History. One breakthrough paper Cousot & Cousot 77 (?) Abstract Interpretation. Inspired by. Lecture 16. Enthusiastically embraced by the community

Size: px
Start display at page:

Download "History. One breakthrough paper Cousot & Cousot 77 (?) Abstract Interpretation. Inspired by. Lecture 16. Enthusiastically embraced by the community"

Transcription

1 Hstory Abstract Intrprtaton On brakthrough papr Cousot & Cousot 77 (?) Insprd by Dataflow analyss Dnotatonal smantcs 1 Enthusastcally mbracd by th communty At last th functonal communty... At last th frst half of th papr... A Tny Languag Consdr a languag wth only ntgrs and multplcaton. = µ : Ep Int µ () = µ ( ) = µ ( ) µ ( ) 1 1 An Abstracton Dfn an abstract smantcs that computs only th sgn of th rsult. σ:ep { +,-,0} + f > σ ( ) = 0 f = f 0 < σ( ) = σ( ) σ( ) Soundnss W can show that ths abstracton s corrct n th sns that t corrctly prdcts th sgn of an prsson. Proof s by structural nducton on. µ ( ) > 0 σ( ) = + µ ( ) = 0 σ( ) = 0 µ ( ) < 0 σ( ) = Anothr Vw of Soundnss Th soundnss proof s clunky ach cas rpats th sam da. Instad, drctly assocat ach abstract valu wth th st of concrt valus t rprsnts. γ :{ +,0, } { } { } { } γ ( + ) = > 0 γ (0) = 0 Int γ ( ) = < !

2 Anothr Vw (Cont.) Abstract Intrprtaton Th concrtzaton functon Mappng from abstract valus to (sts of) concrt valus Lt D b th concrt doman, A th abstract doman. µ ( ) γ( σ( )) Ep σ µ A γ Ths s an abstract ntrprtaton. Computaton n an abstract doman In ths cas {+,0,-}. Th abstract smantcs s sound appromats th standard smantcs. Th concrtzaton functon stablshs th conncton btwn th two domans. D 7 8 Addng - Etnd our languag wth unary - Addng + Addng addton s not so asy. Th abstract valus ar not closd undr addton. µ ( ) = µ ( ) + 0 σ( ) = σ( ) 0 + µ µ µ ( 1 + ) = ( 1) + ( ) + + +? σ( + ) = σ( ) + σ( ) 0 + 0? 9 10 Soluton W nd anothr abstract valu to rprsnt a rsult that can b any ntgr. Fndng a doman closd undr all th abstract opratons s oftn a ky dsgn problm T T T γ (T) = Int T T T T T T T T Etndng Othr Opratons W also nd to tnd th othr abstract opratons to work wth T. + 0 T T T T T 0 T T + 0 T 0 + T 11 1!

3 Eampls Addng / (Intgr Dvson) Abstract computaton loss nformaton µ ((1 + ) + 3) = 0 σ ((1 + ) + 3) = ( ) + ( + ) = T No loss of nformaton µ ((5 5) + 6) = 31 σ ((5 5) + 6) = ( + + ) + + = + 13 Addng / s straghtforward cpt for th cas of dvson by 0. If w dvd ach ntgr n a st by 0, what st of ntgrs rsults? Th mpty st. γ ( ) = / + 0 T T T T T 0 T T 14 Addng / (Cont.) Th Abstract Doman As bfor w nd to tnd th othr abstract opratons. In ths cas, vry ntry nvolvng bottom s bottom all opratons ar strct n bottom + = = = 15 Our abstract doman forms a lattc. A partal ordr y γ( ) γ( y) Evry fnt subst has a last uppr bound (lub) & gratst lowr bound (glb). W wrt A for an abstract doman a st of valus + an ordrng T Lattc Lngo Th Abstracton Functon A lattc s complt f vry subst (fnt or nfnt) has lub s and glb s. Evry fnt lattc s complt Thus vry lattc has a top/bottom lmnt. Usually ndd n abstract ntrprtatons. Th abstracton functon maps concrt valus to abstract valus. Th dual of concrtzaton. Th smallst valu of A that s th abstracton of a st of concrt valus. α Int : A ({ } { } { }) α( S) = lub < 0 S, 0 0 S, + > 0 S !

4 A Gnral Dfnton An abstract ntrprtaton conssts of An abstract doman A and concrt doman D Concrtzaton and abstracton functons formng a Galos nsrton. A (sound) abstract smantc functon. Galos Insrtons Th abstract doman can b thought of as dvdng th concrt doman nto substs (not dsjont). Th abstracton functon maps a subst of th doman to th smallst contanng abstract valu. Galos nsrton: D. γα ( ( )) a A. = αγ ( ( )) or d γα d = αγ 19 d γα d = αγ 0 Pctur Gnral Condtons for Corrctnss In corrct abstract ntrprtatons, w pct th followng dagram to commut. Ep σ µ A D γ α 1 Thr condtons guarant corrctnss n gnral: α and γ form a Galos nsrton d γ oα, d = α oγ α and γ ar monotonc y α( ) α( y) Abstract opratons op ar locally corrct: γ(op( s,..., s )) op( γ( s ),..., γ( s )) 1 n 1 n Gnrc Corrctnss Proof A Scond Noton of Corrctnss Proof by nducton on th structur of : µ ( ) γ( σ( )) = = µ ( op ) 1 µ ( ) op µ ( ) df. of µ 1 γσ ( ( )) op γσ ( ( )) by nducton 1 γσ ( ( ) op σ( )) local corrctnss 1 γ( σ( op )) df of σ 1 W can dfn corrctnss usng abstracton nstad of concrtzaton. µ ( ) γ( σ( )) α ({ µ ( )}) σ( ) drcton µ ( ) γ( σ( )) α ({ µ ( )}) α( γ( σ( ))) monotoncty α ({ µ ( )}) σ( ) α oγ = d 3 4 4!

5 Corrctnss (Cont.) Th othr drcton... µ ( ) γ( σ( )) α ({ µ ( )}) σ( ) A Languag wth Input Th nt stp s to add languag faturs bsds nw opratons. W bgn wth nput, modld as a sngl fr varabl n prssons. drcton α ({ µ ( )}) σ( ) γα ( ({ µ ( )})) γσ ( ( )) monotoncty µ ( ) γ( σ( )) d γ oα = Smantcs Th manng functon now has typ µ : Ep Int Int W wrt th functon currd wth th prsson as a subscrpt. µ ( j) µ ( j) = = µ ( j) = µ ( j) µ ( j) 1 1 µ ( j) = µ ( j) + µ ( j) =... j Abstract Smantcs Abstract smantc functon: σ : Ep A A Also wrt ths smantcs currd. σ ( j) = σ ( j) = j σ ( j) = σ ( j) σ ( j) 1 1 σ ( j) = σ ( j) + σ ( j) =... = α({ }) 7 8 Corrctnss Local Corrctnss Th corrctnss condton nds to b gnralzd. Ths s th frst ral us of th abstracton functon. Th followng ar all quvalnt:. µ ( ) γ( σ ( α({ }))) D µ γ oσ oα A α oµ σ oα A α σ µ D A D γ α 9 W also nd a modfd local corrctnss condton. ( γσ ( ( )),..., ( ( )) ) ( ( ( ),..., ( )) γσ ) 1 γ σ n σ 1 n op j j op j j 30 5!

6 Proof of Corrctnss If-Thn-Els Thm µ ( j) γ( σ ( j)) Proof (by nducton) Bass. µ ( j) = γ( ) = γ( σ ( j)) Stp µ µ ( j) = j γ( j) = γ( σ ( j)) op ( 1,..., n ) 1 1 ( j ) = op( µ ( j ),..., µ ( j )) df. of µ n op( γσ ( ( j )),..., γσ ( ( j )) nducton n γ( op( σ ( j),..., σ ( j))) local corrctnss 1 op ( 1,..., n ) n = γ( σ ( j )) df. of σ =... f = thn ls... µ f 1= thn 3 ls 4 f 1= thn 3 ls 4 µ ( ) f µ ( ) ( ) 3 = µ 1 () = µ ( ) f µ ( ) ( ) 4 µ 1 σ () = σ () 7 σ () 3 4 Not th lub opraton n th abstract functon; ths s why w nd lattcs as domans Corrctnss of If-Thn-Els Assum th tru branch s takn. (Th argumnt for th fals branch s symmtrc.) Rcurson Add rcursv dfntons of a sngl varabl for smplcty Th smantc functon s µ () 3 γσ ( ( )) by nducton 3 γσ ( ( )) 7 γσ ( ( )) 3 4 ( 7 ) 3 4 γ σ ( ) σ ( ) monotoncty of γ µ : Ep Int Int program = df f ( ) = =... f( ) Rvsd Manng Functon Manng of Rcursv Functons Dfn an aulary smantcs takng a functon (for th fr varabl f) and an ntgr (for ). µ : Ep Int Int µ ʹ : Ep (Int Int ) Int Int µ ʹ : Ep (Int Int ) Int Int µ ʹ ( g)( j) = g( µ ʹ ( g)( j)) f ( ) µ ʹ ( g)( j) = j µ ʹ ( g)( j) = µ ʹ ( g)( j) + µ ʹ ( g)( j) Consdr a functon Dfn an ascndng chan f, f,... n Int Int f = λ. 0 f = µ ʹ ( f) + 1 Dfn µ = f f U df f = !

7 Abstract Smantcs Rvsd Dfn an analogous aulary functon for th abstract smantcs. Abstract Smantcs Rvsd II W nd on mor condton for th abstract smantcs. σ ʹ : Ep (A A) A A σʹ f ( ) ( g)( ) = g( σʹ ( g)( )) σ ʹ ( g)( ) = σʹ ( g)( ) = σʹ ( g)( ) + σʹ ( g)( ) 1+ Profs. Akn, Barrtt 1 & Dll CS All abstract functons ar rqurd to b monotonc. Thm. Any monotonc functon on a complt lattc has a last fd pont. 38 Abstract Manng of Rcurson Corrctnss σ : Ep A A σ ': Ep ( A A) A A Consdr a functon df f = Dfn an ascndng chan f 0, f 1,... n A A f 0 = λa. f + 1 = σ ʹ ( f ) f ( j) f( j) 1 f ( j) 0 γ γ γ f ( j) f 1( j) f 0( j) Dfn σ = f f U Corrspondng lmnts of th chan stand n th corrct rlatonshp Corrctnss (Cont.) Eampl. f( j) γ ( f ( j)) f( j) γ ( f ( j)) chans stablz 0 0 Uf ( j) γ Uf ( j) monotoncty of γ 0 0 U µ ( j) γ( σ ( j)) by dfnton f U f df f() = f = 0 thn 1 ls f( + -1) Abstracton: ( σ ʹ ( = + )) lfp f 0 thn 1 ls f( -1) Smplfd: ( λ λ + ( + )) lfp f.. f( ) !

8 Strctnss W wll assum our languag s strct. Maks lttl dffrnc n qualty of analyss for ths ampl. Assum that f ( ) = Thrfor t s sound to dfn f ( ) = Calculatng th LFP ( λ λ + ( + )) lfp f.. f( ) 0 + T f 0 = 0 + T f 1 = T f = T T + T 0 + T f 3 = T T T T Nots In ths cas, th abstracton ylds no usful nformaton! Not that squnc of functons forms a strctly ascndng chan untl stablzaton f0 < f1 < f < f3 = f4 = f5 =... But th squnc of valus at partcular ponts may not b strctly ascndng: f ( + ) < f( + ) = f ( + ) < f ( + ) = f ( + ) = f ( + ) = Nots (Cont.) Lsson: Th fd pont s bng computd n th doman (A A) A A Th fd pont s not bng computd n A A Mak sur you chck th doman of th fd pont oprator Strctnss Analyss Ovrvw In lazy functonal languags, t may b dsrabl to chang call-by-nd (lazy valuaton) to call-by-valu. Strctnss Analyss CBN rqurs buldng thunks (closurs) to captur th lcal nvronmnt of unvaluatd prssons. CBV valuats ts argumnt mmdatly, whch s wastful (or vn wrong) f th argumnt s nvr valuatd undr CBN !

9 Corrctnss Substtutng CBV for CBN s always corrct f w somhow know that a functon valuats ts argumnt(s). A functon f s strct f f ( ) = Obsrvaton: f f s strct, thn t s corrct to pass argumnts to f by valu. Outln Dcdng whthr a functon s strct s undcdabl. Mycroft s da: Us abstract ntrprtaton. Corrctnss condton: If f s non-strct, w must rport that t s non-strct Th Abstract Doman Concrtzaton/Abstracton Contnu workng wth th sam languag (1 rcursv functon of 1 varabl). Nw abstract doman : 1 0 Th concrtzaton/abstracton functons say 0 mans th computaton dfntly dvrgs 1 mans nothng s known about th computaton D s th concrt doman γ(0) = { } α( { }) = 0 γ(1) = D α( S) = 1 f S { } 51 5 Abstract Smantcs Abstract Smantcs (Cont.) Nt stp s to dfn an abstract smantcs Transform f:int Int to f: Transform valus v:int To tst strctnss chck f to v: f(0) = 0 An a stands for an abstract valu (0 or 1). Trat 0,1 as fals, tru rspctvly. σ ʹ ( g)( a) = a σ ʹ ( g)( a) = 1 σʹ ( g)( a) = σʹ ( g)( a) σʹ ( )( ) ( )( ) ( )( ) 1 g a = σʹ g a σʹ 1 g a σ' ( g)( a) = g( σʹ ( g)( a)) f ( ) !

10 Th Rst of th Ruls An Eampl σʹ 1 ( g)( a) = σʹ ( g)( a) σʹ ( )( ) 1 g a + σʹ ( g)( a) = σʹ ( g)( a) σʹ ( g)( a) 1/ = f 1 thn 3 ls 4 df f 1 ( ) σʹ ( g)( a) = σʹ ( g)( a) σʹ ( g)( a) σʹ ( g)( a) σʹ ( g)( a) σ = = lfp σʹ df f() = f = 0 thn 1 ls f( + -1) ( σ ʹ ( = + )) lfp f 0 thn 1 ls f( -1) ( ) lfp λf. λ. = λaa. ( λaa. ) 0 = 0 Th functon s strct n Calculatng th LFP Anothr Eampl ( λ λ ( )) lfp f ( f( 1)) 0 1 f 0 = f 1 = f = 0 1 Gnralz to rcursv functons of two varabls. df f(,y) = f = 0 thn 0 ls f( + -1,f(,y)) ( σ ( )) lfp ʹ f = 0 thn 0 ls f( + -1,f(,y)) = lfp( λf. λ(, y). 1 (1...)) = λ(,y) Eampl (Cont.) Summary of Strctnss Analyss For mult-argumnt functons, chck ach argumnt combnaton of th form (1,,1,0,1,,1). ( λ ) ( λ ) (, y). (0,1) = 0 (, y). (1,0) = 1 X can b passd by valu. Unsaf to pass Y by valu. Mycroft s tchnqu s sound and practcal. Wdly mplmntd for lazy functonal languags. Maks modst mprovmnt n prformanc (a fw %). Th thory of abstract ntrprtaton s crtcal hr. Mycroft s tchnqu trats all valus as atomc. No rfnmnt for componnts of lsts, tupls, tc. Many rsarch paprs tak up mprovmnts for data typs, hghr-ordr functons, tc. Most of ths ar vry slow !

11 Conclusons Th Cousot&Cousot papr(s) gnratd an normous amount of othr rsarch. Abstract ntrprtaton as a thory and abstract ntrprtaton as a mthod of constructng tools ar oftn confusd. Slogan of most rsarchrs: Whr s Abstract Intrprtaton Wak? Thory s compltly gnral Th part of th orgnal papr popl undrstand s lmtd Fnt domans + monotonc functons Fnt Lattcs + Monotonc Functons = Program Analyss 61 6 Data Structurs and th Hap Sz of Domans Rqurs a fnt abstracton Whch may b tund to th program Mor oftn s mpty lst, lst of lngth 1, unknown lngth Smlar commnts apply to analyzng hap proprts E.g., a cll has 0 rfrncs, 1 rfrncs, many rfrncs Larg domans = slow analyss In practc, domans ar forcd to b small Chan hght s th crtcal masur Th focus n abstract ntrprtaton s on corrctnss Not much nsght nto ffcnt algorthms Contt Snstvty Hghr-Ordr Functons No partcular nsght nto contt snstvty Any rasonabl tchnqu s an abstract ntrprtaton Maks clar how to handl hghr-ordr functons Modl as abstract, fnt functons Ordrng on functons s pontws Problm: hug domans Brak wth th dpndnc on control-flow graphs !

12 Forwards vs. Backwards Th forwards vs. backwards mntalty prmats much of th abstract ntrprtaton ltratur But nothng n th thory says t has to b that way 67 1!

Abstract Interpretation. Lecture 5. Profs. Aiken, Barrett & Dill CS 357 Lecture 5 1

Abstract Interpretation. Lecture 5. Profs. Aiken, Barrett & Dill CS 357 Lecture 5 1 Abstract Intrprtation 1 History On brakthrough papr Cousot & Cousot 77 (?) Inspird by Dataflow analysis Dnotational smantics Enthusiastically mbracd by th community At last th functional community... At

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

SCRIBE: JAKE LEVINSON

SCRIBE: JAKE LEVINSON GL n REPRESENTATION THEORY NOTES FOR 12-03 SCRIBE: JAKE LEVINSON As th th last lctur, ths on s basd on John Stmbrdg s papr: A local charactrzaton of smpl-lacd crstals, Trans. Amr. Math. Soc. 355 (2003),

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Decision-making with Distance-based Operators in Fuzzy Logic Control

Decision-making with Distance-based Operators in Fuzzy Logic Control Dcson-makng wth Dstanc-basd Oprators n Fuzzy Logc Control Márta Takács Polytchncal Engnrng Collg, Subotca 24000 Subotca, Marka Orškovća 16., Yugoslava marta@vts.su.ac.yu Abstract: Th norms and conorms

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

Linear Non-Gaussian Structural Equation Models

Linear Non-Gaussian Structural Equation Models IMPS 8, Durham, NH Linar Non-Gaussian Structural Equation Modls Shohi Shimizu, Patrik Hoyr and Aapo Hyvarinn Osaka Univrsity, Japan Univrsity of Hlsinki, Finland Abstract Linar Structural Equation Modling

More information

Objective Mathematics

Objective Mathematics x. Lt 'P' b a point on th curv y and tangnt x drawn at P to th curv has gratst slop in magnitud, thn point 'P' is,, (0, 0),. Th quation of common tangnt to th curvs y = 6 x x and xy = x + is : x y = 8

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Aim To manage files and directories using Linux commands. 1. file Examines the type of the given file or directory

Aim To manage files and directories using Linux commands. 1. file Examines the type of the given file or directory m E x. N o. 3 F I L E M A N A G E M E N T Aim To manag ils and dirctoris using Linux commands. I. F i l M a n a g m n t 1. il Examins th typ o th givn il or dirctory i l i l n a m > ( o r ) < d i r c t

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

JEE-2017 : Advanced Paper 2 Answers and Explanations

JEE-2017 : Advanced Paper 2 Answers and Explanations DE 9 JEE-07 : Advancd Papr Answrs and Explanatons Physcs hmstry Mathmatcs 0 A, B, 9 A 8 B, 7 B 6 B, D B 0 D 9, D 8 D 7 A, B, D A 0 A,, D 9 8 * A A, B A B, D 0 B 9 A, D 5 D A, B A,B,,D A 50 A, 6 5 A D B

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

Dealing with quantitative data and problem solving life is a story problem! Attacking Quantitative Problems

Dealing with quantitative data and problem solving life is a story problem! Attacking Quantitative Problems Daling with quantitati data and problm soling lif is a story problm! A larg portion of scinc inols quantitati data that has both alu and units. Units can sa your butt! Nd handl on mtric prfixs Dimnsional

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Α complete processing methodology for 3D monitoring using GNSS receivers

Α complete processing methodology for 3D monitoring using GNSS receivers 7-5-5 NATIONA TECHNICA UNIVERSITY OF ATHENS SCHOO OF RURA AND SURVEYING ENGINEERING DEPARTMENT OF TOPOGRAPHY AORATORY OF GENERA GEODESY Α complt procssng mthodology for D montorng usng GNSS rcvrs Gorg

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems Roadmap XML Indxing CPS 296.1 Topics in Databas Systms Indx fabric Coopr t al. A Fast Indx for Smistructurd Data. VLDB, 2001 DataGuid Goldman and Widom. DataGuids: Enabling Qury Formulation and Optimization

More information

4 x 4, and. where x is Town Square

4 x 4, and. where x is Town Square Accumulation and Population Dnsity E. A city locatd along a straight highway has a population whos dnsity can b approimatd by th function p 5 4 th distanc from th town squar, masurd in mils, whr 4 4, and

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China An Application of Hardy-Littlwood Conjctur JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that wakr Hardy-Littlwood

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu Economics 20b Spring 200 Solutions to Problm St 3 John Zhu. Not in th 200 vrsion of Profssor Andrson s ctur 4 Nots, th charactrization of th firm in a Robinson Cruso conomy is that it maximizs profit ovr

More information

ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

More information

Questions k 10k 100k 1M Speaker. output

Questions k 10k 100k 1M Speaker. output Quston 1 Qustons If th only nstrumnt you had n your posssson to dtct C voltag sgnals was an audo spakr, how could you us t to dtrmn whch of two C voltag wavforms has th gratst prod? Hz FUNCTION GENERTOR

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information