Accuracy benchmarking of DFT results, domain libraries for electrostatics, hybrid functional and solvation

Size: px
Start display at page:

Download "Accuracy benchmarking of DFT results, domain libraries for electrostatics, hybrid functional and solvation"

Transcription

1 Accuracy benchmarking of DFT results, domain libraries for electrostatics, hybrid functional and solvation Stefan Goedecker Multi-wavelets: High accuracy atomization energies Benchmarking of basis sets and pseudopotentials Libraries: Poisson solver, direct exchange library, solvation library

2 General dilemma when performing electronic structure calculations You have to accept either on of the two evils: Use a pseudopotential or PAW scheme Use a nonsystematic basis set

3 Wavelets: A family of relatively new mathematical basis sets with astonishing properties All families share the properties: of being localized both in real and in Fourier space. of being a systematic basis set, i.e the error is guaranteed to approach zero as the basis set tends to infinity an arbitrary high degree of adaptivity can be obtained.

4 Wavelet basis functions Each family is characterized by two functions. The mother scaling function ψ and the mother wavelet φ. A basis set is generated by translations and dilatation-s of these two functions j: Translation, Localization in real space k: Dilatation, Localization in Fourier space ψ k j(x) ψ(2 k x j) φ k j(x) φ(2 k x j) Both the wavelet and the scaling function at a certain resolution level can be written as a linear combination of scaling functions at a higher resolution level (refinement relations) φ(x)= m h j φ(2x j) j= m

5 Haar wavelet ψ and scaling function φ φ ψ Scaling function representation φ 4 0 x 1 f(x)= s 4 j φ 4 j(x) j

6 Haar wavelet basis set ψ φ ψ ψ ψ Wavelet representation: f(x)=s 0 1φ 0 1(x)+d 0 1ψ 0 1(x)+ 2 di 1 ψ 1 i(x)+ i=1 4 di 2 ψ 2 i(x)+ i=1 8 di 3 ψ 3 i(x) (1) i=1

7 compact support Multi-wavelets: All electron calculations several basis functions per support interval representable as polynomials orthogonal symmetric Continuous derivatives within interval, possibly discontinuities among neighboring intervals (discontinuous Galerkin) Only integral equations can be solved

8 Solving Schrödingers equation in integral form Ψ i (r)+v(r)ψ i (r)=ε i Ψ i (r) ( 2 + 2ε i ) Ψi (r)=4π 1 2π V(r)Ψ i(r) Helmholtz equation: The inverse operator of 2 + 2ε i is exp( 2εi r r ) r r dr. Hence we obtain the following iteration scheme for the Kohn-Sham orbitals Ψ new i (r)= exp( 2εi r r ) r r Ψ old i (r )dr

9 MRChem Frediani et al.: Real-space numerical grid methods in quantum chemistry, Phys. Chem. Chem. Phys. 2015, 17, Developed in the group of Luca Frediani in Norway by Stig Jensen et al Performs non-relativistic all-electron density functional calculations for LDA, GGA and hybrid functionals by using multi-wavelets Allows for an arbitrary number of resolution levels Any preset accuracy for the wave functions/energies can be obtained (if enough memory/cores are available) Same underlying method as in MADNESS, highly stable implementation Program under development to include more features

10 Accuracy of DFT calculations Nearly all codes use approximations that go beyond the XC functional: basis sets, pseudopotentials Kurt Lejaeghere et al.: Reproducibility in density functional theory calculations of solids, Science 351, 6280 (2016) A large number of electronic structure codes give more or less identical results for the energy versus volume curve For more difficult quantities significant disagreement between different codes can still be found For codes with a systematic basis set the accuracy is only limited by the pseudopotential or PAW scheme. Atomization energies with µha accuracy obtained with MRChem for a test set of nearly 300 molecules: S. Jensen et al.: The Elephant in the Room of Density Functional Theory Calculations. Phys. Chem. Lett., 2017, 8 (7), pp

11 Basis set errors

12 Pseudopotential errors

13 Interpolating scaling functions: PSolver library of BigDFT for solution of Poisson s equation Compact support Many continuous derivatives for a given support length Trivial transformation from a real space data set to a scaling function expansion Not orthogonal

14 Construction of interpolating scaling functions Recursive interpolation from Kronecker data set: Example linear interpolation scf

15 High order interpolating scaling functions represent charge densities and potentials 1 Interpolating scf 14 Interpolating scf

16 Solution of Poisson s equation for free boundary conditions L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, G. Beylkin, J. Chem. Phys. 125 (2006) Given the values of the charge density on a regular grid, ρ i, j,k, the continuous charge distribution is represented in terms of interpolating scaling functions ρ(r)= ρ i, j,k φ(x i)φ(y j)φ(z k) i, j,k The moments of the discrete and continuous charge distributions ρ i, j,k and ρ(r) are identical i l 1 j l 2 k l 3 ρ i, j,k = i, j,k dr x l 1 y l 2 z l 3 ρ(r) (2) if l 1,l 2,l 3 < m, where m is the order of the scaling functions. The potential at a grid point i 1,i 2,i 3 is given by V i1,i 2,i 3 = φ(x j 1 )φ(y j 2 )φ(z j 3 ) ρ j1, j 2, j 3 j 1, j 2, j 3 r j1, j 2, j 3 r dr = ρ j1, j 2, j 3 K i1 j 1,i 2 j 2,i 3 j 3 j 1, j 2, j 3 The above convolution can be calculated rapidly with Fourier methods

17 Boundary conditions The Poisson equation is solved exactly for all boundary conditions free wire surface periodic Highly accurate treatment of charged clusters dipolar surfaces clusters, surfaces in electric fields

18 Efficient and accurate hybrid functional calculations with the PSolver package of BigDFT The exact exchange energy E x is given by E X = N i=1 N j=i+1 dr dr ψ i (r) ψ j(r) ψ i (r ) ψ j (r ) r r (3) For a system of N electrons it requires the solution of N(N 1)/2 Poisson equations for all pairwise charge densities ψ i (r ) ψ j (r At greatly reduced cost hybrid functional calculations should become much more widespread in systematic basis sets since: High accuracy can be reached in atomization energies Materials that are problematic with other functionals such as transition metal oxides can be well treated Gaps in solids are reasonably accurate

19 A direct hybrid functional calculation is about two orders of magnitude more expensive than a GGA calculation with all the state of the art plane wave codes Gives extremely high speed in the expensive exact exchange energy part: Since only a few basic operations have to be performed in our scaling function basis, all the computations are implemented in CUDA and are executed on the GPU Communication is overlapped with computation Direct GPU communication

20 Hybrid functional calculations possible up to 1000 atoms: Cray (Piz Daint) at CSCS

21 Exact ionic forces In contrast to other approaches that gain speed by evaluating the exact exchange based on localized orbitals, no cutoffs or other approximations are necessary and the forces are the exact derivative of the energy. This leads for instance to a perfect energy conservation in MD.

22 PBE0 pseudopotentials are available and should be used in PBE0 calculations XC used in calculation PBE PBE0 PBE0 XC of pseudopotential used PBE PBE PBE0 C 2 H s CH 3 Cl s CH 3 OH s CH s CO s H 2 CO s H 2 O s HOCl s OH d Atomization energy of molecules in kcal/mol for consistent (PBE/PBE and PBE0/PBE0) and inconsistent (PBE/PBE0) use of the exchange correlation functionals in the molecular calculation and for the generation of the pseudopotential. Dual space Gaussian pseudopotentials were used in the BigDFT code with free boundary conditions.

23 ENVIRON: The solvation package Experimental processes frequently take place in neutral and ionic solutions: ENVI- RON library solves the Poisson equation both for a constant and a spatially varying dielectric constant as well as the Poisson Boltzmann equation to describe electrolytes Generalized Poisson equation Poisson-Boltzmann equation ε(r) φ(r)= 4πρ(r) ε(r) φ(r)= 4π [ ρ(r)+ρ ions [φ](r) ] Highly efficient iterative solution of GPe based on the PSolver library Continuous with respect to movements of the atoms (correct forces, energy conservation in MD)

24

25 Accuracy comparable to best PCM (Polarizable Continuum Model)

26

27 Benchmark for surfaces: contact angle Correct surface angles for a few materials that were tested: CaF 2, Si) 2, diamond, graphite

28 People involved in this work Basel: Santanu Saha, Giuseppe Fisicaro, Augustin Degomme, Jose Flores-Livas Grenoble: Luigi Genovese, Damien Caliste, Thierry Deutsch Arctic University of Norway: Stig Jensen, Luca Frediani Duke University: William Huhn, Volker Blum

Wavelets for density functional calculations: Four families and three. applications

Wavelets for density functional calculations: Four families and three. applications Wavelets for density functional calculations: Four families and three Haar wavelets Daubechies wavelets: BigDFT code applications Stefan Goedecker Stefan.Goedecker@unibas.ch http://comphys.unibas.ch/ Interpolating

More information

Adaptive and Localized Basis Functions for Linear Scaling, Large Systems and Complex QM Simulations

Adaptive and Localized Basis Functions for Linear Scaling, Large Systems and Complex QM Simulations Max Conference on the Materials Design Ecosystem at the Exascale: High-Performance and High-Throughput Computing TRIESTE Adaptive and Localized Basis Functions for Linear Scaling, Large Systems and Complex

More information

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code

Poisson Solver, Pseudopotentials, Atomic Forces in the BigDFT code CECAM Tutorial on Wavelets in DFT, CECAM - LYON,, in the BigDFT code Kernel Luigi Genovese L_Sim - CEA Grenoble 28 November 2007 Outline, Kernel 1 The with Interpolating Scaling Functions in DFT for Interpolating

More information

arxiv: v1 [cond-mat.mtrl-sci] 29 Jan 2015

arxiv: v1 [cond-mat.mtrl-sci] 29 Jan 2015 Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network S. Alireza Ghasemi 1,, Albert Hofstetter 2, Santanu Saha 2 and Stefan Goedecker

More information

Opportunities from Accurate and Efficient Density Functional Theory Calculations for Large Systems

Opportunities from Accurate and Efficient Density Functional Theory Calculations for Large Systems Seminar CENTRE FOR PREDICTIVE MODELLING, WARWICK Opportunities from Accurate and Efficient Density Functional Theory Calculations for Large Systems Luigi Genovese L_Sim CEA Grenoble October 30, 2017 http://bigdft.org

More information

A new future for finite-element methods in Quantum Chemistry?

A new future for finite-element methods in Quantum Chemistry? A new future for finite-element methods in Quantum Chemistry? Kenneth Ruud Department of Chemistry University of Tromsø 9037 Tromsø Norway Geilo, 29/1 2007 A new future for finite-element methods in Quantum

More information

arxiv: v1 [physics.comp-ph] 22 Nov 2012

arxiv: v1 [physics.comp-ph] 22 Nov 2012 A Customized 3D GPU Poisson Solver for Free BCs Nazim Dugan a, Luigi Genovese b, Stefan Goedecker a, a Department of Physics, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland b Laboratoire

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

How Large is the Elephant in the Density Functional Theory Room?

How Large is the Elephant in the Density Functional Theory Room? 1 How Large is the Elephant in the Density Functional Theory Room? Frank Jensen Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark A recent paper compares density functional

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle Alain Delgado (a,b), Stefano Corni (b), Carlo Andrea Rozzi (b) Stefano Pittalis

More information

Charge Analysis: Atoms in Molecules

Charge Analysis: Atoms in Molecules Daubechies Wavelets in Electronic Structure Calculation: BigDFT Code Tutorial CECAM - GRENOBLE : Atoms in Molecules Ali Sadeghi Basel University 21 November 2011 An output of electronic structure calculations

More information

CP2K: Selected Developments

CP2K: Selected Developments CP2K: Selected Developments Jürg Hutter Department of Chemistry University of Zurich Outline Introduction History and Performance Current and Future Developments Post-Hartree-Fock Methods GW Methods RPA

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Daubechies wavelets as a basis set for density functional pseudopotential calculations

Daubechies wavelets as a basis set for density functional pseudopotential calculations Daubechies wavelets as a basis set for density functional pseudopotential calculations Luigi Genovese, Alexey Neelov, 2 Stefan Goedecker, 2 Thierry Deutsch, Seyed Alireza Ghasemi, 2 Alexander Willand,

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Direct Minimization in Density Functional Theory

Direct Minimization in Density Functional Theory Direct Minimization in Density Functional Theory FOCM Hongkong 2008 Partners joint paper with: J. Blauert, T. Rohwedder (TU Berlin), A. Neelov (U Basel) joint EU NEST project BigDFT together with Dr. Thierry

More information

Day 1 : Introduction to AIMD and PIMD

Day 1 : Introduction to AIMD and PIMD Day 1 : Introduction to AIMD and PIMD Aug 2018 In today s exercise, we perform ab-initio molecular dynamics (AIMD) and path integral molecular dynamics (PIMD) using CP2K[?]. We will use the Zundel s cation

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Practical Guide to Density Functional Theory (DFT)

Practical Guide to Density Functional Theory (DFT) Practical Guide to Density Functional Theory (DFT) Brad Malone, Sadas Shankar Quick recap of where we left off last time BD Malone, S Shankar Therefore there is a direct one-to-one correspondence between

More information

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE

DFT in practice. Sergey V. Levchenko. Fritz-Haber-Institut der MPG, Berlin, DE DFT in practice Sergey V. Levchenko Fritz-Haber-Institut der MPG, Berlin, DE Outline From fundamental theory to practical solutions General concepts: - basis sets - integrals and grids, electrostatics,

More information

Optimized energy landscape exploration for nanosciences using ab-initio based methods

Optimized energy landscape exploration for nanosciences using ab-initio based methods Optimized energy landscape exploration for nanosciences using ab-initio based methods Eduardo Machado-Charry Nanosciences Foundation & Laboratoire de simulation atomistique (L Sim), SP2M, UMR-E CEA-Grenoble

More information

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Chemistry Chemistry is the science of atomic matter, especially its chemical reactions,

More information

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp A Tutorial on Wavelets and their Applications Martin J. Mohlenkamp University of Colorado at Boulder Department of Applied Mathematics mjm@colorado.edu This tutorial is designed for people with little

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Large Scale Electronic Structure Calculations

Large Scale Electronic Structure Calculations Large Scale Electronic Structure Calculations Jürg Hutter University of Zurich 8. September, 2008 / Speedup08 CP2K Program System GNU General Public License Community Developers Platform on "Berlios" (cp2k.berlios.de)

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Reinhold Schneider, MATHEON TU Berlin. Direct Minimization for effective single particle models (DFT)

Reinhold Schneider, MATHEON TU Berlin. Direct Minimization for effective single particle models (DFT) Direct Minimization for effective single particle models (DFT) Partners joint work with: J. Blauert, T. Rohwedder (TU Berlin), A. Neelov (U Basel) joint EU NEST project BigDFT together with Dr. Thierry

More information

Polarizable Continuum Model Implementation in the Octopus code

Polarizable Continuum Model Implementation in the Octopus code Polarizable Continuum Model Implementation in the Octopus code Alain Delgado, Carlo Andrea Rozzi, Stefano Corni S3 Center, CNR Institute of Nanoscience, Modena, Italy. Outline 1- The basics of the Polarizable

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

Localized Optimization: Exploiting non-orthogonality to efficiently minimize the Kohn-Sham Energy

Localized Optimization: Exploiting non-orthogonality to efficiently minimize the Kohn-Sham Energy Localized Optimization: Exploiting non-orthogonality to efficiently minimize the Kohn-Sham Energy Courant Institute of Mathematical Sciences, NYU Lawrence Berkeley National Lab 16 December 2009 Joint work

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Practical calculations using first-principles QM Convergence, convergence, convergence

Practical calculations using first-principles QM Convergence, convergence, convergence Practical calculations using first-principles QM Convergence, convergence, convergence Keith Refson STFC Rutherford Appleton Laboratory September 18, 2007 Results of First-Principles Simulations..........................................................

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Electronic structure, plane waves and pseudopotentials

Electronic structure, plane waves and pseudopotentials Electronic structure, plane waves and pseudopotentials P.J. Hasnip Spectroscopy Workshop 2009 We want to be able to predict what electrons and nuclei will do from first principles, without needing to know

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem 4.0: Expanding the Frontiers Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem: Profile Q-Chem is a high performance quantum chemistry program; Contributed by best quantum chemists from 40 universities

More information

Bayesian Error Estimation in Density Functional Theory

Bayesian Error Estimation in Density Functional Theory Bayesian Error Estimation in Density Functional Theory Karsten W. Jacobsen Jens Jørgen Mortensen Kristen Kaasbjerg Søren L. Frederiksen Jens K. Nørskov CAMP, Dept. of Physics, DTU James P. Sethna LASSP,

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

D. Shepard, Shepard functions, late 1960s (application, surface modelling)

D. Shepard, Shepard functions, late 1960s (application, surface modelling) Chapter 1 Introduction 1.1 History and Outline Originally, the motivation for the basic meshfree approximation methods (radial basis functions and moving least squares methods) came from applications in

More information

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Tutoriel Big RENOBLE Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Thierry Deutsch L_Sim - CEA renoble 19 October 2011 Outline 1 of Atomistic calculations

More information

Introduction to DFT and its Application to Defects in Semiconductors

Introduction to DFT and its Application to Defects in Semiconductors Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design Can access the space

More information

BigDFT tutorial. BigDFT tutorial FIRST YARMOUK SCHOOL. Thierry Deutsch. November, L_Sim - CEA Grenoble. Introduction DFT.

BigDFT tutorial. BigDFT tutorial FIRST YARMOUK SCHOOL. Thierry Deutsch. November, L_Sim - CEA Grenoble. Introduction DFT. Big tutorial FIRST YARMOUK SCHOOL Big tutorial Thierry Deutsch L_Sim - CEA Grenoble November, 2. 2010 Outline 1 2 Density Functional Theory (quick view) 3 4 A basis for nanosciences: the Big project STREP

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction

Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction Minimization of the Kohn-Sham Energy with a Localized, Projected Search Direction Courant Institute of Mathematical Sciences, NYU Lawrence Berkeley National Lab 29 October 2009 Joint work with Michael

More information

Density functional theory in solution: Implementing an implicit solvent model for CASTEP and ONETEP

Density functional theory in solution: Implementing an implicit solvent model for CASTEP and ONETEP Density functional theory in solution: Implementing an implicit solvent model for CASTEP and ONETEP, November 2016 James C. Womack University of Southampton, Southampton, UK Overview Background The model

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

Table of Contents. Table of Contents Pseudopotentials and basis sets available in QuantumATK

Table of Contents. Table of Contents Pseudopotentials and basis sets available in QuantumATK Table of Contents Table of Contents Pseudopotentials and basis sets available in QuantumATK Pseudopotentials Basis sets Accuracy tests for elemental solids Accuracy tests for mixed solids Defect formation

More information

Free energy sampling for electrochemical systems

Free energy sampling for electrochemical systems Free energy sampling for electrochemical systems Mira Todorova, Anoop Kishore Vatti, Suhyun Yoo and Jörg Neugebauer Department of Computational Materials Design Düsseldorf, Germany m.todorova@mpie.de IPAM,

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory DFT and beyond: Hands-on Tutorial Workshop 2011 Tutorial 1: Basics of Electronic Structure Theory V. Atalla, O. T. Hofmann, S. V. Levchenko Theory Department, Fritz-Haber-Institut der MPG Berlin July 13,

More information

The Linearized Augmented Planewave (LAPW) Method

The Linearized Augmented Planewave (LAPW) Method The Linearized Augmented Planewave (LAPW) Method David J. Singh Oak Ridge National Laboratory E T [ ]=T s [ ]+E ei [ ]+E H [ ]+E xc [ ]+E ii {T s +V ks [,r]} I (r)= i i (r) Need tools that are reliable

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26

Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26 Performance of hybrid density functional methods, screened exchange and EXX-OEP methods in the PAW approach Georg Kresse, J Paier, R Hirschl, M Marsmann Institut für Materialphysik and Centre for Computational

More information

Before we start: Important setup of your Computer

Before we start: Important setup of your Computer Before we start: Important setup of your Computer change directory: cd /afs/ictp/public/shared/smr2475./setup-config.sh logout login again 1 st Tutorial: The Basics of DFT Lydia Nemec and Oliver T. Hofmann

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Introduction to Electronic Structure Calculations with BigDFT

Introduction to Electronic Structure Calculations with BigDFT Multiscale Modelling Methods for Applications in Materials Science CECAM JÜLICH, GERMANY run to Electronic Structure Calculations with Thierry Deutsch, Damien Caliste, Luigi Genovese L_Sim - CEA Grenoble

More information

Comparison of various abinitio codes used in periodic calculations

Comparison of various abinitio codes used in periodic calculations Comparison of various abinitio codes used in periodic calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology,

More information

XANES spectra of Bulk Water (Ph. Wernet, A. Nilsson, et al. Science 304, 995 (2004)) Pre-edge peak Post-edge

XANES spectra of Bulk Water (Ph. Wernet, A. Nilsson, et al. Science 304, 995 (2004)) Pre-edge peak Post-edge XANES spectra of Bulk Water (Ph. Wernet, A. Nilsson, et al. Science 304, 995 (2004)) Pre-edge peak Post-edge Transition State Potential Method Consider an electronic transition: Initial state Final state

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Large-scale real-space electronic structure calculations

Large-scale real-space electronic structure calculations Large-scale real-space electronic structure calculations YIP: Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Grant no: FA9550-13-1-0113

More information

Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation)

Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation) Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation) Gregory Beylkin University of Colorado at Boulder IPAM: Big Data Meets Computation workshop

More information

ABSTRACT. Title: Wavelet-space solution of the Poisson equation: An algorithm for use in particle-incell simulations

ABSTRACT. Title: Wavelet-space solution of the Poisson equation: An algorithm for use in particle-incell simulations ABSTRACT Name: Benjamin Sprague Department: Physics Title: Wavelet-space solution of the Poisson equation: An algorithm for use in particle-incell simulations Major: Physics Degree: Master of Science Approved

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

Fast and accurate Coulomb calculation with Gaussian functions

Fast and accurate Coulomb calculation with Gaussian functions Fast and accurate Coulomb calculation with Gaussian functions László Füsti-Molnár and Jing Kong Q-CHEM Inc., Pittsburgh, Pennysylvania 15213 THE JOURNAL OF CHEMICAL PHYSICS 122, 074108 2005 Received 8

More information

Lectures notes. Rheology and Fluid Dynamics

Lectures notes. Rheology and Fluid Dynamics ÉC O L E P O L Y T E C H N IQ U E FÉ DÉR A L E D E L A U S A N N E Christophe Ancey Laboratoire hydraulique environnementale (LHE) École Polytechnique Fédérale de Lausanne Écublens CH-05 Lausanne Lectures

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Introduction to first-principles modelling and CASTEP

Introduction to first-principles modelling and CASTEP to first-principles modelling and Phil Hasnip to + Atomistic Simulations If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were performed for the Platonic model of PbI 3 -based perovskites

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Why use pseudo potentials?

Why use pseudo potentials? Pseudo potentials Why use pseudo potentials? Reduction of basis set size effective speedup of calculation Reduction of number of electrons reduces the number of degrees of freedom For example in Pt: 10

More information

The Projector Augmented Wave method

The Projector Augmented Wave method The Projector Augmented Wave method Advantages of PAW. The theory. Approximations. Convergence. 1 The PAW method is... What is PAW? A technique for doing DFT calculations efficiently and accurately. An

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information