CS 4700: Artificial Intelligence

Size: px
Start display at page:

Download "CS 4700: Artificial Intelligence"

Transcription

1 CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 18

2 Prelim Grade Distribution

3 Homework 3: Out Today

4 Extra Credit Opportunity: 4:15pm Today, Gates G01 Relaxing Bottlenecks for Fast Machine Learning Christopher De Sa, Stanford University As machine learning applications become larger and more widely used, there is an increasing need for efficient systems solutions. The performance of essentially all machine learning applications is limited by bottlenecks with effects that cut across traditional layers in the software stack. Because of this, addressing these bottlenecks effectively requires a broad combination of work in theory, algorithms, systems, and hardware. To do this in a principled way, I propose a general approach called mindful relaxation. The approach starts by finding a way to eliminate a bottleneck by changing the algorithm's semantics. It proceeds by identifying structural conditions that let us prove guarantees that the altered algorithm will still work. Finally, it applies this structural knowledge to implement improvements to the performance and accuracy of entire systems. In this talk, I will describe the mindful relaxation approach, and demonstrate how it can be applied to a specific bottleneck (parallel overheads), problem (inference), and algorithm (asynchronous Gibbs sampling). I will demonstrate the effectiveness of this approach on a range of problems including CNNs, and finish with a discussion of my future work on methods for fast machine learning.

5 Today First-Order Logic (R&N Ch 8-9) Machine Learning (R&N Ch 18) Tuesday, April 5 Machine Learning (R&N Ch 18)

6 Resolution Conversion to CNF maintains satisfiability All steps guarantee equivalence except for Skolemization, which only maintains satisfiability Resolution is sound: If α Ͱ β then α β Resolution is refutation complete: If α β then α β Ͱ {} Godel s completeness theorem (No generalization that encompasses arithmetic is complete: Godel s incompleteness theorem)

7 Machine Learning

8 Learning

9 Learn: (dictionary.com) Learning 1. to acquire knowledge of or skill in by study, instruction, or experience 2. to become informed of or acquainted with; ascertain: to learn the truth. 3. to memorize: He learned the poem so he could recite it at the dinner. 4. to gain (a habit, mannerism, etc.) by experience, exposure to example, or the like; acquire: She learned patience from her father. 5. (of a device or machine, especially a computer) to perform an analogue of human learning with artificial intelligence. 6. Nonstandard. to instruct in; teach.

10 Machine Learning An agent is learning if it improves its performance on future tasks after making observations about the world.

11 Supervised Learning Given a training set of N example input-output pairs (x 1,y 1 ), (x 2,y 2 ),, (x n,y n ) where each y i was generated by an unknown function y = f(x), discover a function h that approximates the true function f.

12 Supervised Learning Given a training set of N example input-output pairs (x 1,y 1 ), (x 2,y 2 ),, (x n,y n ) where each y i was generated by an unknown function y = f(x), discover a function h that approximates the true function f. Example: Regression Domain of f is real numbers

13 Supervised Learning Given a training set of m example input-output pairs (x 1,y 1 ), (x 2,y 2 ),, (x m,y m ) where each y i was generated by an unknown function y = f(x), discover a function h that approximates the true function f. Classification learning: Domain of f is finite set of values

14 Supervised Learning Given a training set of m example input-output pairs (x 1,y 1 ), (x 2,y 2 ),, (x m,y m ) where each y i was generated by an unknown function y = f(x), discover a function h that approximates the true function f. Classification learning: Domain of f is finite set of values

15

16 + -

17 1 0

18 1-1

19

20 x 2 = 1.7x 1 4.9

21 x 2 = 1.7x x 2 1.7x 1 = 4.9

22 x 2 = 1.7x x 2 1.7x 1 = 4.9 2x 2 3.4x 1 = x 2 17x 1 = 49

23 Points above the line: x 2 1.7x x 2 1.7x x 2 3.4x x 2 17x 1 49

24 f(x 1,x 2 ) = 1 if x 2 1.7x otherwise 1 0

25 Formula for a line w 1 x 1 + w 2 x 2 = b

26 Formula for a line w 1 x 1 + w 2 x 2 = b Points above the line w 1 x 1 + w 2 x 2 b

27 f(x 1,x 2 ) = 1 if w 1 x 1 + w 2 x 2 b 0 otherwise 1 0

28 Generalizing to n dimensions: Formula for a line ( hyperplane ): w 1 x 1 + w 2 x w n x n = b σ i=1 w i x i = b n

29 Generalizing to n dimensions: Formula for a line ( hyperplane ): w 1 x 1 + w 2 x w n x n = b σ i=1 w i x i = b w x = b

30 Generalizing to n dimensions: Formula for a line ( hyperplane ): w 1 x 1 + w 2 x w n x n = b σ i=1 w i x i = b w x = b Points above the line w 1 x 1 + w 2 x w n x n b σn i=1 w i x i b w x b

31 Linear discriminant function: f(x 1,x 2,,x n ) = n 1 if σ i=1 w i x i b 0 otherwise

32 Linear discriminant function: f(x 1,x 2,,x n ) = n 1 if σ i=1 w i x i b 0 otherwise Goal of classification learning: Given: ((x 1,1,x 1,2,,x 1,n ),y 1 ), ((x 2,1,x 2,2,,x 2,n ),y 2 ),, ((x m,1,x m,2,,x m,n ),y m ) x 1 x 2 x m Find: (w 1,, w n ) and b

33 Notational trick : Equivalent to: w 1 x 1 + w 2 x w n x n b w 1 x 1 + w 2 x w n x n b 0

34 Notational trick : Equivalent to: w 1 x 1 + w 2 x w n x n b w 1 x 1 + w 2 x w n x n b 0 b + w 1 x 1 + w 2 x w n x n 0

35 Notational trick : w 1 x 1 + w 2 x w n x n b Equivalent to: w 1 x 1 + w 2 x w n x n b 0 b + w 1 x 1 + w 2 x w n x n 0 If x 0 = 1 bx 0 + w 1 x 1 + w 2 x w n x n 0

36 Notational trick : w 1 x 1 + w 2 x w n x n b Equivalent to: w 1 x 1 + w 2 x w n x n b 0 b + w 1 x 1 + w 2 x w n x n 0 If x 0 = 1 bx 0 + w 1 x 1 + w 2 x w n x n 0 w 0 x 0 + w 1 x 1 + w 2 x w n x n 0

37 Notational trick : w 1 x 1 + w 2 x w n x n b Equivalent to: w 1 x 1 + w 2 x w n x n b 0 b + w 1 x 1 + w 2 x w n x n 0 If x 0 = 1 bx 0 + w 1 x 1 + w 2 x w n x n 0 w 0 x 0 + w 1 x 1 + w 2 x w n x n 0 σn i=0 w i x i 0

38 Linear discriminant function: f(x 0,x 1,x 2,,x n ) = 1 if σ n i=0 w i x i 0 0 otherwise Goal of classification learning: Given: ((1,x 1,1,x 1,2,,x 1,n ),y 1 ), ((1,x 2,1,x 2,2,,x 2,n ),y 2 ),, ((1,x m,1,x m,2,,x m,n ),y m ) x 1 x 2 x m Find: (w 0,, w n )

39 Linear discriminant function: f(x 0,x 1,x 2,,x n ) = 1 if σ n i=0 w i x i 0 0 otherwise Goal of classification learning: Given: ((1,x 1,1,x 1,2,,x 1,n ),y 1 ), ((1,x 2,1,x 2,2,,x 2,n ),y 2 ),, ((1,x m,1,x m,2,,x m,n ),y m ) x 1 x 2 x m Find: (w 0,, w n )

40 Linear discriminant function: f(x 0,x 1,x 2,,x n ) = f w (x) 1 if σ n i=0 w i x i 0 h w (x) 0 otherwise Goal of classification learning: Given: ((1,x 1,1,x 1,2,,x 1,n ),y 1 ), ((1,x 2,1,x 2,2,,x 2,n ),y 2 ),, ((1,x m,1,x m,2,,x m,n ),y m ) x 1 x 2 x m Find: (w 0,, w n )

41

42 Perceptrons

43 Neuron

44 Perceptrons

45 Perceptron Learning Rule Current hypothesis: h w (x) w 0 = w 1 = w 2 = = w n = 0 [alternatively: set to random values] Repeat For i = 1 to m [for each example] For j = 1 to n [for each feature] w j w j + αx i,j (y i h w (x i )) Until h w (x) gets all data correct [reorder data after each iteration]

46 Perceptron Learning Rule w j w j + αx j (y i h w (x i )) If h w (x) is correct, all w j are unchanged y i = h w (x i ), so (y i h w (x i )) = 0 If h w (x) is too big, w j decreases If h w (x) is too small, w j increases α is the learning rate (sometimes called η)

47 Perceptron Learning Rule: Example w j w j + αx j (y i h w (x i ))

48 Perceptron Learning Rule: Example w j w j + αx j (y i h w (x i )) x 1 x 2 f(x 1,x 2 )

49 Perceptron Learning Rule: Example w j w j + αx j (y i h w (x i )) And gate x 1 x 2 f(x 1,x 2 )

50 Perceptron Learning Rule: Example w j w j + αx j (y i h w (x i )) α = 0.3, w 0 = w 1 = w 2 = 0 Training Data x 1 x 2 f(x 1,x 2 )

51 Perceptron Learning Rule: Example w j w j + αx j (y i h w (x i )) α = 0.3, w 0 = w 1 = w 2 = 0 Training Data x 1 x 2 f(x 1,x 2 )

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 12 Prelim Tuesday, March 21 8:40-9:55am Statler Auditorium Homework 2 To be posted on Piazza 4701 Projects:

More information

Machine Learning Linear Models

Machine Learning Linear Models Machine Learning Linear Models Outline II - Linear Models 1. Linear Regression (a) Linear regression: History (b) Linear regression with Least Squares (c) Matrix representation and Normal Equation Method

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Machine Learning Basics Lecture 3: Perceptron. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 3: Perceptron. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 3: Perceptron Princeton University COS 495 Instructor: Yingyu Liang Perceptron Overview Previous lectures: (Principle for loss function) MLE to derive loss Example: linear

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Machine Learning (CS 567) Lecture 5

Machine Learning (CS 567) Lecture 5 Machine Learning (CS 567) Lecture 5 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions

CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions 1. Neural Networks: a. There are 2 2n distinct Boolean functions over n inputs. Thus there are 16 distinct Boolean functions

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 14 Today Knowledge Representation and Reasoning (R&N Ch 7-9) Prelim, Statler Auditorium Tuesday, March 21

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

CSC Neural Networks. Perceptron Learning Rule

CSC Neural Networks. Perceptron Learning Rule CSC 302 1.5 Neural Networks Perceptron Learning Rule 1 Objectives Determining the weight matrix and bias for perceptron networks with many inputs. Explaining what a learning rule is. Developing the perceptron

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information

CE213 Artificial Intelligence Lecture 14

CE213 Artificial Intelligence Lecture 14 CE213 Artificial Intelligence Lecture 14 Neural Networks: Part 2 Learning Rules -Hebb Rule - Perceptron Rule -Delta Rule Neural Networks Using Linear Units [ Difficulty warning: equations! ] 1 Learning

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

The Perceptron. Volker Tresp Summer 2014

The Perceptron. Volker Tresp Summer 2014 The Perceptron Volker Tresp Summer 2014 1 Introduction One of the first serious learning machines Most important elements in learning tasks Collection and preprocessing of training data Definition of a

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

The Perceptron. Volker Tresp Summer 2016

The Perceptron. Volker Tresp Summer 2016 The Perceptron Volker Tresp Summer 2016 1 Elements in Learning Tasks Collection, cleaning and preprocessing of training data Definition of a class of learning models. Often defined by the free model parameters

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Neural Networks Introduction CIS 32

Neural Networks Introduction CIS 32 Neural Networks Introduction CIS 32 Functionalia Office Hours (Last Change!) - Location Moved to 0317 N (Bridges Room) Today: Alpha-Beta Example Neural Networks Learning with T-R Agent (from before) direction

More information

Computational Intelligence Winter Term 2017/18

Computational Intelligence Winter Term 2017/18 Computational Intelligence Winter Term 207/8 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS ) Fakultät für Informatik TU Dortmund Plan for Today Single-Layer Perceptron Accelerated Learning

More information

Linear Regression. S. Sumitra

Linear Regression. S. Sumitra Linear Regression S Sumitra Notations: x i : ith data point; x T : transpose of x; x ij : ith data point s jth attribute Let {(x 1, y 1 ), (x, y )(x N, y N )} be the given data, x i D and y i Y Here D

More information

The Perceptron. Volker Tresp Summer 2018

The Perceptron. Volker Tresp Summer 2018 The Perceptron Volker Tresp Summer 2018 1 Elements in Learning Tasks Collection, cleaning and preprocessing of training data Definition of a class of learning models. Often defined by the free model parameters

More information

Lecture Notes in Machine Learning Chapter 4: Version space learning

Lecture Notes in Machine Learning Chapter 4: Version space learning Lecture Notes in Machine Learning Chapter 4: Version space learning Zdravko Markov February 17, 2004 Let us consider an example. We shall use an attribute-value language for both the examples and the hypotheses

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 9 Sep. 26, 2018 1 Reminders Homework 3:

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Perceptron. (c) Marcin Sydow. Summary. Perceptron

Perceptron. (c) Marcin Sydow. Summary. Perceptron Topics covered by this lecture: Neuron and its properties Mathematical model of neuron: as a classier ' Learning Rule (Delta Rule) Neuron Human neural system has been a natural source of inspiration for

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Computational Intelligence

Computational Intelligence Plan for Today Single-Layer Perceptron Computational Intelligence Winter Term 00/ Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS ) Fakultät für Informatik TU Dortmund Accelerated Learning

More information

CS 540: Machine Learning Lecture 1: Introduction

CS 540: Machine Learning Lecture 1: Introduction CS 540: Machine Learning Lecture 1: Introduction AD January 2008 AD () January 2008 1 / 41 Acknowledgments Thanks to Nando de Freitas Kevin Murphy AD () January 2008 2 / 41 Administrivia & Announcement

More information

Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011!

Regression and Classification with Linear Models CMPSCI 383 Nov 15, 2011! Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011! 1 Todayʼs topics" Learning from Examples: brief review! Univariate Linear Regression! Batch gradient descent! Stochastic gradient

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

AI Programming CS S-09 Knowledge Representation

AI Programming CS S-09 Knowledge Representation AI Programming CS662-2013S-09 Knowledge Representation David Galles Department of Computer Science University of San Francisco 09-0: Overview So far, we ve talked about search, which is a means of considering

More information

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Vote Vote on timing for night section: Option 1 (what we have now) Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Option 2 Lecture, 6:10-7 10 minute break Lecture, 7:10-8 10 minute break Tutorial,

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

6.825 Techniques in Artificial Intelligence. Logic Miscellanea. Completeness and Incompleteness Equality Paramodulation

6.825 Techniques in Artificial Intelligence. Logic Miscellanea. Completeness and Incompleteness Equality Paramodulation 6.825 Techniques in Artificial Intelligence Logic Miscellanea Completeness and Incompleteness Equality Paramodulation Lecture 9 1 Logic is a huge subject. It includes esoteric mathematical and philosophical

More information

Value Function Methods. CS : Deep Reinforcement Learning Sergey Levine

Value Function Methods. CS : Deep Reinforcement Learning Sergey Levine Value Function Methods CS 294-112: Deep Reinforcement Learning Sergey Levine Class Notes 1. Homework 2 is due in one week 2. Remember to start forming final project groups and writing your proposal! Proposal

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x))

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D.

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 9, 2018 Content 1 2 3 4 Outline 1 2 3 4 problems { C 1, y(x) threshold predict(x) = C 2, y(x) < threshold, with threshold

More information

Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope)

Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope) CS 188 Spring 2019 Introduction to Artificial Intelligence Written HW 6 Sol. Self-assessment due: Monday 3/18/2019 at 11:59pm (submit via Gradescope) Instructions for self-assessment: Take your original

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

CS325 Artificial Intelligence Chs. 18 & 4 Supervised Machine Learning (cont)

CS325 Artificial Intelligence Chs. 18 & 4 Supervised Machine Learning (cont) CS325 Artificial Intelligence Cengiz Spring 2013 Model Complexity in Learning f(x) x Model Complexity in Learning f(x) x Let s start with the linear case... Linear Regression Linear Regression price =

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

Inference in first-order logic

Inference in first-order logic CS 57 Introduction to AI Lecture 5 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB (a

More information

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 4: SVM I Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d. from distribution

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

COMP 551 Applied Machine Learning Lecture 2: Linear regression

COMP 551 Applied Machine Learning Lecture 2: Linear regression COMP 551 Applied Machine Learning Lecture 2: Linear regression Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Linear discriminant functions

Linear discriminant functions Andrea Passerini passerini@disi.unitn.it Machine Learning Discriminative learning Discriminative vs generative Generative learning assumes knowledge of the distribution governing the data Discriminative

More information

Perceptron (Theory) + Linear Regression

Perceptron (Theory) + Linear Regression 10601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Perceptron (Theory) Linear Regression Matt Gormley Lecture 6 Feb. 5, 2018 1 Q&A

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

@SoyGema GEMA PARREÑO PIQUERAS

@SoyGema GEMA PARREÑO PIQUERAS @SoyGema GEMA PARREÑO PIQUERAS WHAT IS AN ARTIFICIAL NEURON? WHAT IS AN ARTIFICIAL NEURON? Image Recognition Classification using Softmax Regressions and Convolutional Neural Networks Languaje Understanding

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

The Perceptron algorithm

The Perceptron algorithm The Perceptron algorithm Tirgul 3 November 2016 Agnostic PAC Learnability A hypothesis class H is agnostic PAC learnable if there exists a function m H : 0,1 2 N and a learning algorithm with the following

More information

Machine Learning. Neural Networks. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Neural Networks. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Neural Networks Le Song Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU Reading: Chap. 5 CB Learning highly non-linear functions f:

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

More about the Perceptron

More about the Perceptron More about the Perceptron CMSC 422 MARINE CARPUAT marine@cs.umd.edu Credit: figures by Piyush Rai and Hal Daume III Recap: Perceptron for binary classification Classifier = hyperplane that separates positive

More information

NONSTANDARD MODELS AND KRIPKE S PROOF OF THE GÖDEL THEOREM

NONSTANDARD MODELS AND KRIPKE S PROOF OF THE GÖDEL THEOREM Notre Dame Journal of Formal Logic Volume 41, Number 1, 2000 NONSTANDARD MODELS AND KRIPKE S PROOF OF THE GÖDEL THEOREM HILARY PUTNAM Abstract This lecture, given at Beijing University in 1984, presents

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Discrete mathematics is devoted to the study of discrete or distinct unconnected objects. Classical mathematics deals with functions on real numbers. Real numbers form a continuous

More information

We choose parameter values that will minimize the difference between the model outputs & the true function values.

We choose parameter values that will minimize the difference between the model outputs & the true function values. CSE 4502/5717 Big Data Analytics Lecture #16, 4/2/2018 with Dr Sanguthevar Rajasekaran Notes from Yenhsiang Lai Machine learning is the task of inferring a function, eg, f : R " R This inference has to

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

HOMEWORK 4: SVMS AND KERNELS

HOMEWORK 4: SVMS AND KERNELS HOMEWORK 4: SVMS AND KERNELS CMU 060: MACHINE LEARNING (FALL 206) OUT: Sep. 26, 206 DUE: 5:30 pm, Oct. 05, 206 TAs: Simon Shaolei Du, Tianshu Ren, Hsiao-Yu Fish Tung Instructions Homework Submission: Submit

More information

Linear Algebra. Introduction. Marek Petrik 3/23/2017. Many slides adapted from Linear Algebra Lectures by Martin Scharlemann

Linear Algebra. Introduction. Marek Petrik 3/23/2017. Many slides adapted from Linear Algebra Lectures by Martin Scharlemann Linear Algebra Introduction Marek Petrik 3/23/2017 Many slides adapted from Linear Algebra Lectures by Martin Scharlemann Midterm Results Highest score on the non-r part: 67 / 77 Score scaling: Additive

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Monday May 12, :00 to 1:30 AM

Monday May 12, :00 to 1:30 AM ASTRONOMY 108: Descriptive Astronomy Spring 2008 Instructor: Hugh Gallagher Office: Physical Science Building 130 Phone, Email: 436-3177, gallagha@oneonta.edu Office Hours: M 2:00-3:00 PM, Th 10:00-11:00

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

MLPR: Logistic Regression and Neural Networks

MLPR: Logistic Regression and Neural Networks MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition Amos Storkey Amos Storkey MLPR: Logistic Regression and Neural Networks 1/28 Outline 1 Logistic Regression 2 Multi-layer

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

COMP 551 Applied Machine Learning Lecture 2: Linear Regression

COMP 551 Applied Machine Learning Lecture 2: Linear Regression COMP 551 Applied Machine Learning Lecture 2: Linear Regression Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski

Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski Lesson Plan Bond Prediction Tenth Grade Chemistry By Rich Wilczewski LEARNING OUTCOMES: Students will use their textbook outlines to define the following: Chemical Bond, Covalent Bond, Ionic Bond and Polar

More information

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap.

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap. Outline MLPR: and Neural Networks Machine Learning and Pattern Recognition 2 Amos Storkey Amos Storkey MLPR: and Neural Networks /28 Recap Amos Storkey MLPR: and Neural Networks 2/28 Which is the correct

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE v=1 v= 1 v= 1 v= 1 v= 1 v=1 optima 2) 3) 5) 6) 7) 8) 9) 12) 11) 13) INTRDUCTIN T ARTIFICIAL INTELLIGENCE DATA15001 EPISDE 8: NEURAL NETWRKS TDAY S MENU 1. NEURAL CMPUTATIN 2. FEEDFRWARD NETWRKS (PERCEPTRN)

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Summary of Class Advanced Topics Dhruv Batra Virginia Tech HW1 Grades Mean: 28.5/38 ~= 74.9%

More information