of distributions parametrised by. Another common notation is, fpx,..., x q ÐÝ the pdf for x,..., x given. For independent variables, ź fpx,..., x ; q f px ; qf px ; q f px ; q f i px i ; q i

3 Maximum likelihood estimation Likelihood function Substituting the observation, Z tz,..., z u, gives a function of, ˇ Lpq fpx,..., x ; q (Likelihood function) ˇxi z i,i,...,. Maximum likelihood estimator: ˆ ML argmax Lpq. The value chosen for is the one that gives the most agreement with the observation Maximum likelihood estimation Estimating the mean of a Gaussian distribution (σ.5).75 fpx; q px q? e σ πσ x 6 4 x

4 Maximum likelihood estimation Estimating the mean of a Gaussian distribution (σ.5) Datum: z fpx; q px q? e σ πσ.5 ˆ ML 7..5 Lpq fpz; q 8 x 6 4 x Maximum likelihood estimation Log-likelihood function It is often mathematically easier to consider, ˆ ML argmax ln Lpq. As the ln function is monotonic this gives the same. This is typically the natural logarithm so as to be able to handle the exponentiation in typical pdfs

5 Example Estimation of the mean of a set of samples z i, i,..., z i N p, σ i q. (note: different variances) Sample mean estimate: ˆSM ÿ i Probability density functions (pdf): is the common mean of the distributions. f i px i ; q a exp ˆ px i q πσ i σi For independent samples the joint pdf is: fpx,..., x ; q ź i a πσ i z i exp ˆ px i q σ i Example Estimation of the mean of a set of samples ˇ ML argmax ln fpx,..., x ; q argmax argmax ln Lpq lnpπq ÿ i This gives (differentiate and equate to zero), ˆ ML ÿ ÿ z i σ i i σ i i ˇxi z i,i,...,. lnpσ i q ÿ i pz i q σ i 8--8.

6 Bayesian approach Random parameter framework Consider to be a random variable with pdf: f pxq. This is an a priori distribution (assumed before the experiment). Conditional distribution (inference from the experiment) Our model (plus assumptions) gives a conditional distribution, fpx,..., x q On the basis of the experiment (x i z i ), So, Probp z,..., z q ProbpZ q Probpq ProbpZ q argmax fp z,..., z q argmax fpz qf pq Maximum a posteriori (MAP) estimation Estimator Given data, Z, ˆ MAP argmax fpz qf pq. We can interpret the maximum likelihood estimator as, ˇ ML argmax fpx,..., x ; q ˇxi z i,i,...,. argmax fpz q These estimates coincide if we assume a uniform distribution for

7 MAP estimation A priori parameter distribution f pq a e p aq σ, a 5, σ πσ. a f pq. a σ a MAP estimation Estimating the mean: Gaussian distribution (σ.5, a 5, σ a ).5 fpx; qf pq px q? e σ a e p aq σ πσ πσ.. x 8 x

8 MAP estimation Estimating the mean: Gaussian distribution (σ.5, a 5, σ a ) Datum: z 7..5 fpx; qf pq px q? e σ a e p aq σ πσ πσ.. ˆ MAP 6.33 x fpz; qf pq 8 x Cramér-Rao bound Mean-square error matrix * P E " ˆpZ q ˆpZ q T Assume that the pdf for Z is fpz ; q. Cramér-Rao inequality Assume EtˆpZ qu, and Z Ă R. Then, P ě M (M is the Fischer Information Matrix) #ˆ ˆ T d d M E d ln fpz ; q d ln fpz ; q +ˇˇˇˇ ˇ E " d d ln fpz ; q*ˇˇˇˇ

9 Maximum likelihood: statistical properties Asymptotic results for i.i.d. variables Consider a parametrised family of pdfs, Then, fpx,..., x ; q w.p. lim ˆ ML ÝÑ, ÝÑ8 ź f i px i ; q. i and? lim ˆML pz q ÝÑ8 N `, M Prediction error statistics Prediction error framework ɛpk, q ypkq ŷpk, q Assume that ɛpk, q is i.i.d. with pdf: f ɛ px; q. For example: ARX case, ɛpk, q N p, σ q. Joint pdf for prediction: ź fpx ; q f ɛ pɛpk, q; q k

10 Prediction error statistics Maximum likelihood approach ˆ ML argmax fpx ; q X Z argmax Lpq argmax argmax ln fpz q ÿ k ln f ɛ pɛpk, q; q. If we choose the prediction error cost function as, then, lpɛ, q ln f ɛ pɛ; q, ˆ PE argmin ÿ k lpɛpk, q, q ˆ ML Prediction error statistics Example Gaussian noise case, ɛpkq N p, σ q. lpɛpk, q, q ln f ɛ pɛ; q constant ` ln σ ` ɛpk, q σ If σ is constant (and not a parameter to be estimated) then, ˆ ML argmax Lpq argmin ÿ k lpɛpk, q, q argmin }ɛpk, q} ˆ PE 8--8.

11 Prediction error statistics Example If we have a linear predictor, and independent gaussian noise, then, ˆ argmin }ɛpk, q}, Is a linear, least-squares problem; ÿ Is equivalent to minimizing ln f ɛ pɛ; q; k Is equivalent to a maximum likelihood estimation; Gives (asymptotically) the minimum variance parameter estimates Linear regression statistics One-step ahead predictor ŷpk q ϕ T pkq ` µpkq In the ARX case µpkq epkq. In other special cases µpkq can depend on Z. Prediction error: ɛpkq ypkq ϕ T pkq A typical cost function is: Jp, Z q ÿ k ɛpkq Least-squares criterion: ÿ ˆ LS ϕpkqϕ T pkq looooooooooooooomooooooooooooooon k R P Rdˆd ÿ ϕpkqypkq looooooooomooooooooon k f P R d 8--8.

12 Linear regression statistics vpkq ypkq Ap, zq ` Bp, zq upkq Least-squares estimator properties The least-squares estimate can be expressed as, ˆ LS R f True plant: ypkq ϕ T pkq ` vpkq Asymptotic bias: lim ˆ LS ÝÑ8 R E lim R ÝÑ8 ÿ k! ) ϕpkqϕ T pkq, f E tϕpkqvpkqu. ϕ T pkqvpkq pr q f Linear regression statistics Consistency of the LS estimator For consistency, lim ˆ LS, ÝÑ8 we require, pr q f. So,. R must be non-singular. Persistency of excitation requirement.. f E tϕpkqvpkqu. This happens if either: a. vpkq is zero-mean and independent of ϕpkq; or b. upkq is independent of vpkq and G is FIR. (n ). This gives,? lim ˆLS ÝÑ8 N `, σ pr q

13 Correlation methods Ideal prediction error estimator ypkq ŷpk k q ɛpkq epkq loomoon ideally The sequence of prediction errors, tepkq, k, u, is white. If the estimator is optimal ( ) then the prediction errors contain no further information about the process. Another intrepretation: the prediction errors, ɛpkq, are uncorrelated with the experimental data, Z Correlation methods Approach Select a sequence, ζpkq, derived from the past data, Z. Require that the error, ɛpk, q, is uncorrelated with ζpkq, ÿ k ζpkqɛpk, q (could also use a function, αpɛq ) We can view the ID problem as finding such that this relationship is satisfied. The values, ζpkq, are known as instruments. Typically ζpkq P R dˆn y, where P R d, ypkq P R n y

14 Correlation methods Procedure Choose a linear filter, F pzq for the prediction errors, ɛ F pk, q F pzqɛpk, q (this is optional). Choose a sequence of correlation vectors, ζpk, Z, q constructed from the data (and possibly ). Choose a function αpɛq (default is αpɛq ɛ). Then, ˆ, solving f p, Z q ÿ k ζpk, qαpɛpk, qq Pseudo-linear regressions Regression-based one-step ahead predictors For ARX, ARMAX, etc., model structures we can write the predictor, ŷpk q ϕ T pk, q. We previously solved this via LS (or iterative LS, or optimisation) methods. Correlation based solution ˆ PLR solving ÿ k ϕpk, qp ypkq ϕ T pk, q looooooooomooooooooon prediction error The prediction errors are orthogonal to the regressor, ϕpk, q. q

15 Instrumental variable methods Instrumental variables ˆ IV solving ÿ k ζpk, qpypkq ϕ T pk, qq. This is solved by, ˆ IV ÿ k ζpkqϕ T pkq ÿ k ζpkqypkq. So, for consistency we require,! ) E ζpkqϕ T pkq to be nonsingular, and E tζpkqvpkqu (uncorrelated w.r.t. prediction error) Example ARX model ypkq`a ypk q` `a n ypk nq b upk q` `b m upk mq`vpkq One approach: filtered input signals as instruments vpkq ypkq Ap, zq ` Bp, zq upkq xpkq P pzq Qpzq xpkq ` q xpk q ` ` q n xpk nq p upk q ` ` p m upk mq

16 Instrumental variable example vpkq ypkq Ap, zq ` Bp, zq upkq xpkq P pzq Qpzq Here, ζpkq xpk q... xpk nq upk q... upk mq R ÿ k ζpkqϕ T pkq is required to be invertible, and we also need, # + ÿ E ζpkqvpkq k Instrumental variable example Invertibility of R? y Bpzq Apzq u ` Apzq v x P pzq Qpzq u So, ζpkqϕ T pkq has the form, ζpkqϕ T pkq x k u k P uk Q u k P uk Q u k j y k u k j ` B uk A ` vk A j B uk A u k loooooooooooooooomoooooooooooooooon invertible? ` u k P j uk s Q vk A looooooooooooomooooooooooooon vanishing?pýñ q

17 Instrumental variable example y Bpzq Apzq u ` Apzq v, x P pzq Qpzq u» P pzq ζpkqϕ T pkq uk Qpzq u k This will be invertible if: vpkq and upkq are uncorrelated. fi fl j Bpzq uk u k Apzq» P pzq ` uk Qpzq upkq and xpkq P pzq upkq are sufficiently exciting. Qpzq There are no pole/zero cancellations between P pzq Bpzq and Qpzq Apzq. fi fl j vk Apzq Instrumental variable approach A nonlinear estimation problem vpkq ypkq ` Bp, zq Ap, zq upkq xpkq P pzq Qpzq Choosing P pzq and Qpzq The procedure works well when P pzq «Bpzq and Qpzq «Apzq. Approach:. Estimate ˆ LS via linear regression.. Select Qpzq ÂLSpzq and P pzq ˆB LS pzq. 3. Calculate ˆ IV

18 Instrumental variable approach Considerations Variance and MSE depend on the choice of instruments. Consistency (asymptotically unbiased) is lost if: Noise and instruments are correlated (for example, in closed-loop, generating instruments from u). Model order selection is incorrect. Filter dynamics cancel plant dynamics. True system is not in the model set. Closed-loop approaches: generate instruments from the excitation, r Bibliography Prediction error minimization Lennart Ljung, System Identification;Theory for the User, nd Ed., Prentice-Hall, 999, [sections 7., 7. & 7.3]. Parameter estimation statistics Lennart Ljung, System Identification;Theory for the User, nd Ed., Prentice-Hall, 999, [section 7.4]. Correlation and instrumental variable methods Lennart Ljung, System Identification;Theory for the User, nd Ed., Prentice-Hall, 999, [sections 7.5 & 7.6]

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

System Identification

System Identification System Identification Lecture 4: Transfer function averaging and smoothing Roy Smith 28-- 4. Averaging Multiple estimates Multiple experiments: u r pk, y r pk, r,..., R, and k,..., K. Multiple estimates

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Identification of ARX, OE, FIR models with the least squares method

Identification of ARX, OE, FIR models with the least squares method Identification of ARX, OE, FIR models with the least squares method CHEM-E7145 Advanced Process Control Methods Lecture 2 Contents Identification of ARX model with the least squares minimizing the equation

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Estimators as Random Variables

Estimators as Random Variables Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maimum likelihood Consistency Confidence intervals Properties of the mean estimator Introduction Up until

More information

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection SG 21006 Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 28

More information

Advanced Signal Processing Introduction to Estimation Theory

Advanced Signal Processing Introduction to Estimation Theory Advanced Signal Processing Introduction to Estimation Theory Danilo Mandic, room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

Estimation techniques

Estimation techniques Estimation techniques March 2, 2006 Contents 1 Problem Statement 2 2 Bayesian Estimation Techniques 2 2.1 Minimum Mean Squared Error (MMSE) estimation........................ 2 2.1.1 General formulation......................................

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

LTI Systems, Additive Noise, and Order Estimation

LTI Systems, Additive Noise, and Order Estimation LTI Systems, Additive oise, and Order Estimation Soosan Beheshti, Munther A. Dahleh Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem set 1 Solutions Thursday, September 19 What and how to turn in? Turn in short written answers to the questions explicitly stated, and when requested to explain or prove.

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science Outline of the lecture STK-I4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no Model Assessment and Selection Cross-Validation Bootstrap Methods Methods using Derived Input

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science Outline of the lecture Linear Methods for Regression Linear Regression Models and Least Squares Subset selection STK-IN4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science STK-IN4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no STK-IN4300: lecture 2 1/ 38 Outline of the lecture STK-IN4300 - Statistical Learning Methods in Data Science Linear

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with 5.2 Approximate Modelling What can be said about if S / M, and even G / G? G(q, ) H(q, ) f-domain expression for the limit model Combine: with ε(t, ) =H(q, ) [y(t) G(q, )u(t)] y(t) =G (q)u(t) v(t) We know

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

12. Prediction Error Methods (PEM)

12. Prediction Error Methods (PEM) 12. Prediction Error Methods (PEM) EE531 (Semester II, 2010) description optimal prediction Kalman filter statistical results computational aspects 12-1 Description idea: determine the model parameter

More information

EIE6207: Maximum-Likelihood and Bayesian Estimation

EIE6207: Maximum-Likelihood and Bayesian Estimation EIE6207: Maximum-Likelihood and Bayesian Estimation Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem set 1 Due Thursday, September 19, in class What and how to turn in? Turn in short written answers to the questions explicitly stated, and when requested to explain or prove.

More information

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur Module Random Processes Version, ECE IIT, Kharagpur Lesson 9 Introduction to Statistical Signal Processing Version, ECE IIT, Kharagpur After reading this lesson, you will learn about Hypotheses testing

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Linear Models. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Linear Models. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Linear Models DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Linear regression Least-squares estimation

More information

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 :

More information

Lecture Note 2: Estimation and Information Theory

Lecture Note 2: Estimation and Information Theory Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 2: Estimation and Information Theory Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 2.1 Estimation A static estimation problem

More information

Model structure. Lecture Note #3 (Chap.6) Identification of time series model. ARMAX Models and Difference Equations

Model structure. Lecture Note #3 (Chap.6) Identification of time series model. ARMAX Models and Difference Equations System Modeling and Identification Lecture ote #3 (Chap.6) CHBE 70 Korea University Prof. Dae Ryoo Yang Model structure ime series Multivariable time series x [ ] x x xm Multidimensional time series (temporal+spatial)

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Outline lecture 2 2(30)

Outline lecture 2 2(30) Outline lecture 2 2(3), Lecture 2 Linear Regression it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic Control

More information

Lecture 5 September 19

Lecture 5 September 19 IFT 6269: Probabilistic Graphical Models Fall 2016 Lecture 5 September 19 Lecturer: Simon Lacoste-Julien Scribe: Sébastien Lachapelle Disclaimer: These notes have only been lightly proofread. 5.1 Statistical

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Chapter 1. Basics. 1.1 Definition. A time series (or stochastic process) is a function Xpt, ωq such that for

Chapter 1. Basics. 1.1 Definition. A time series (or stochastic process) is a function Xpt, ωq such that for Chapter 1 Basics 1.1 Definition A time series (or stochastic process) is a function Xpt, ωq such that for each fixed t, Xpt, ωq is a random variable [denoted by X t pωq]. For a fixed ω, Xpt, ωq is simply

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

Linear regression. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Linear regression. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Linear regression DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Linear models Least-squares estimation Overfitting Example:

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1 Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maximum likelihood Consistency Confidence intervals Properties of the mean estimator Properties of the

More information

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof Delft Center for Systems and Control, Delft University of Technology, Mekelweg

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Expressions for the covariance matrix of covariance data

Expressions for the covariance matrix of covariance data Expressions for the covariance matrix of covariance data Torsten Söderström Division of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-7505 Uppsala, Sweden

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION SEAN GERRISH AND CHONG WANG 1. WAYS OF ORGANIZING MODELS In probabilistic modeling, there are several ways of organizing models:

More information

Signal detection theory

Signal detection theory Signal detection theory z p[r -] p[r +] - + Role of priors: Find z by maximizing P[correct] = p[+] b(z) + p[-](1 a(z)) Is there a better test to use than r? z p[r -] p[r +] - + The optimal

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

p(z)

p(z) Chapter Statistics. Introduction This lecture is a quick review of basic statistical concepts; probabilities, mean, variance, covariance, correlation, linear regression, probability density functions and

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Inference and estimation in probabilistic time series models

Inference and estimation in probabilistic time series models 1 Inference and estimation in probabilistic time series models David Barber, A Taylan Cemgil and Silvia Chiappa 11 Time series The term time series refers to data that can be represented as a sequence

More information

Statistically-Based Regularization Parameter Estimation for Large Scale Problems

Statistically-Based Regularization Parameter Estimation for Large Scale Problems Statistically-Based Regularization Parameter Estimation for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova March 1, 2010 National Science Foundation: Division of Computational

More information

Probability Generating Functions

Probability Generating Functions Probability Generating Functions Andreas Klappenecker Texas A&M University 2018 by Andreas Klappenecker. All rights reserved. 1 / 27 Probability Generating Functions Definition Let X be a discrete random

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

ESTIMATION ALGORITHMS

ESTIMATION ALGORITHMS ESTIMATIO ALGORITHMS Solving normal equations using QR-factorization on-linear optimization Two and multi-stage methods EM algorithm FEL 3201 Estimation Algorithms - 1 SOLVIG ORMAL EQUATIOS USIG QR FACTORIZATIO

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 2013 to Practice Exam II This is a closed book exam. There are 8 problems in the exam. The problems

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng Nonparametric Regression and Bonferroni joint confidence intervals Yang Feng Simultaneous Inferences In chapter 2, we know how to construct confidence interval for β 0 and β 1. If we want a confidence

More information

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Nonlinear System Identification Given a data set Z N = {y(k),

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

Introduction to Simple Linear Regression

Introduction to Simple Linear Regression Introduction to Simple Linear Regression Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Introduction to Simple Linear Regression 1 / 68 About me Faculty in the Department

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Modeling and Identification of Dynamic Systems (vimmd312, 2018)

Modeling and Identification of Dynamic Systems (vimmd312, 2018) Modeling and Identification of Dynamic Systems (vimmd312, 2018) Textbook background of the curriculum taken. In parenthesis: material not reviewed due to time shortage, but which is suggested to be read

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

y k = ( ) x k + v k. w q wk i 0 0 wk

y k = ( ) x k + v k. w q wk i 0 0 wk Four telling examples of Kalman Filters Example : Signal plus noise Measurement of a bandpass signal, center frequency.2 rad/sec buried in highpass noise. Dig out the quadrature part of the signal while

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU)

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

On Identification of Cascade Systems 1

On Identification of Cascade Systems 1 On Identification of Cascade Systems 1 Bo Wahlberg Håkan Hjalmarsson Jonas Mårtensson Automatic Control and ACCESS, School of Electrical Engineering, KTH, SE-100 44 Stockholm, Sweden. (bo.wahlberg@ee.kth.se

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS Yngve Selén and Eri G Larsson Dept of Information Technology Uppsala University, PO Box 337 SE-71 Uppsala, Sweden email: yngveselen@ituuse

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Estimation and Detection

Estimation and Detection stimation and Detection Lecture 2: Cramér-Rao Lower Bound Dr. ir. Richard C. Hendriks & Dr. Sundeep P. Chepuri 7//207 Remember: Introductory xample Given a process (DC in noise): x[n]=a + w[n], n=0,,n,

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Frequency estimation by DFT interpolation: A comparison of methods

Frequency estimation by DFT interpolation: A comparison of methods Frequency estimation by DFT interpolation: A comparison of methods Bernd Bischl, Uwe Ligges, Claus Weihs March 5, 009 Abstract This article comments on a frequency estimator which was proposed by [6] and

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information