Ramanujan s Lost Notebook. Part II

Size: px
Start display at page:

Download "Ramanujan s Lost Notebook. Part II"

Transcription

1

2 Ramanujan s Lost Notebook Part II

3 S. Ramanujan

4 George E. Andrews Bruce C. Berndt Ramanujan s Lost Notebook Part II 3

5 George E. Andrews Department of Mathematics Pennsylvania State University University Park, PA 680 USA Bruce C. Berndt Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 680 USA ISBN e-isbn DOI 0.007/ Library of Congress Control Number: Mathematics Subject Classification 000: 33-0, 33D5, P8, P8, F, 05A7, 05A30 c Springer Science+Business Media, LLC 009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, 33 Spring Street, New York, NY 003, USA, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com

6 By the kindness of heaven, O lovely faced one, You stand before me, The darkness of delusion dispelled, By recollection of that which was lost. Verse 7. of Kalidasa s Sakuntala, 4th century A.D.

7 Preface This is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 988, contains the Lost Notebook, which was discovered by the first author in the spring of 976 at the library of Trinity College, Cambridge. Also included in this publication are other partial manuscripts, fragments, and letters that Ramanujan wrote to G.H. Hardy from nursing homes during The authors have attempted to organize this disparate material in chapters. This second volume contains 6 chapters comprising 34 entries, including some duplications and examples, with chapter totals ranging from a high of fifty-four entries in Chapter to a low of two entries in Chapter.

8 Contents Preface... vii Introduction... The Heine Transformation Introduction Heine smethod Ramanujan s Proof of the q-gauss Summation Theorem Corollaries of.. and Corollaries of..6 and Corollaries of..8,..9, and Corollaries of Section. and Auxiliary Results The Sears Thomae Transformation Introduction Direct Corollaries of.. and Extended Corollaries of.. and Bilateral Series Introduction Background The ψ Identity The ψ Identities Identities Arising from the Quintuple Product Identity Miscellaneous Bilateral Identities Well-Poised Series Introduction Applications of Applications of Bailey s Formulas

9 x Contents 5 Bailey s Lemma and Theta Expansions Introduction TheMainLemma Corollaries of Corollaries of 5..4 and Related Results Partial Theta Functions Introduction A General Identity Consequences of Theorem The function ψa, q Euler s Identity and Its Extensions TheWarnaarTheory Special Identities Introduction Generalized Modular Relations Extending Abel s Lemma InnocentsAbroad Theta Function Identities Introduction Cubic Identities Septic Identities Ramanujan s Cubic Class Invariant Introduction λ n and the Modular j-invariant λ n and the Class Invariant G n λ n and Modular Equations λ n and Modular Equations in the Theory of Signature λ n and Kronecker s Limit Formula The Remaining Five Values Some Modular Functions of Level Computations of λ n Using the Shimura Reciprocity Law Miscellaneous Results on Elliptic Functions and Theta Functions A Quasi-theta Product An Equivalent Formulation of 0.. in Terms of Hyperbolic Series Further Remarks on Ramanujan s Quasi-theta Product A Generalization of the Dedekind Eta Function Two Entries on Page A Continued Fraction Class Invariants

10 Contents xi Formulas for the Power Series Coefficients of Certain Quotients of Eisenstein Series Introduction The Key Theorem The Coefficients of /Qq The Coefficients of Qq/Rq The Coefficients of πpq/3/rq and πpq/3 /Rq The Coefficients of πpq/ 3/Qq Eight Identities for Eisenstein Series and Theta Functions The Coefficients of /Bq Formulas for the Coefficients of Further Eisenstein Series The Coefficients of /B q A Calculation from [76] Letters from Matlock House Introduction A Lower Bound An Upper Bound Eisenstein Series and Modular Equations Introduction Preliminary Results Quintic Identities: First Method Quintic Identities: Second Method Septic Identities Septic Differential Equations Series Representable in Terms of Eisenstein Series Introduction The Series T k q The Series U n q Eisenstein Series and Approximations to π Introduction Eisenstein Series and the Modular j-invariant Eisenstein Series and Equations in π:firstmethod Eisenstein Series and Equations in π: Second Method Page Ramanujan s Series for /π Miscellaneous Results on Eisenstein Series A generalization of Eisenstein Series Representations of Eisenstein Series in Terms of Elliptic Function Parameters Values of Certain Eisenstein Series Some Elementary Identities

11 xii Contents Location Guide...39 Provenance References...40 Index...45

12 Introduction This volume is the second of approximately four volumes that the authors plan to write on Ramanujan s lost notebook. We broadly interpret lost notebook to include all material published with Ramanujan s original lost notebook by Narosa in 988 [44]. Thus, when we write that a certain entry is found in the lost notebook, it may not actually be located in the original lost notebook discovered by the first author in the spring of 976 at Trinity College Library, Cambridge, but instead may be in a manuscript, fragment, or a letter of Ramanujan to G.H. Hardy published in [44]. We are attempting to arrange all this disparate material into chapters for each of the proposed volumes. For a history and general description of Ramanujan s lost notebook, readers are advised to read the introduction to our first book [3]. The Organization of Entries With the statement of each entry from Ramanujan s lost notebook, we provide the page numbers in the lost notebook on which the entry can be found. All of Ramanujan s claims are given the designation Entry. Results in this volume named theorems, corollaries, and lemmas are unless otherwise stated not due to Ramanujan. We emphasize that Ramanujan s claims always have page numbers from the lost notebook attached to them. We remark that in Chapter 9, which is devoted to establishing Ramanujan s values for an analogue λ n of the classical Ramanujan Weber class invariant G n,we have followed a slightly different convention. Indeed, we have listed all of Ramanujan s values for λ n in Entry 9.. with the page number indicated. Later, we establish these values as corollaries of theorems that we prove, and so we record Ramanujan s values of λ n again, listing them as corollaries with page numbers in the lost notebook attached to emphasize that these corollaries are due to Ramanujan. In view of the subject mentioned in the preceding paragraph, it may be prudent to make a remark here about Ramanujan s methods. As many read- G.E. Andrews, B.C. Berndt, Ramanujan s Lost Notebook: Part II, DOI 0.007/ , c Springer Science+Business Media, LLC 009

13 Introduction ers are aware from the work of the authors and others who have attempted to prove Ramanujan s theorems, we frequently have few or no clues about Ramanujan s methods. Many of the proofs of the values for G n that are given in [57] are almost certainly not those found by Ramanujan, for he would have needed knowledge of certain portions of mathematics that he likely did not know or that had not been discovered yet. Similar remarks can be made about our calculations of λ n in Chapter 9. In the last half of the chapter, we employ ideas that Ramanujan would not have known. So that readers can more readily find where a certain entry from the lost notebook is discussed, we place at the conclusion of each volume a Location Guide indicating where entries can be found in that particular volume. Thus, for example, if a reader wants to know whether a certain identity on page 79 of the Narosa edition [44] can be found in a particular volume, she can turn to this index and determine where in that volume identities on page 79 are discussed. Following the Location Guide, we provide a Provenance indicating the sources from which we have drawn in preparing significant portions of the given chapters. We emphasize that in the Provenance we do not list all papers in which results from a given chapter are established. For example, in Chapter 3, Ramanujan s famous ψ summation theorem, which is found in more than one version in the lost notebook, is discussed, but we do not refer to all papers on the ψ summation formula in the Location Guide, although in Chapter 3 itself, we have attempted to cite all relevant proofs of this celebrated formula. On the other hand, most chapters contain previously unpublished material. For example, each of the first four chapters contains previously unpublished proofs. This Volume on the Lost Notebook Two primary themes permeate our second volume on the lost notebook, namely, q-series and Eisenstein series. The first seven chapters are devoted to q-series identities from the core of the original lost notebook. These chapters are followed by three chapters on identities for the classical theta functions or related functions. The last six chapters feature Eisenstein series, with much of the material originating in letters to Hardy that Ramanujan wrote from Fitzroy House and Matlock House during his last two years in England. We now briefly describe the contents of the sixteen chapters in this volume. Heine s transformations have long been central to the theory of basic hypergeometric series. In Chapter, we examine several entries from the lost notebook that have their roots in Heine s first transformation or generalizations thereof. The Sears Thomae transformation is also a staple in the theory of basic hypergeometric series, and consequences of it form the content of Chapter. In Chapter 3, we consider identities arising from certain bilateral series identities, in particular the renowned ψ summation of Ramanujan and

14 Introduction 3 well-known identities due to W.N. Bailey. We have also placed in Chapter 3 some identities dependent upon the quintuple product identity. Watson s q- analogue of Whipple s theorem and two additional theorems of Bailey are the main ingredients for the proofs in Chapter 4 on well-poised series. Bailey s lemma is utilized to prove some identities in Chapter 5. Chapter 6, on partial theta functions, is one of the more difficult chapters in this volume. Chapter 7 contains entries from the lost notebook that are even more difficult to prove than those in Chapter 6. The entries in this chapter do not fall into any particular categories and bear further study, because several of them likely have yet-to-be discovered ramifications. Theta functions frequently appear in identities in the first seven chapters. However, in Chapters 8 0, theta functions are the focus. Chapter 8 is devoted to theta function identities. Chapter 9 focuses on one page in the lost notebook on values of an analogue of the classical Ramanujan Weber class invariants. The identities in Chapter 0 do not fit in any of the previous chapters and are among the most unusual identities we have seen in Ramanujan s work. As remarked above, the last six chapters in this volume feature Eisenstein series. Perhaps the most important chapter is Chapter, which contains proofs of results sent to Hardy from nursing homes, probably in 98. In these letters, Ramanujan offered formulas for the coefficients of certain quotients of Eisenstein series that are analogous to the Hardy Ramanujan Rademacher series representation for the partition function pn. The claims in these letters continue the work found in Hardy and Ramanujan s last joint paper [77], [4, pp. 30 3]. Chapter relates technical material on the number of terms that one needs to take from the aforementioned series in order to determine these coefficients precisely. In Chapter 3, the focus shifts to identities for Eisenstein series involving the Dedekind eta function. Chapter 4 gives formulas for certain series associated with the pentagonal number theorem in terms of Ramanujan s Eisenstein series P, Q, and R. These results are found on two pages of the lost notebook, and, although not deep, have recently generated several further papers. Chapter 5 is devoted primarily to a single page in the lost notebook demonstrating how Ramanujan employed Eisenstein series to approximate π. Three series for /π found in Ramanujan s epic paper [39], [4, pp. 3 39] are also found on page 370 of [44], and so it seems appropriate to prove them in this chapter, especially since, perhaps more so than other authors, we follow Ramanujan s hint in [39] and use Eisenstein series to establish these series representations for /π. This volume concludes with a few miscellaneous results on Eisenstein series in Chapter 6. Acknowledgments The second author is grateful to several of his former and current graduate students for their contributions to this volume, either solely or in collaboration with him. These include Paul Bialek, Heng Huat Chan, Song Heng Chan,

15 4 Introduction Sen-Shan Huang, Soon-Yi Kang, Byungchan Kim, Wen-Chin Liaw, Jaebum Sohn, Seung Hwan Son, Boon Pin Yeap, Hamza Yesilyurt, and Liang-Cheng Zhang. He also thanks Ae Ja Yee for her many collaborations on Eisenstein series during her three postdoctoral years at the University of Illinois, as well as Nayandeep Deka Baruah during his one postdoctoral year at the University of Illinois. A survey on Ramanujan s work on Eisenstein series, focusing especially on the claims in the lost notebook, has been written by the second author and Yee [76]. Heng Huat Chan was an indispensable coauthor of the papers on which Chapters 9 and 5 are based, and moreover, the last two sections of Chapter 9 were written by him. Consequently, he deserves special appreciation. The second author s colleague Alexandru Zaharescu has been a source of fruitful collaboration and advice. We are greatly indebted to Nayandeep Deka Baruah, Youn-Seo Choi, Wenchang Chu, Tim Huber, Andrew Sills, and Jaebum Sohn for carefully reading several chapters, uncovering misprints and more serious errors, and offering many useful suggestions. Others whom we thank for finding misprints and offering valuable suggestions include S. Bhargava, Soon-Yi Kang, Byungchan Kim, S. Ole Warnaar, and Ae Ja Yee. We are especially grateful to Michael Somos for his computer checking of many identities and for uncovering several mistakes. We also thank Tim Huber for his graphical expertise in Chapter and Han Duong for composing the index and uncovering a few misprints in the process. We thank Springer editor Mark Spencer for his patient guidance, and Springer copy editor David Kramer for a helpful and careful reading of our manuscript. The first author thanks the National Science Foundataion, and the second author thanks the National Security Agency and the University of Illinois Research Board for their financial support.

16 The Heine Transformation. Introduction E. Heine [78], [79, pp. 97 5] was the first to generalize Gauss s hypergeometric series to q-hypergeometric series by defining, for q <, φ a, b c ; q, t : where t < and where, for each nonnegative integer n, a; q n b; q n q; q n c; q n t n,.. a n a; q n : a aq aq n,.. with the convention that a 0 a; q 0 :. If an entry and its proof involve only the base q and no confusion would arise, we use the notation at the left in.. and..4 below. If more than one base occurs in an entry and/or its proof, e.g., both q and q appear, then we use the second notation in.. and..4. Ramanujan s central theorem is a transformation for this series, now known as the Heine transformation, namely [79, p. 06, equation 50], φ a, b c ; q, t b; q at; q c; q t; q φ where t, b < and where c/b, t at ; q, b,..3 a a; q lim n a; q n, q <...4 His method of proof was surely known to Ramanujan, who recorded an equivalent formulation of..3 in Entry 6 of Chapter 6 in his second notebook [43], [54, p. 5]. Furthermore, numerous related identities can be proved using Heine s original idea. In Section., we prove several basic formulas based on Heine s method. In the remainder of the chapter we deduce 53 formulas found in the lost G.E. Andrews, B.C. Berndt, Ramanujan s Lost Notebook: Part II, DOI 0.007/ , c Springer Science+Business Media, LLC 009

17 6 The Heine Transformation notebook. In some instances, we call upon a result not listed in Section., but each identity that we prove relies primarily on results in Section.. In order to keep our proofs to manageable lengths, we invoke certain standard simplifications usually without mentioning them explicitly, such as q; q q; q,..5 a; q n a; q n a ; q n, 0 n<,..6 a; q n a; q aq n, ; q <n<...7 The identity..5 is a famous theorem of Euler, which we invoke numerous times in this book. Identity..7 can be regarded as the definition of a; q n when n is a negative integer.. Heine s Method In [6], Heine s method was encapsulated in a fundamental formula containing ten independent variables and a nontrivial root of unity. As a result, it is an almost unreadable formula. Consequently, we prove only special cases of this result here. In light of the fact that many of these results are not easily written in the notation.. of q-hypergeometric series, we record all our results in terms of infinite series. For further work connected with that of Andrews in [6], see Z. Cao s thesis [97] and a paper by W. Chu and W. Zhang [3]. We begin with a slightly generalized version of Heine s transformation [6], [7]. Theorem... If h is a positive integer, then, for t, b <, a; q h m b; q hm q h ; q h t m b; q at; q h c/b; q m t; q h m m0 m c; q hm c; q t; q h q; q m0 m at; q h b m. m.. Proof. We need the q-binomial theorem given by [54, p. 4, Entry ], [8, p. 7, Theorem.] a/b; q m b m a; q,.. q; q m b; q m0 where b <. Since we frequently need two special cases in the sequel, we state them here. If a 0 in.., then [8, p. 9, equation..5] m0 b m...3 q; q m b; q Letting b 0 in.., we find that [8, p. 9, equation..6]

18 . Heine s Method 7 a m q mm / a; q...4 q; q m m0 Upon two applications of.., we see that a; q h n b; q hn q h ; q h n c; q hn t n b; q c; q which is... b; q c; q b; q c; q b; q c; q m0 a; q h n q h ; q h n cq hn ; q bq hn ; q t n a; q h n q h ; q h n t n c/b; q m q; q m c/b; q m q; q m m0 b; q at; q h c; q t; q h m0 b m m0 c/b; q m b m q hmn q; q m a; q h n q h ; q h n tq hm n b m atqhm ; q h tq hm ; q h c/b; q m t; q h m q; q m at; q h m b m, Heine s transformation is the case h of Theorem.., and Theorem A 3 of [6] is the case h. The complete result appears in [7, Lemma ]. The next result is more intricate, but it is based again on Heine s idea; it is Theorem A of [6]. Theorem... For t, b <, Proof. a; q n b; q n q ; q n c; q n t n b; q at; q c; q t; q + b; q atq; q c; q tq; q Using.. twice, we find that a; q n b; q n q ; q t n b; q n c; q n c; q b; q a; q n c; q q ; q t n n b; q c; q + m0 a; q n q ; q n t n c/b; q n t; q n q; q n at; q b n..5 n c/b; q n+ tq; q n q; q n+ atq; q b n+. n c/b; q m+ b m+ q m+n q; q m+ a; q n q ; q n cq n ; q bq n ; q t n c/b; q m b m q mn q; q m0 m { c/b; q m b m q mn q; q m0 m }

19 8 The Heine Transformation b; q c; q m0 c/b; q m q; q m b m a; q n q ; q n tq m n + b; q c/b; q m+ b m+ a; q n c; q q; q m0 m+ q ; q tq m+ n n b; q c/b; q m b m atqm ; q c; q q; q m0 m tq m ; q + b; q c/b; q m+ b m+ atqm+ ; q c; q q; q m0 m+ tq m+ ; q b; q at; q c/b; q m t; q m c; q t; q q; q m at; q b m m m0 + b; q atq; q c; q tq; q m0 c/b; q m+ tq; q m q; q m+ atq; q m b m+. In addition to Theorems.. and.., we require two corollaries of Theorem... The first is also given in [7, equation I5]. Corollary... For t <, b; q n q ; q t n tb; q b; q n t n...6 n t; q q; q n tb; q n Proof. By.. with h,a c 0,andt replaced by t, we see that b; q n q ; q n t n b; q t ; q b; q t ; q t ; q n b n q; q n t; q n t; q n q; q n b; q t ; q t; q tb; q b; q b n b; q n q; q n tb; q n t n, by.. with t b and then h,a t, b t, andc 0.Upon simplification above, we deduce..6. The next result can be found in [7, equation I6]. Corollary... For b <, t; q n b n btq; q t; q n q; q n bq; q q ; q n btq; q b n...7 n

20 . Heine s Method 9 Proof. By.. with h anda c 0, we see that b; q t; q t; q n q; q n b n b; q n q ; q n t n bq; q n b; q n q ; q n t n b; q btq; q t; q t; q n q ; q n btq; q n b n, where we applied.. with q replaced by q, h,a bq, andc 0. Upon simplification, we complete the proof. Our next result comes from [9, Theorem 7]. Corollary..3. For t <, a; q n b; q n q; q n abt; q n t n at; q bt; q t; q abt; q a; q n b; q n q ; q n bt; q n tq n...8 Proof. In.., set h, interchange t with b, replace a by at, and then replace c by at. Upon simplification, we find that a; q n b; q n q; q n abt; q t n at; q b; q n t; q abt; q at; q b; q t; q abt; q t; q n tq; q n q ; q n atq; q n b n at; q b; q tq; q bt; q t; q abt; q atq; q b; q at; q n t; q n q ; q n at; q n b n a; q n b; q n q ; q n bt; q n tq n, where we invoked.. with h,q replaced by q, and the variables a, b, c, andt replaced by t, tq, atq, andb, respectively. Upon simplifying above, we deduce..8 to complete the proof. We also require the direct iteration of.. with h [9, Theorem 8]. This is often called the second Heine transformation. Corollary..4. For t, c/b <, a n b n t n c/b bt q n c n c t abt/c n b n q n bt n c n...9 b

21 0 The Heine Transformation Proof. By two applications of Theorem.. with h, the second with a, b, c, andt replaced by t, c/b, at, andb, respectively, we find that a n b n q n c n t n b at c t b at c t c/b n t n q n at n b n c/b bt at b abt/c n b n q n bt n c b n, which is the desired result. Finally, we need one more iteration of.. with h [8, p. 39, equation 3.3.3]. This is often called the q-analogue of Euler s transformation. Corollary..5. For t, abt/c <, a n b n q n c n t n abt/c t c/a n c/b n q n c n n abt...0 c Proof. Apply.. with h anda, b, c, andt replaced by b, abt/c, bt, and c/b, respectively. Consequently, abt/c n b n q n bt n c b n abt/c c bt c/b c/a n c/b n q n c n n abt... c Substituting the right-hand side of.. for the sum on the right-hand side of..9 and simplifying yields Ramanujan s Proof of the q-gauss Summation Theorem On pages in his lost notebook, Ramanujan sketches his proof of the q-gauss summation theorem, normally given in the form a n b n c n c/a c/b..3. c n q n ab c c/ab This theorem was first discovered in 847 by Heine [78], whose proof, which is the most frequently encountered proof in the literature, is based on Heine s transformation, Theorem.., with h. This proof can be found in the texts of Andrews [8, p. 0, Corollary.4], Andrews, R. Askey, and R. Roy [30, p. 5], and G. Gasper and M. Rahman [5, p. 0]. A second proof employs the q-analogue of Saalschütz s theorem and can be read in the texts of W.N. Bailey [44, p. 68] and L.J. Slater [63, p. 97]. Ramanujan s proof

22 .3 Ramanujan s Proof of the q-gauss Summation Theorem is different from these two proofs and was first published in full in a paper by Berndt and A.J. Yee [79]. Ramanujan s proof encompasses Lemma.3., Lemma.3., and Entry.3. below. After giving Ramanujan s proof, we prove a corollary of.3., which is found on page 370 in Ramanujan s lost notebook. Before providing Ramanujan s argument, we derive the q-analogue of the Chu Vandermonde theorem and record a special case that will be used in Chapter 6. If we set b q N, where N is a nonnegative integer, in.3. and simplify, we find that φ a, q N ; c; q, cq N /a c/a N c N,.3. which is the q-analogue of the Chu Vandermonde theorem. If we reverse the order of summation on the left-hand side of.3., we deduce an alternative form of the q-chu Vandermonde theorem, namely, φ a, q N ; c; q, q c/a N c N a N..3.3 Setting a q M.3.3 yields and c q M N, where M is a nonnegative integer, in φ q M,q N ; q M N ; q, q q N N q M N N q MN q M M q N N q M N M+N q MN q M q N q MM+/ NN+/ q MN q M+N q M+NM+N+/ q M q N q M+N..3.4 In this chapter, we are providing analytic proofs of many of Ramanujan s theorems on basic hypergeometric series. Another approach uses combinatorial arguments. In [78], Berndt and Yee provided partition-theoretic proofs of several identities in the lost notebook arising from the Rogers Fine identity; a few of these proofs were reproduced in [3, Chapter ]. In [79], the same authors gave a combinatorial proof of the q-gauss summation theorem. Other combinatorial proofs of this theorem based on overpartitions have been given by S. Corteel and J. Lovejoy [44], Corteel [43], and Yee [85]. Lemma.3.. If n is any nonnegative integer, then n a n k qn+ k k q kk / a k..3.5 q k k0 Lemma.3. is a restatement of the q-binomial theorem.. and can be found in [54, p. 4, Lemma.] or [8, p. 36, Theorem 3.3]. We now

23 The Heine Transformation use Lemma.3. to establish Lemma.3. below along the lines indicated by Ramanujan. Alternatively, Lemma.3. can be deduced from [5, p., equation.5.3] by setting c 0 and replacing q by /q there. Lemma.3.. If c 0and n is any nonnegative integer, then n c n c j /c j q n+ j j..3.6 q j j0 Proof. Denote the right side of.3.6 by gc and apply.3.5 with a /c and n j in the definition of gc to find that gc n j0 k0 j k qj+ k k q n+ j j q kk / c j k : q j q k The coefficient of c r, 0 r n, above is n a r c r. r0 n r a r k qr+ k q n+ r k r+k q kk /..3.7 q r+k q k k0 Now we can easily verify that and q r+ k q r+k q r q n+ r k r+k q n+ r k k q n+ r r. Using these last two equalities in.3.7, we find that a r qn+ r r q r qn+ r r q r n r n r k qn r+ k k q k k0 {, if r n, 0, otherwise, q kk / by.3.5. This therefore completes our proof of Lemma.3.. Entry.3. pp , q-gauss Summation Theorem. If abc < and bc 0, then ac abc a ab /b n /c n a n q n abc n..3.8 In Entry 4 of Chapter 6 in his second notebook [43], [54, p. 4], Ramanujan states the q-gauss summation theorem in precisely the same form as that given in.3.8.

24 Proof..3 Ramanujan s Proof of the q-gauss Summation Theorem 3 We rewrite the right side of.3.8 in the form aq j /b j /c j abc j.3.9 ab q j j0 and examine the coefficient of a n, n 0, on each side of.3.8. From.., with b replaced by ab and a replaced by aq j, we find that aq j q j /b k ab k..3.0 ab q k The coefficient of a n j in.3.0 is k0 q j /b n j q n j b n j, and so the coefficient of a n in.3.9 equals n j0 /b j /c j q j /b n j b n c j q j q n j /b nb n q n n j0 c j /c j q n+ j j q j /b nb n q n c n,.3. by Lemma.3.. But by.., with b replaced by abc and a replaced by ac, ac /b n abc n..3. abc q n So, the coefficient of a n in.3. is precisely that on the right side of.3.. Hence,.3.8 immediately follows, since the coefficients of a n, n 0, on both sides of.3.8 are equal. The proof of Entry.3. is therefore complete. Entry.3. p For any complex numbers a and b, aq b/a n a n q nn+/..3.3 bq q n bq n Proof. In.3.8, replace a by bq, c by a/b, andb by t to find that bqt aq /t n b/a n aqt n..3.4 bq aqt q n bq n If we let t 0 in.3.4, we immediately arrive at.3.3 to complete the proof. A combinatorial proof of Entry.3. in the case b has been given by S. Corteel and J. Lovejoy [45], but it can easily be extended to give a proof of Entry.3. in full generality. Another combinatorial proof can be found in a paper by Berndt, B. Kim, and A.J. Yee [73].

25 4 The Heine Transformation.4 Corollaries of.. and..5 Entry.4. p. 3. For 0 < aq, k <, aq; q cq; q bq; q kq ; q kq ; q n bq/a; q n cq; q a n q n n+ q; q n cq/k; q n aq; q n q ; q n bq; q n+ k n q n..4. Proof. In.., set h andt kq, and replace c by bq, a by cq/k, and b by aq. The resulting identity is equivalent to.4.. We note that no generality has been lost by the substitutions above; so Ramanujan had.. in full generality for h. Padmavathamma [5] has also given a proof of.4.. Entry.4. p. 3. For bq <, q; q aq; q bq; q q; q n bq; q n aq; q q n n+ q; q n aq; q n bq; q n+ q n. Proof. In.., set h,b q, andt q, and replace a by aq and c by bq. The result then reduces to the identity above upon simplification. Entry.4.3 p.. For aq, b <, a n q n q; q n bq; q n aq; q bq; q n aq; q n b n q n q ; q n. Proof. In.., set h,c 0,andt τ, and replace a by bq/τ and b by aq. Then let τ 0. The result easily simplifies to the identity above. Entry.4.4 p.. For a, b <, a n q n q ; q n bq; q n aq ; q bq; q n aq ; q n b n q nn+/ q; q n. Proof. In.., set h anda 0,letb 0, and then replace t by aq and c by bq. The previous two entries were also established by Padmavathamma [5]. The next result is a corrected version of Ramanujan s claim.

26 .4 Corollaries of.. and..5 5 Entry.4.5 p. 5, corrected. For any complex number a, aq; q n q; q n q n q; q aq; q q; q n q n aq; q n+. Proof. In.., set h,a 0,b q, c aq,andt q. Simplification yields Ramanujan s assertion. The next two entries specialize to instances of identities for fifth-order mock theta functions, as we shall see in our fourth volume on the lost notebook [33]. The first is a corrected version of Ramanujan s claim. Entry.4.6 p. 6, corrected. For any complex number a, aq; q q; q aq; q n q n q ; q n n a q ; q n q n q 4 ; q 4 n a n a q ; q n q nn+/ q; q n. Proof. The proof of this result is rather more intricate than the proofs of the previous entries in this section. In..5, replace t by q/a and let a to deduce that b; q n q n q ; q b; q q; q c/b n n c; q n c; q q; q n q; q b n n + b; q q ; q c/b n+ c; q q; q n+ q ; q b n+. n Now set c 0andb aq. If we multiply both sides of the resulting identity by aq; q / q; q, we arrive at aq; q q; q aq; q n q n q ; q a q ; q a n q n n q ; q q; q n q; q n + a q ; q a n+ q n+ q; q q; q n+ q ; q n : T + T..4. Next, in.. with h, replace q by q,seta q /t, b a q,and c 0, and let t 0. Noting that q ; q /q ; q 4, we deduce that n a q ; q n q n T q 4 ; q n

27 6 The Heine Transformation Finally, in.., set h,a 0,andc q, and let b 0. Then set t a q and multiply both sides of the resulting equality by / + q. We therefore find that a n q n q ; q n q; q n+ q; q a q ; q a q ; q n q nn+3/ q; q n. Upon multiplying both sides of this last identity by aq q; q a q ; q and noting that q; q /q; q, we obtain, after replacing q by q and replacing n by n on the right-hand side, T a a q ; q n q nn+/..4.4 q; q n n If we substitute.4.3 and.4.4 into.4., we obtain our desired identity to complete the proof. Entry.4.7 p. 6. If a is any complex number, then aq; q q; q aq; q n q nn+ q ; q n a q ; q n q nn+/ + a q; q n n a q ; q n q n +4n+ q 4 ; q 4 n. Proof. In..5, let t q /a and c 0. After letting a,setb aq. Multiplying both sides of the resulting identity by aq; q / q; q,we find that aq; q q; q aq; q n q nn+ q ; q n a q ; q q; q + a q ; q q ; q aq n q; q n q ; q n aq n+ q; q n+ q; q n+ : S + S..4.5 Now in.. with h,seta 0andc q, and let b tend to 0. Then set t a q. The result, after replacing q by q and simplifying, is given by a q ; q n q nn+/ a q ; q q; q aq n q; q n q ; q n S. q; q n.4.6 Next, in.., set h, replace q by q, and then set b a q, t q 6 /a, and c 0. After letting a and substantially simplifying, we find that

28 a n a q ; q n q n +4n+ q 4 ; q 4 n a q ; q q ; q.4 Corollaries of.. and..5 7 aq n+ q; q n+ q; q n+ S..4.7 If we substitute.4.7 and.4.6 into.4.5, we obtain the desired identity for this entry. Entry.4.8 p. 6. For arbitrary complex numbers a and b, aq; q aq; q n b n q n q ; q n bq; q + bq ; q aq n q; q n bq; q n aq n+ q; q n+ bq ; q n. Proof. This entry is a further special case of..5; replace a by bq/t, set c 0andb aq, and let t 0. In her thesis [5], Padmavathamma also proved Entry.4.8. For a combinatorial proof of Entry.4.8, see the paper by Berndt, Kim, and Yee [73]. The next entry is the first of several identities in this chapter that provide representations of theta functions or quotients of theta functions by basic hypergeometric series. We therefore review here Ramanujan s notations for theta functions and some basic facts about theta functions. Recall that the Jacobi triple product identity [8, p., Theorem.8], [54, p. 35, Entry 9] is given, for ab <, by fa, b : a nn+/ b nn / a; ab b; ab ab; ab..4.8 n Deducible from.4.8 are the product representations of the classical theta functions [8, p. 3, Corollary.0], [54, pp , Entry, equation.4], ϕ q :f q, q n q n q, q n.4.9 ψq :fq, q 3 q nn+/ q ; q q; q,.4.0 f q :f q, q n q n3n / q; q,.4. n where we have employed the notation used by Ramanujan throughout his notebooks. The last equality in.4. is known as Euler s pentagonal number theorem. We also need the elementary result [54, p. 34, Entry 8iii]

29 8 The Heine Transformation f,a0,.4. for any complex number a with a <. Later, we need the fundamental property [54, p. 34]: For ab < and each integer n, fa, b a nn+/ b nn / f aab n,bab n..4.3 Entry.4.9 p. 0. Let ϕ q be defined by.4.9 above. Then ϕ q q nn+/ q; q n n q nn+/ q ; q n..4.4 First Proof of Entry.4.9. In.., we set h,a q/τ, b τ, c q, and t τ. Letting τ tend to 0, we find that q nn+/ q n q q n q nn+/ q n q n..4.5 The desired result follows once we invoke the well-known product representation for ϕ q in.4.9. Second Proof of Entry.4.9. Our second proof is taken from the paper [73] by Berndt, Kim, and Yee. Multiplying both sides of.4.5 by q, we obtain the equivalent identity q nn+/ q n q n+ ; q n q nn+/ q n+ ; q,.4.6 q n since q ; q q; q q; q. The left side of.4.6 is a generating function for the pair of partitions π,ν, where π is a partition into n distinct parts and ν is a partition into distinct parts that are strictly larger than n and where the exponent of is the number of parts in ν. For a given partition pair π, ν generated by the left side of.4.6, let k be the number of parts in ν. Detach n from the each part of ν and attach k to each part of π. Then we obtain partition pairs σ, λ, such that σ is a partition into k distinct parts and λ is a partition into distinct parts that are strictly larger than k, and the exponent of is the number of parts in σ. These partitions are generated by the right side of.4.6. Since this process is easily reversible, our proof is complete. The series on the left-hand sides of.4.4 and.4.8 below are the generating functions for the enumeration of gradual stacks with summits and stacks with summits, respectively [3]. Another generating function for gradual stacks with summits was found by Watson [79, p. 59], [75, p. 38], who showed that

30 q nn+/ q; q n.4 Corollaries of.. and..5 9 q; q q nn+ q ; q n,.4.7 which is implicit in the work of Ramanujan in his lost notebook [44]. An elegant generalization of the concept of gradual stacks with summits has been devised by Yee, with her generating function generalizing that on the righthand side of.4.7 [86, Theorem 5.]. See Entry 6.3. for a significant generalization of Entry.4.0 involving two additional parameters. Entry.4.0 p. 0. q n q n q n q nn+/..4.8 Proof. In.., set h,t c q, anda 0, and then let b 0. Entry.4.0 follows immediately. Entry.4. p. 0. q n q n q + n q nn+/..4.9 Proof. In.., set h,a 0,c q, andt q.nowletb 0to deduce that q n q n q q n qn+ q nn+/ q q n q nn+/ + n+ q n+n+/ q + n q nn+/. n Observe that the sum on the right sides in Entries.4.0 and.4. is a false theta function in the sense of L.J. Rogers. Several other entries in the lost notebook involve this false theta function; see [3, pp. 7 3] for some of these entries. In providing a combinatorial proof of Entry.4., Kim [89] was led to a generalization for which he supplied a combinatorial proof. The following entry has been combinatorially proved by Berndt, Kim, and Yee [73]. Entry.4. p. 0. For a, b < and any positive integer n, bq n ; q n a m q mm+/ b m q nmm+/ q; q m bq n ; q n aq; q m q n ; q n. m aq; q nm m0 n m0.4.0

31 0 The Heine Transformation Proof. In.., set h n and let b tend to 0. Then set t bq n /a and let a tend to. Finally, replace c by aq. Entry.4.3 p.. For a <, aq n q ; q n bq; q n aq; q bq; q Proof. bq. aq; q n b n q n +n aq ; q bq; q q; q n aq ; q n b n+ q n +3n+ q; q n+. In..5, let a 0andletb 0. Then replace t by aq and c by In her doctoral dissertation [5], Padmavathamma gave another proof of Entry.4.3, and gave proofs of the following two entries as well. Entry.4.4 p.. For any complex number a, q ; q 4 aq ; q n q nn+/ aq 4 ; q 4 q; q n +aq ; q 4 aq ; q 4 n q 4n q ; q n aq 4 ; q 4 n q 4n +4n+ q ; q n+. Proof. In Entry.4.3, replace q by q and set b /q. This yields a n q n aq ; q 4 n q 4n q 4 ; q 4 n q; q n aq ; q 4 q; q q ; q n aq 4 ; q 4 n q 4n +4n+ + aq 4 ; q 4 q; q q ; q. n+ Consequently, in order to prove the desired result, we must show that aq ; q 4 q; q aq 4 ; q 4 q ; q 4 a n q n q 4 ; q 4 n q; q n aq ; q n q nn+/,.4. q; q n and this follows from... More precisely, let h,c q, anda 0, and let b tend to 0. Then put t aq and simplify. Entry.4.5 p.. If a is any complex number, then q ; q 4 aq ; q n q n+n+/ aq 4 ; q 4 aq ; q 4 n q 4n +4n+ q; q n q ; q n +aq ; q 4 aq 4 ; q 4 n q 4n +8n+4 q ; q n+.

32 .4 Corollaries of.. and..5 Proof. In Entry.4.3, replace q by q and set b q. Upon multiplication of both sides by q/ + q, we find that a n q n+ q 4 ; q 4 n q; q n+ aq ; q 4 q; q + aq 4 ; q 4 q; q aq ; q 4 n q 4n +4n+ q ; q n Consequently, in order to prove Entry.4.5, we must show that q; q aq ; q 4 aq 4 ; q 4 q ; q 4 aq 4 ; q 4 n q 4n +8n+4 q ; q n+. a n q n+ q 4 ; q 4 n q; q n+ aq ; q n q n+n+/ q; q n..4. This last identity follows from... Set h,c q,anda 0. Then let b 0. Setting t aq and multiplying both sides of the resulting identity by q/ + q, we complete the proof. Entry.4.6 p.. For any complex number a, q; q Proof. n aq; q n q nn+ q ; q n aq ; q aq; q Set b in Entry.4.3 to deduce that aq n q ; q n q; q n aq; q q; q aq; q n q n +n q; q n aq; q n q n +n aq ; q q; q aq ; q n q n +3n+ q; q n+. q; q n aq ; q n q n +3n+ q; q n+. Therefore, in order to complete the proof of Entry.4.6, we must prove that q; q aq; q aq ; q q; q aq n q ; q n q; q n n aq; q n q nn+ q ; q n,.4.3 and this follows from.. with h, first setting a q /t, then letting c and t tend to 0, and finally replacing b by aq.

33 The Heine Transformation Entry.4.7 p. 30. For each positive integer n, the series is symmetric in a and b. aq m0 b m q mm+/ q m aq nm Proof. By an application of the q-binomial theorem..4, aq m0 b m q mm+/ q m aq nm b m q mm+/ aq nm+ q m b m a j q mm+/+jj+/+nmj. q m q j m0 m,j0 This last series is obviously symmetric in a and b, and so the proof is complete. Berndt, Kim, and Yee [73] found a combinatorial proof of Entry.4.7. The next result from the top of page 7 of Ramanujan s lost notebook has lines drawn through it. Furthermore, the right-hand side has ellipses after the products forming the numerator and the denominator. If nothing is added, the result is clearly false. However, the following identity has the same left-hand side that Ramanujan gave, and the infinite products from the right-hand side of his proposed identity are isolated in front of our right-hand side. Entry.4.8 p. 7, corrected. For any complex numbers a and b with b 0, a/b; q n b n q nn+/ q; q n aq ; q n bq; q aq; q { a/b; q aq; q aq ; q } bq ; q n a n q ; q. n bq; q n b.4.4 Proof. In.., take h, and then replace a, c, andt by bq, bq, and a/b, respectively. Now let b 0. Simplification then yields the desired result..5 Corollaries of..6 and..7 The first two entries in this section were proved by G.N. Watson [78] and Andrews [7], with Berndt, Kim, and Yee [73] also providing a combinatorial proof of the former entry.

34 Entry.5. p. 4. If a is any complex number, then a n q n q; q n aq ; q aq; q.5 Corollaries of..6 and..7 3 a n q n q ; q n aq ; q n a n q n +n q ; q n aq; q n. Proof. The first line follows by setting t aq/b in..7 and letting b 0. The second line follows from the fact that each of the right-hand entries is equal to a m+n q n +m +m+mn q ; q m q ; q. n m, To verify this last claim, first apply..4 to aq n+ ; q. Secondly, apply..4 to aq n+ ; q and then switch the roles of m and n. then M. Somos has observed that if we set F a, b; q : bq; q a n q n q ; q n bq; q n, F a, b; q F b, a; q..5. Entry.5. then follows by taking b aq in.5.. To prove.5., return to Entry.4., set n, and replace q by q, a by a/q, andb by b/q. Then we easily see that.4.0 reduces to.5.. Entry.5. p. 4. If a is any complex number, then a n q 4n q 4 ; q 4 aq; q a n q n n q ; q n aq; q. n Proof. Replace q by q in..6. Then set b aq/t and let t 0. Entry.5.3 p. 6. q; q q n +n q ; q n n q nn+/ q ; q n. Proof. In Entry.5., replace q by q, and then set a q. Using Euler s identity, we find that the result simplifies to the equality above. Entry.5.4 p. 6. q; q q n n q ; q n n q nn+3/ q ; q n.

35 4 The Heine Transformation Proof. In..6, replace t by /b and let b. Hence, q n n n q nn / q ; q q; q + n q; q n q; q n q; q + q; q + + q; q q; q + n n n n n q nn / q n + q n q ; q n q n n q nn / q ; q n n q nn+/ + q n q ; q n n n q nn+/ q ; q n n q nn+/ q ; q n + n q nn+3/ q ; q n. n n q nn+3/ q ; q n By Euler s identity, this last identity is equivalent to that of Entry Corollaries of..8,..9, and..0 Entry.6. p. 36. If a and b are any complex numbers, then aq b n q n q n aq n n b/a n a n q nn+/ q n. Proof. Replace t by t/ab in..9 and let a and b tend to. This then yields the identity t n q n n n t/c n c n q nn /..6. q n c n c q n Replacing t by bq and c by aq in.6., we complete the proof. Entry.6. is identical to Entry 9 in Chapter 6 of Ramanujan s second notebook [43], [54, p. 8]. Earlier proofs of Entry.6. were given by V. Ramamani [34] and by Ramamani and K. Venkatachaliengar [35]. L. Carlitz [99] posed the special case a of Entry.6. as a problem. S. Bhargava and C. Adiga [8] proved a generalization of Entry.6., while H.M. Srivastava [68] later established an equivalent formulation of their result. Lastly, Berndt, Kim, and Yee [73] have devised a bijective proof of Entry.6..

36 Entry.6. p. 8. For any complex number a,.6 Corollaries of..8,..9, and..0 5 a n q n + n q; q n a n q nn+/ aq ; q n. Proof. Subtracting from both sides of this entry, shifting the summation indices down by on each side, and dividing both sides by aq, we see that the identity above is equivalent to the identity a n q n +n q; q n a n q nn+3/ aq ; q n+. Now in..8, replace a by aq /t, setb q, and let t 0. The resulting identity then simplifies to that of Entry.6.. See the paper [73] by Berndt, Kim, and Yee for a combinatorial proof of Entry.6.. The next result does not properly belong under the heading of this section, but we have put it here because of its similarity to the previous entry. We note that the case a is Entry 9.3. of Part I [3, p. 9]. Entry.6.3 p. 8. For any complex number a, n a n q nn+/ n q; q n a n q nn+ aq; q n+. Proof. In.., let h, replace a by a q /t, then set b q and c aq, and let t 0. After simplification, we find that n q; q n a n q nn+ aq; q n+ q; q aq; q n a n q nn+/, q n q; q n aq; q n where we applied.. with h and replaced a, b, c, andt, respectively, by 0, 0, aq, andq. Entry.6.4 p. 38. For aq <, aq n aq ; q n n a n q nn+/..6. aq; q n Proof. In..8, set a 0andb q, and then replace t by a. Simplification yields

37 6 The Heine Transformation aq n aq ; q n +a q; q n a n n a n q nn+/ aq; q n, where the last line follows from..9, wherein we replaced a by q and b by q, then set t a, and let c 0. Entry.6.4 can also be derived from Entry 9..6 in our first book on the lost notebook [3, p. 6]; this entry is on page 30 of [44]. In fact, when Berndt and A.J. Yee gave a combinatorial proof of Entry 9..6 in [78], after some elementary manipulation and the replacement of a by aq in Entry 9..6, they derived.6., for which they gave a bijective proof. Berndt, Kim, and Yee [73] have recently found a simpler bijective proof of.6.. Entry.6.5 p. 38. For any complex number a, a m q mm+ q ; q m + aq m+ aq ; q a n q nn+/..6.3 aq; q n m0 First Proof of Entry.6.5. Expanding / + aq n+ in a geometric series, inverting the order of summation, and using..4, we find that, for aq <, a n q nn+ q ; q n + aq n+ m a n+m q nn++mn+ q ; q m0 n aq m a n q nn++m q ; q m0 n aq m aq +m ; q m0 aq ; q aq ; q m0 aq m aq ; q m a n q nn+/ aq; q n, where the last line follows from Entry.6.4. The desired result now follows by analytic continuation in a. Second Proof of Entry.6.5. Our second proof is taken from a paper by Berndt, Kim, and Yee [73]. By Entry.6.4, the identity.6.3 can be written in the equivalent form a m q mm+ q ; q m + aq m+ aq n aq n+ ; q. m0

38 .7 Corollaries of Section. and Auxiliary Results 7 Note that aq n+ ; q generates partitions into distinct even parts, each greater than or equal to n +, with the exponent of a denoting the number of parts. Let m be the number of parts generated by a partition arising from aq n+ ; q. Detach n from each of the m parts. Combining this with aq n, we obtain aq m+ n. However, note that, for n 0, all of these odd parts are generated by / + aq m+, and each part is weighted by a. The remaining parts, which are even, are generated by m0 a m q mm+ q ; q m. For these partitions into m distinct even parts, the exponent of a again denotes the number of parts. Entry.6.6 p. 35. Recall that ψq is defined by.4.0. Then n q n +n q ; q n q n+ ψq. Proof. Set a in Entry.6.5. Using..4, we find that n q n +n q ; q n q n+ q ; q q nn+/ q; q n q ; q q; q q ; q q; q ψq, by Euler s identity and.4.0. Entry.6.7 p. 40. For a <, a a n q n bq n a n b n q n q n bq n. Proof. In..0, let both a and b tend to 0. Then replace t by a and c by bq, and lastly multiply both sides by a..7 Corollaries of Section. and Auxiliary Results Up to now in this chapter, we have concentrated on results from the lost notebook that can be traced to pairs of antecedent formulas proved in Section.. In this section, we also often draw on several of the results from Section., but additionally we require other formulas that have appeared often in Ramanujan s work. The Rogers Fine identity [49, p. 5]

39 8 The Heine Transformation α n β n τ n α n ατq/β n β n τ n q n n ατq n β n τ n+.7. is needed in this chapter. Ramanujan frequently used this identity in the lost notebook; see Chapter 9 of [3], which is entirely devoted to formulas in the lost notebook derived from.7.. The next two results are, in fact, special cases of the q-binomial theorem,... However, it will be more convenient to invoke them using the q-binomial coefficients, which are defined by [ ] k l q [ ] k : l 0, if l<0orl>k, q k, q l q k l otherwise..7. For any complex numbers a, b, and any nonnegative integer n, n [ ] n j a j b j q jj / b/a j n..7.3 j0 Also, for z < and any nonnegative integer N, [ ] n + N z n..7.4 n z N+ Entry.7. p. 5. For any complex number a, a; q n+ q n+ q; q + a n q nn+/ n+ aq; q q; q a n q nn+/ aq; q n. Proof. In..5, set t q, b q, anda 0; then replace c by aq. We therefore deduce that q n q; q a; q n q n q; q n aq; q n aq; q q; q q ; q n q; q a; q n+ q n+ aq; q q ; q q; q..7.5 n+ In.., set h,a 0,andt q. Then, replacing c by aq and letting b tend to 0, we find that q n a n q nn+/..7.6 q; q n aq; q n q; q aq; q

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS BRUCE C. BERNDT 1 and AE JA YEE 1. Introduction Recall that the q-gauss summation theorem is given by (a; q) n (b; q) ( n c ) n (c/a; q) (c/b; q) =, (1.1)

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE Abstract. Combinatorial proofs

More information

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION AE JA YEE 1 Abstract. Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities

More information

Singular Overpartitions

Singular Overpartitions Singular Overpartitions George E. Andrews Dedicated to the memory of Paul Bateman and Heini Halberstam. Abstract The object in this paper is to present a general theorem for overpartitions analogous to

More information

SOME THETA FUNCTION IDENTITIES RELATED TO THE ROGERS-RAMANUJAN CONTINUED FRACTION

SOME THETA FUNCTION IDENTITIES RELATED TO THE ROGERS-RAMANUJAN CONTINUED FRACTION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 10, October 1998, Pages 2895 2902 S 0002-99399804516-X SOME THETA FUNCTION IDENTITIES RELATED TO THE ROGERS-RAMANUJAN CONTINUED FRACTION

More information

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 47 2017), 161-168 SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ωq) AND νq) S.N. Fathima and Utpal Pore Received October 1, 2017) Abstract.

More information

Bruce C. Berndt, Heng Huat Chan, and Liang Cheng Zhang. 1. Introduction

Bruce C. Berndt, Heng Huat Chan, and Liang Cheng Zhang. 1. Introduction RADICALS AND UNITS IN RAMANUJAN S WORK Bruce C. Berndt, Heng Huat Chan, and Liang Cheng Zhang In memory of S. Chowla. Introduction In problems he submitted to the Journal of the Indian Mathematical Society

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE 2 Abstract. Combinatorial proofs

More information

New modular relations for the Rogers Ramanujan type functions of order fifteen

New modular relations for the Rogers Ramanujan type functions of order fifteen Notes on Number Theory and Discrete Mathematics ISSN 532 Vol. 20, 204, No., 36 48 New modular relations for the Rogers Ramanujan type functions of order fifteen Chandrashekar Adiga and A. Vanitha Department

More information

4-Shadows in q-series and the Kimberling Index

4-Shadows in q-series and the Kimberling Index 4-Shadows in q-series and the Kimberling Index By George E. Andrews May 5, 206 Abstract An elementary method in q-series, the method of 4-shadows, is introduced and applied to several poblems in q-series

More information

A Fine Dream. George E. Andrews (1) January 16, 2006

A Fine Dream. George E. Andrews (1) January 16, 2006 A Fine Dream George E. Andrews () January 6, 2006 Abstract We shall develop further N. J. Fine s theory of three parameter non-homogeneous first order q-difference equations. The obect of our work is to

More information

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS The Pennsylvania State University The Graduate School Department of Mathematics THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS A Thesis in Mathematics by Michael J. Rowell c 2007 Michael J. Rowell Submitted

More information

1 Introduction to Ramanujan theta functions

1 Introduction to Ramanujan theta functions A Multisection of q-series Michael Somos 30 Jan 2017 ms639@georgetown.edu (draft version 34) 1 Introduction to Ramanujan theta functions Ramanujan used an approach to q-series which is general and is suggestive

More information

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS GEORGE E. ANDREWS, BRUCE C. BERNDT, SONG HENG CHAN, SUN KIM, AND AMITA MALIK. INTRODUCTION On pages and 7 in his Lost Notebook [3], Ramanujan recorded

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

An Interesting q-continued Fractions of Ramanujan

An Interesting q-continued Fractions of Ramanujan Palestine Journal of Mathematics Vol. 4(1 (015, 198 05 Palestine Polytechnic University-PPU 015 An Interesting q-continued Fractions of Ramanujan S. N. Fathima, T. Kathiravan Yudhisthira Jamudulia Communicated

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics ELLIPTIC FUNCTIONS TO THE QUINTIC BASE HENG HUAT CHAN AND ZHI-GUO LIU Volume 226 No. July 2006 PACIFIC JOURNAL OF MATHEMATICS Vol. 226, No., 2006 ELLIPTIC FUNCTIONS TO THE

More information

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS GEORGE E ANDREWS 1 AND S OLE WARNAAR 2 Abstract An empirical exploration of five of Ramanujan s intriguing false theta function identities leads to unexpected

More information

The Bhargava-Adiga Summation and Partitions

The Bhargava-Adiga Summation and Partitions The Bhargava-Adiga Summation and Partitions By George E. Andrews September 12, 2016 Abstract The Bhargava-Adiga summation rivals the 1 ψ 1 summation of Ramanujan in elegance. This paper is devoted to two

More information

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM q-hypergeometric PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM S OLE WARNAAR Abstract We present alternative, q-hypergeometric

More information

PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS

PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS NAYANDEEP DEKA BARUAH 1 and BRUCE C. BERNDT 2 Abstract. We show that certain modular equations and theta function identities of Ramanujan imply elegant

More information

Partition identities and Ramanujan s modular equations

Partition identities and Ramanujan s modular equations Journal of Combinatorial Theory, Series A 114 2007 1024 1045 www.elsevier.com/locate/jcta Partition identities and Ramanujan s modular equations Nayandeep Deka Baruah 1, Bruce C. Berndt 2 Department of

More information

A New Form of the Quintuple Product Identity and its Application

A New Form of the Quintuple Product Identity and its Application Filomat 31:7 (2017), 1869 1873 DOI 10.2298/FIL1707869S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A New Form of the Quintuple

More information

SOME THEOREMS ON THE ROGERS RAMANUJAN CONTINUED FRACTION IN RAMANUJAN S LOST NOTEBOOK

SOME THEOREMS ON THE ROGERS RAMANUJAN CONTINUED FRACTION IN RAMANUJAN S LOST NOTEBOOK TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 5, Pages 257 277 S 0002-9947(00)02337-0 Article electronically published on February 8, 2000 SOME THEOREMS ON THE ROGERS RAMANUJAN CONTINUED

More information

Research Article Continued Fractions of Order Six and New Eisenstein Series Identities

Research Article Continued Fractions of Order Six and New Eisenstein Series Identities Numbers, Article ID 64324, 6 pages http://dxdoiorg/055/204/64324 Research Article Continued Fractions of Order Six and New Eisenstein Series Identities Chandrashekar Adiga, A Vanitha, and M S Surekha Department

More information

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions by George E. Andrews Key Words: Partitions, mock theta functions, crank AMS Classification Numbers: P84, P83, P8, 33D5 Abstract

More information

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS SYLVIE CORTEEL JEREMY LOVEJOY AND AE JA YEE Abstract. Generalized Frobenius partitions or F -partitions have recently played

More information

A quasi-theta product in Ramanujan s lost notebook

A quasi-theta product in Ramanujan s lost notebook Math. Proc. Camb. Phil. Soc. 2003, 35, c 2003 Cambridge Philosophical Society DOI: 0.07/S030500402006527 Printed in the United Kingdom A quasi-theta product in Ramanujan s lost notebook By BRUCE C. BERNDT

More information

Cranks in Ramanujan s Lost Notebook

Cranks in Ramanujan s Lost Notebook Cranks in Ramanujan s Lost Notebook Manjil P. Saikia Department of Mathematical Sciences, Tezpur University, Napaam Dist. - Sonitpur, Pin - 784028 India manjil@gonitsora.com January 22, 2014 Abstract We

More information

On an identity of Gessel and Stanton and the new little Göllnitz identities

On an identity of Gessel and Stanton and the new little Göllnitz identities On an identity of Gessel and Stanton and the new little Göllnitz identities Carla D. Savage Dept. of Computer Science N. C. State University, Box 8206 Raleigh, NC 27695, USA savage@csc.ncsu.edu Andrew

More information

DETERMINANT IDENTITIES FOR THETA FUNCTIONS

DETERMINANT IDENTITIES FOR THETA FUNCTIONS DETERMINANT IDENTITIES FOR THETA FUNCTIONS SHAUN COOPER AND PEE CHOON TOH Abstract. Two proofs of a theta function identity of R. W. Gosper and R. Schroeppel are given. A cubic analogue is presented, and

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

Arithmetic properties of overcubic partition pairs

Arithmetic properties of overcubic partition pairs Arithmetic properties of overcubic partition pairs Bernard L.S. Lin School of Sciences Jimei University Xiamen 3101, P.R. China linlsjmu@13.com Submitted: May 5, 014; Accepted: Aug 7, 014; Published: Sep

More information

BASIC HYPERGEOMETRIC SERIES

BASIC HYPERGEOMETRIC SERIES ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS BASIC HYPERGEOMETRIC SERIES Second Edition GEORGE GASPER Northwestern University, Evanston, Illinois, USA MIZAN RAHMAN Carleton University, Ottawa, Canada

More information

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava NEW ZEALAND JOURNAL OF MATHEMATICS Volume 36 (2007), 287 294 MOCK THETA FUNCTIONS AND THETA FUNCTIONS Bhaskar Srivastava (Received August 2004). Introduction In his last letter to Hardy, Ramanujan gave

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

New congruences for overcubic partition pairs

New congruences for overcubic partition pairs New congruences for overcubic partition pairs M. S. Mahadeva Naika C. Shivashankar Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 00, Karnataka, India Department

More information

Congruence Properties of Partition Function

Congruence Properties of Partition Function CHAPTER H Congruence Properties of Partition Function Congruence properties of p(n), the number of partitions of n, were first discovered by Ramanujan on examining the table of the first 200 values of

More information

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions Controlled Markov Processes and Viscosity Solutions Wendell H. Fleming, H. Mete Soner Controlled Markov Processes and Viscosity Solutions Second Edition Wendell H. Fleming H.M. Soner Div. Applied Mathematics

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J Math Anal Appl 396 (0) 3 0 Contents lists available at SciVerse ScienceDirect Journal of Mathematical Analysis Applications journal homepage: wwwelseviercom/locate/jmaa On Ramanujan s modular equations

More information

Some congruences for Andrews Paule s broken 2-diamond partitions

Some congruences for Andrews Paule s broken 2-diamond partitions Discrete Mathematics 308 (2008) 5735 5741 www.elsevier.com/locate/disc Some congruences for Andrews Paule s broken 2-diamond partitions Song Heng Chan Division of Mathematical Sciences, School of Physical

More information

Certain Somos s P Q type Dedekind η-function identities

Certain Somos s P Q type Dedekind η-function identities roc. Indian Acad. Sci. (Math. Sci.) (018) 18:4 https://doi.org/10.1007/s1044-018-04-3 Certain Somos s Q type Dedekind η-function identities B R SRIVATSA KUMAR H C VIDYA Department of Mathematics, Manipal

More information

COMBINATORICS OF GENERALIZED q-euler NUMBERS. 1. Introduction The Euler numbers E n are the integers defined by E n x n = sec x + tan x. (1.1) n!

COMBINATORICS OF GENERALIZED q-euler NUMBERS. 1. Introduction The Euler numbers E n are the integers defined by E n x n = sec x + tan x. (1.1) n! COMBINATORICS OF GENERALIZED q-euler NUMBERS TIM HUBER AND AE JA YEE Abstract New enumerating functions for the Euler numbers are considered Several of the relevant generating functions appear in connection

More information

On the expansion of Ramanujan's continued fraction of order sixteen

On the expansion of Ramanujan's continued fraction of order sixteen Tamsui Oxford Journal of Information and Mathematical Sciences 31(1) (2017) 81-99 Aletheia University On the expansion of Ramanujan's continued fraction of order sixteen A. Vanitha y Department of Mathematics,

More information

arxiv:math/ v1 [math.nt] 28 Jan 2005

arxiv:math/ v1 [math.nt] 28 Jan 2005 arxiv:math/0501528v1 [math.nt] 28 Jan 2005 TRANSFORMATIONS OF RAMANUJAN S SUMMATION FORMULA AND ITS APPLICATIONS Chandrashekar Adiga 1 and N.Anitha 2 Department of Studies in Mathematics University of

More information

2011 Boonrod Yuttanan

2011 Boonrod Yuttanan 0 Boonrod Yuttanan MODULAR EQUATIONS AND RAMANUJAN S CUBIC AND QUARTIC THEORIES OF THETA FUNCTIONS BY BOONROD YUTTANAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of

More information

( 1) n q n(3n 1)/2 = (q; q). (1.3)

( 1) n q n(3n 1)/2 = (q; q). (1.3) MATEMATIQKI VESNIK 66, 3 2014, 283 293 September 2014 originalni nauqni rad research paper ON SOME NEW MIXED MODULAR EQUATIONS INVOLVING RAMANUJAN S THETA-FUNCTIONS M. S. Mahadeva Naika, S. Chandankumar

More information

Kazumi Tanuma. Stroh Formalism and Rayleigh Waves

Kazumi Tanuma. Stroh Formalism and Rayleigh Waves Kazumi Tanuma Stroh Formalism and Rayleigh Waves Previously published in the Journal of Elasticity Volume 89, Issues 1Y3, 2007 Kazumi Tanuma Department of Mathematics Graduate School of Engineering Gunma

More information

INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN S LOST NOTEBOOK. 1. Introduction

INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN S LOST NOTEBOOK. 1. Introduction INCOMPLETE ELLIPTIC INTEGRALS IN RAMANUJAN S LOST NOTEBOOK BRUCE C. BERNDT, HENG HUAT CHAN, AND SEN SHAN HUANG Dedicated with appreciation thanks to Richard Askey on his 65 th birthday Abstract. On pages

More information

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE To George Andrews, who has been a great inspiration, on the occasion of his 70th birthday Abstract.

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

New Congruences for Broken k-diamond Partitions

New Congruences for Broken k-diamond Partitions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.5.8 New Congruences for Broken k-diamond Partitions Dazhao Tang College of Mathematics and Statistics Huxi Campus Chongqing University

More information

A PROOF OF THE GENERAL THETA TRANSFORMATION FORMULA

A PROOF OF THE GENERAL THETA TRANSFORMATION FORMULA A PROOF OF THE GEERAL THETA TRASFORATIO FORULA BRUCE C. BERDT, CHADWICK GUGG, SARACHAI KOGSIRIWOG, AD JOHA THIEL. Introduction In Ramanujan s notation for theta functions, set f(a, b : a n(n/2 b n(n/2,

More information

A generalisation of the quintuple product identity. Abstract

A generalisation of the quintuple product identity. Abstract A generalisation of the quintuple product identity Abstract The quintuple identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general

More information

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS George E. Andrews and Ken Ono February 7, 2000.. Introduction and Statement of Results Dedekind s eta function ηz, defined by the infinite product ηz

More information

Ramanujan s modular equations and Weber Ramanujan class invariants G n and g n

Ramanujan s modular equations and Weber Ramanujan class invariants G n and g n Bull. Math. Sci. 202) 2:205 223 DOI 0.007/s3373-0-005-2 Ramanujan s modular equations and Weber Ramanujan class invariants G n and g n Nipen Saikia Received: 20 August 20 / Accepted: 0 November 20 / Published

More information

ON 2- AND 4-DISSECTIONS FOR SOME INFINITE PRODUCTS ERNEST X.W. XIA AND X.M. YAO

ON 2- AND 4-DISSECTIONS FOR SOME INFINITE PRODUCTS ERNEST X.W. XIA AND X.M. YAO ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 43, Number 6, 2013 ON 2- AND 4-DISSECTIONS FOR SOME INFINITE PRODUCTS ERNEST X.W. XIA AND X.M. YAO ABSTRACT. The 2- and 4-dissections of some infinite products

More information

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT Abstract. We prove, for the first time, a series of four related identities from Ramanujan s lost

More information

Applicable Analysis and Discrete Mathematics available online at ABEL S METHOD ON SUMMATION BY PARTS.

Applicable Analysis and Discrete Mathematics available online at   ABEL S METHOD ON SUMMATION BY PARTS. Applicable Analysis and Discrete Mathematics available online at http://pefmathetfrs Appl Anal Discrete Math 4 010), 54 65 doi:1098/aadm1000006c ABEL S METHOD ON SUMMATION BY PARTS AND BALANCED -SERIES

More information

Partitions With Parts Separated By Parity

Partitions With Parts Separated By Parity Partitions With Parts Separated By Parity by George E. Andrews Key Words: partitions, parity of parts, Ramanujan AMS Classification Numbers: P84, P83, P8 Abstract There have been a number of papers on

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics A CERTAIN QUOTIENT OF ETA-FUNCTIONS FOUND IN RAMANUJAN S LOST NOTEBOOK Bruce C Berndt Heng Huat Chan Soon-Yi Kang and Liang-Cheng Zhang Volume 0 No February 00 PACIFIC JOURNAL

More information

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK Asian Journal of Current Engineering and Maths 3: (04) 39-399. Contents lists available at www.innovativejournal.in ASIAN JOURNAL OF CURRENT ENGINEERING AND MATHS Journal homepage: http://www.innovativejournal.in/index.php/ajcem

More information

Two finite forms of Watson s quintuple product identity and matrix inversion

Two finite forms of Watson s quintuple product identity and matrix inversion Two finite forms of Watson s uintuple product identity and matrix inversion X. Ma Department of Mathematics SuZhou University, SuZhou 215006, P.R.China Submitted: Jan 24, 2006; Accepted: May 27, 2006;

More information

PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS

PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS PHASE PORTRAITS OF PLANAR QUADRATIC SYSTEMS Mathematics and Its Applications Managing Editor: M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 583 PHASE PORTRAITS

More information

Some theorems on the explicit evaluations of singular moduli 1

Some theorems on the explicit evaluations of singular moduli 1 General Mathematics Vol 17 No 1 009) 71 87 Some theorems on the explicit evaluations of singular moduli 1 K Sushan Bairy Abstract At scattered places in his notebooks Ramanujan recorded some theorems for

More information

SpringerBriefs in Mathematics

SpringerBriefs in Mathematics SpringerBriefs in Mathematics For further volumes: http://www.springer.com/series/10030 George A. Anastassiou Advances on Fractional Inequalities 123 George A. Anastassiou Department of Mathematical Sciences

More information

ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES

ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES Bull. Aust. Math. Soc. 79 (2009, 507 512 doi:10.1017/s0004972709000136 ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES MICHAEL D. HIRSCHHORN and JAMES A. SELLERS (Received 18 September 2008 Abstract Using

More information

Research Article A Parameter for Ramanujan s Function χ(q): Its Explicit Values and Applications

Research Article A Parameter for Ramanujan s Function χ(q): Its Explicit Values and Applications International Scholarly Research Network ISRN Computational Mathematics Volume 01 Article ID 169050 1 pages doi:1050/01/169050 Research Article A Parameter for Ramanujan s Function χq: Its Explicit Values

More information

arxiv: v1 [math.co] 8 Sep 2017

arxiv: v1 [math.co] 8 Sep 2017 NEW CONGRUENCES FOR BROKEN k-diamond PARTITIONS DAZHAO TANG arxiv:170902584v1 [mathco] 8 Sep 2017 Abstract The notion of broken k-diamond partitions was introduced by Andrews and Paule Let k (n) denote

More information

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MARIA MONKS AND KEN ONO Abstract Let R(w; q) be Dyson s generating function for partition ranks For roots of unity ζ it is known that R(ζ; q) and R(ζ; /q)

More information

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing SOME n-color COMPOSITION Thesis submitted in partial fulfillment of the requirement for The award of the degree of Masters of Science in Mathematics and Computing Submitted by Shelja Ratta Roll no- 301203014

More information

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24 Ramanujan-Slater Type Identities Related to the Moduli 18 and 24 James McLaughlin Department of Mathematics, West Chester University, West Chester, PA; telephone 610-738-0585; fax 610-738-0578 Andrew V.

More information

On integral representations of q-gamma and q beta functions

On integral representations of q-gamma and q beta functions On integral representations of -gamma and beta functions arxiv:math/3232v [math.qa] 4 Feb 23 Alberto De Sole, Victor G. Kac Department of Mathematics, MIT 77 Massachusetts Avenue, Cambridge, MA 239, USA

More information

The Truncated Pentagonal Number Theorem

The Truncated Pentagonal Number Theorem The Truncated Pentagonal Number Theorem George E. Andrews Department of Mathematics The Pennsylvania State University University Park, PA 16802 USA Mircea Merca Doctoral School in Applied Mathematics University

More information

RAMANUJAN S MOST BEAUTIFUL IDENTITY

RAMANUJAN S MOST BEAUTIFUL IDENTITY RAMANUJAN S MOST BEAUTIFUL IDENTITY MICHAEL D. HIRSCHHORN Abstract We give a simple proof of the identity which for Hardy represented the best of Ramanujan. On the way, we give a new proof of an important

More information

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS Bull. Aust. Math. Soc. 9 2016, 400 409 doi:10.1017/s000497271500167 CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS M. S. MAHADEVA NAIKA, B. HEMANTHKUMAR H. S. SUMANTH BHARADWAJ Received 9 August

More information

The Theory of the Top Volume II

The Theory of the Top Volume II Felix Klein Arnold Sommerfeld The Theory of the Top Volume II Development of the Theory in the Case of the Heavy Symmetric Top Raymond J. Nagem Guido Sandri Translators Preface to Volume I by Michael Eckert

More information

Elementary proofs of congruences for the cubic and overcubic partition functions

Elementary proofs of congruences for the cubic and overcubic partition functions AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 602) 204), Pages 9 97 Elementary proofs of congruences for the cubic and overcubic partition functions James A. Sellers Department of Mathematics Penn State

More information

Statistics for Social and Behavioral Sciences

Statistics for Social and Behavioral Sciences Statistics for Social and Behavioral Sciences Advisors: S.E. Fienberg W.J. van der Linden For other titles published in this series, go to http://www.springer.com/series/3463 Haruo Yanai Kei Takeuchi

More information

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS GEORGE ANDREWS, SONG HENG CHAN, BYUNGCHAN KIM, AND ROBERT OSBURN Abstract. In 2003, Atkin Garvan initiated the study of rank crank moments for

More information

An identity of Andrews and the Askey-Wilson integral

An identity of Andrews and the Askey-Wilson integral Ramanujan J DOI 0.007/s39-008-922-4 An identity of Andrews and the Askey-Wilson integral Zhi-Guo Liu Received: 6 July 2007 / Accepted: 7 January 2008 Springer Science+Business Media, LLC 2008 Abstract

More information

Ramanujan and the Modular j-invariant

Ramanujan and the Modular j-invariant Canad. Math. Bull. Vol. 4 4), 1999 pp. 47 440 Ramanujan and the Modular j-invariant Bruce C. Berndt and Heng Huat Chan Abstract. A new infinite product t n was introduced by S. Ramanujan on the last page

More information

arxiv: v2 [math.nt] 20 Nov 2018

arxiv: v2 [math.nt] 20 Nov 2018 REPRESENTATIONS OF MOCK THETA FUNCTIONS arxiv:1811.07686v2 [math.nt] 20 Nov 2018 DANDAN CHEN AND LIUQUAN WANG Abstract. Motivated by the works of Liu, we provide a unified approach to find Appell-Lerch

More information

Bruce C. Berndt and Ken Ono Dedicated to our good friend George Andrews on his 60th birthday. Introduction

Bruce C. Berndt and Ken Ono Dedicated to our good friend George Andrews on his 60th birthday. Introduction RAMANUJAN S UNPUBLISHED MANUSCRIPT ON THE PARTITION AND TAU FUNCTIONS WITH PROOFS AND COMMENTARY Bruce C. Berndt and Ken Ono Dedicated to our good friend George Andrews on his 60th birthday Introduction

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

M. S. Mahadeva Naika, S. Chandankumar and N. P. Suman (Received August 6, 2012)

M. S. Mahadeva Naika, S. Chandankumar and N. P. Suman (Received August 6, 2012) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 42 2012, 157-175 CERTAIN NEW MODULAR IDENTITIES FOR RAMANUJAN S CUBIC CONTINUED FRACTION M. S. Mahadeva Naika, S. Chandankumar and N.. Suman Received August 6,

More information

(q n a; q) = ( a) n q (n+1 2 ) (q/a; q)n (a; q). For convenience, we employ the following notation for multiple q-shifted factorial:

(q n a; q) = ( a) n q (n+1 2 ) (q/a; q)n (a; q). For convenience, we employ the following notation for multiple q-shifted factorial: ARCHIVUM MATHEMATICUM (BRNO) Tomus 45 (2009) 47 58 SEVERAL q-series IDENTITIES FROM THE EULER EXPANSIONS OF (a; q) AND (a;q) Zhizheng Zhang 2 and Jizhen Yang Abstract In this paper we first give several

More information

On Some Transformations of A 2 Formula And Their Applications

On Some Transformations of A 2 Formula And Their Applications On Some Transformations of A 2 Formula And Their Applications Journal of Applied Mathematics and Computation (JAMC), 2018, 2(10), 456-465 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645

More information

q-pell Sequences and Two Identities of V. A. Lebesgue

q-pell Sequences and Two Identities of V. A. Lebesgue -Pell Seuences and Two Identities of V. A. Lebesgue José Plínio O. Santos IMECC, UNICAMP C.P. 6065, 13081-970, Campinas, Sao Paulo, Brazil Andrew V. Sills Department of Mathematics, Pennsylvania State

More information

ANOTHER SIMPLE PROOF OF THE QUINTUPLE PRODUCT IDENTITY

ANOTHER SIMPLE PROOF OF THE QUINTUPLE PRODUCT IDENTITY ANOTHER SIMPLE PROOF OF THE QUINTUPLE PRODUCT IDENTITY HEI-CHI CHAN Received 14 December 2004 and in revised form 15 May 2005 We give a simple proof of the well-known quintuple product identity. The strategy

More information

Journal of Number Theory

Journal of Number Theory Journal of Number Theory 133 2013) 437 445 Contents lists available at SciVerse ScienceDirect Journal of Number Theory wwwelseviercom/locate/jnt On Ramanujan s modular equations of degree 21 KR Vasuki

More information

On q-series Identities Arising from Lecture Hall Partitions

On q-series Identities Arising from Lecture Hall Partitions On q-series Identities Arising from Lecture Hall Partitions George E. Andrews 1 Mathematics Department, The Pennsylvania State University, University Par, PA 16802, USA andrews@math.psu.edu Sylvie Corteel

More information

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 S. OLE WARNAAR Dedicated to George Andrews on the occasion of his 65th birthday Abstract. We prove generalizations of some partition

More information

Some More Identities of Rogers-Ramanujan Type

Some More Identities of Rogers-Ramanujan Type Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Department of Mathematical Sciences 2009 Some More Identities of Rogers-Ramanujan Type Douglas Bowman

More information

For other titles in this series, go to Universitext

For other titles in this series, go to   Universitext For other titles in this series, go to www.springer.com/series/223 Universitext Anton Deitmar Siegfried Echterhoff Principles of Harmonic Analysis 123 Anton Deitmar Universität Tübingen Inst. Mathematik

More information

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures Multiscale Modeling and Simulation of Composite Materials and Structures Young W. Kwon David H. Allen Ramesh Talreja Editors Multiscale Modeling and Simulation of Composite Materials and Structures Edited

More information

On the Ordinary and Signed Göllnitz-Gordon Partitions

On the Ordinary and Signed Göllnitz-Gordon Partitions On the Ordinary and Signed Göllnitz-Gordon Partitions Andrew V. Sills Department of Mathematical Sciences Georgia Southern University Statesboro, Georgia, USA asills@georgiasouthern.edu Version of October

More information

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS #A22 INTEGERS 7 (207) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS Shane Chern Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania shanechern@psu.edu Received: 0/6/6,

More information

Ramanujan s Lost Notebook. Part I

Ramanujan s Lost Notebook. Part I Ramanujan s Lost Notebook Part I George E. Andrews Bruce C. Berndt Ramanujan s Lost Notebook Part I George E. Andrews Department of Mathematics Eberly College of Science Pennsylvania State University State

More information