Simulation of Hypervelocity Spacecrafts And Orbital Debris Collisions using Smoothed Particle Hydrodynamics in LS-DYNA

Size: px
Start display at page:

Download "Simulation of Hypervelocity Spacecrafts And Orbital Debris Collisions using Smoothed Particle Hydrodynamics in LS-DYNA"

Transcription

1 Smulaton of Hypervelocty Spacecrafts And Orbtal Debrs Collsons usng Smoothed Partcle Hydrodynamcs n LS-DYNA J.L.Lacome a, Ch. Espnosa b, C. Gallet b, a Consultant LSTC Rue des Pyrénées, F Grenade s/ Garonne b ENSICA - 1 Place Emle Bloun, F Toulouse Cedex 5 Abstract Ths paper s devoted to the results of smulatons of hypervelocty mpacts on thn alumnum plates usng the Smoothed Partcle Hydrodynamcs (SPH) opton of the LS-DYNA hydrocode. SPH s a meshless Lagrangan numercal technque used to model the flud equatons of moton. SPH has proved to be useful n certan class of problems where large mesh dstortons occur such as hgh velocty mpact, crash smulatons or compressble flud dynamcs. The smulaton of an alumnum sphere mpactng two alumnum plates at a velocty of 5.5 km/s s presented. Introducton The rsk of collson between spacecraft and orbtal debrs s becomng more and more mportant. The sze of the most numerous fragments ranges from 1 to 10 mm. The velocty of orbtal debrs can reach 15 km/s. Today, no expermental features are avalable for such hgh velocty and such bg debrs. Only smulatons can be used to understand the events and desgn shelds. Meshfree methods have known szeable developments these last years for solvng conservaton laws. S.P.H. (Smoothed Partcle Hydrodynamcs) s a meshfree Lagrangan method developed ntally to smulate astrophyscal problems. But, the easy way wth whch t s possble to ntroduce sophstcated phenomena, has made of SPH a very nterestng tool to resolve other physc problems: resoluton of contnuum mechancs, crash smulatons, ductle and brttle fractures n solds. The hgh handness of SPH allows the resoluton of many problems that are hardly reproducble wth classcal methods. It s very smple to obtan a frst approach of the knematcs of the problem to study. For nstance, due to the absence of mesh, one can calculate problems wth large rregular geometry. In ths paper, SPH algorthm s brefly descrbed. Then, we present the results of the mpact of an alumnum sphere of 7.9 mm dameter mpactng a set of alumnum plates.

2 Basc prncples of the SPH method A flud s represented wth a set of movng partcles evolvng at the flow velocty. Each SPH partcle represents an nterpolaton pont on whch all the propertes of the flud are known. The soluton of the entre problem s then computed on all the partcles wth a regular nterpolaton functon, the so-called smoothng length. The equatons of conservaton are then equvalent to terms expressng flux or nterpartcular forces. SPH method s based on quadrature formulas on movng partcles ( x ( t), w ( t)). P s the set of the partcles, x (t) s the locaton of partcle and w (t) s the weght of the partcle. We classcally move the partcles along the characterstc curves of the feld v and also modfy the wegths wth the dvergence of the flow to conserve the volume : d d ( ) x = v( x, t) ( ) w = dv( v( x, t)) w (1) dt dt We can then wrte the followng quadrature formula : x) dx Partcle approxmaton of functon Ê f ( w ( t) f ( x ( t)) (2) The prevous quadrature formula together wth the noton of smoothng kernel leads to the defnton of the partcle approxmaton of a functon. To defne the smoothng kernel, we need frst to ntroduce an auxlary functon q. The most useful functon used by the SPH communty s the cubc B-splne whch has some good propertes of regularty. P P It s defned by: Ñ Ô1 - y + y for y ˆ Ô 1 3 q ( y) = C Ò ( 2 - y) for 1 < y ˆ 2 (3) Ô 4 Ô 0 for y > 2 ÔÓ where C s the constant of normalzaton that depends on the space dmenson. We have then enough elements to defne the smoothng kernel W:

3 1 Ë x - x Û W ( x - x h = Ì, ) q Ü (4) h Í h Ý W ( x - x, h) d when h 0, where d s the Drac functon. h s a functon of x and x and s the so-called smoothng length of the kernel. We can now defne the partcle approxmaton P h u of the functon u, by approxmatng the ntegral (2): h P u ( x ) = w ( t) u( x ) W ( x - x, h) (5) Ê The approxmaton of gradents s obtaned by applyng the dervaton operator on the smoothng length. We then obtan : Impact confguraton h P u ( x ) = w ( t) u( x ) W ( x - x, h) (6) Ê The test conssts of a 7.9 mm dameter 2017-T4 alumnum sphere mpactng frst an alumnum 6061-T6 plate, 2mm thck, at 5.5 km/s. After the frst mpact, the debrs cloud created mpacts a second plate, 6.4 mm thck, of the same materal than the frst plate. The dstance between the two plates s 10 cm. A wtness plate s placed 15 cm away from the second plate to check f the debrs cloud went through the second plate. 260 mm 0.79 cm Al v = 5.5 km/s 0 deg 10 cm 15 cm 2.0 mm Al bumper 6.4mm Al rearwall 1.6 mm Al WP Fgure 1 - Impact confguraton

4 Smulaton wth LS-DYNA and SPH Modellng procedure The total smulaton tme for ths mpact s 95ms. A complete 3D model has been bult. Fgure 2 - Target and proectle meshes In order to mesh the frst plate wth an effcent way, t s necessary to dvde t n two parts; the central part and the rest of the plate. The central part wll nteract a lot wth the sphere, and wll be therefore completely dstorted after mpact. SPH elements are used to model ths central part. The rest of the plate can be modelled wth standard Lagrangan brck elements snce deformatons are very low n that regon. Ths way of modellng allows us to save some cpu tme for the smulaton snce the Lagrangan elements have a cheaper cost than the SPH elements. SPH partcles of the central are lnked to the Lagrangan outer part by knematcal constrants. A total of partcles are used to model the sphere and the two plates. A classcal sldng nterface s used to treat the contact between SPH partcles of the cloud and Lagrangan fnte elements of the target plates durng mpact. Materal models To represent the hydrodynamc behavour of alumnum durng the mpact, the Johnson-Cook materal model s used for both the proectle and the target. The Me-Grünesen equaton of state s used to determne the pressure. Data for the materals are brefly descrbed n the followng Table 1. JOHNSON-COOK Al 2024-T3 Al 6061-T6 Densty (g/cm 3 ) 2,785 2,703 Shear modulus (Mbar) 0,286 0,276

5 A (Mbar) 0, ,00275 B (Mbar) 0, ,00255 c 0,015 0,0 n 0,34 0,3 m 1 1 Specfc heat 0, , Melt température (K) Room température 273 K 273 K Table 1 - Materal data In order to smulate the falure of the materal, the hydrodynamc pressure s lmted to 0.02 Mbar. Below ths pressure lmt, spallng effects occur n the materal. Results The analyss of the results of the mpact s dvded n two parts. Frst, we compare the mpact of the sphere on the frst plate wth theoretcal calculaton. Then, the result of the complete smulaton s presented. Analytcal results The results of the smulaton are compared wth analytcal calculaton, by the mean of several representatve parameters: mpact pressure, axal velocty, and densty. In order to valdate the SPH formulaton of LS-DYNA, a one-dmenson calculaton usng the Hugonot relatons s done to compute the analytcal mpact pressure. In the target, the pressure s gven by: P Hc = r U (7) 0c Scv 1 r 0c s the densty of the target, v 1 s the velocty of the partcles at the mpact pont, U Sc s the relatve velocty of the shock wave n the target. In the proectle, the pressure s gven by: P ( v0 1) Hp 0pU Sp -v where v 0 s the mpact velocty. =r (8) These two pressures are equal. We have a supplementary relaton:

6 U S C + S v = 0 (9) C 0 s the sound speed n the materal. S s a coeffcent dependng on the materal. We have enough equatons to fnd the mpact pressure. Ths pressure s compared wth the one gven by the smulaton (Fgure 3 and Table 2). Results of the smulaton exhbt slghtly lower a pressure than the analytcal result. Numercal results Analytcal results P Hc (Mbar) 0,646 0,683 P Hp (Mbar) 0,61 0,683 V 1c (cm/ms) 0,229 0,277 V 1p (cm/ms) 0,326 0,277 r 1c (g/cm 3 ) 2,75 3,883 r 1p (g/cm 3 ) 2,78 4,001 Table 2 - Numercal and analytcal values of the representatve parameters Debrs cloud d2 V1 V2 h V3 b d1 a Fgure 3 - Correlated parameters Specfc geometrc parameters summarsed n Table 3 below and representatve knematcal parameters of the cloud are observed (Fgure 3). Snce expermental results are not yet avalable, we show the characterstc parameters that we are nterested n.

7 Axal velocty V1 Axal velocty V2 Axal velocty V3 Smulaton 6.5 km/s 4.6 km/s 3.3 km/s a b d1 d2 h Smulaton cm 6.5 cm 7.95 cm Table 3 Numercal characterstcs of the partcle cloud Fgure 4 presents the result of the mpact after the frst plate, and Fgure 5 shows the result of the mpact on the set of plates. Fgure 4-3D vew of debrs cloud after smulated mpact on the frst plate Even f hgh deformatons can be seen on the rear of the second plate, we don t notce the complete fracture of t. However, some lttle fragments of the second plate reach and mpact the wtness plate. After mpact on the second plate, the average velocty at the front of the cloud s around 200 m/s, whch s stll mportant.

8 Fgure 5-3D vew of debrs cloud Concluson The smulaton of a hgh mpact velocty on one plate gves results that are n good correlaton wth the expected results or analytcal results.

9 The mpact on a set of dfferent stacked plates seems, however, to be less precse. Indeed, for the complete model on the set of plates, we reached the lmtaton of our workstaton n term of maxmum number of partcles for a 3D complete model. More partcles are necessary for ths model to obtan reasonable good and relable results for ths knd of mpact. The use of the coupled opton of SPH n LS-DYNA, allows us to use standard Lagrangan elements, less tme consumng, that could help to have a fner model, but t looks lke that opton s not suffcent for our requrements. The model presented here can only gve us a qualtatve result of ths mpact but not a quanttatve answer. References [1] W. Schonberg, E. Mohamed, Analytcal hole dameter and crack length models for mult-wall systems under hypervelocty proectle mpact, Internatonal Journal of Impact Engneerng [2] C.Loupas : Rapport technque CEG.T96-01, [3] J.L. Lacome, Analyse de la méthode partculare SPH. Applcatons à la détonque, Thèse INSA, Janver [4] J-D Frey, F.Jancot, X. Garaud, P. Groenenboom, The valdaton of hydrocodes for orbtal debrs mpact smulaton, Internatonal Journal of Impact Engneerng, [5] R. F. Stellngwerf, C.A. Wngate, Impact modellng wth smoothed partcle hydrodynamcs, Internatonal Journal of Impact Engneerng, [6] W. Reschauer and K. Thoma, Vsualsaton of a hypervelocty mpact, Technsche Unverstat Munch,Germany [7] M. Faraud, R Destefans, D. Palmer, M. Marchett, SPH smulaton of debrs mpact usng two dfferent computer codes, Internatonal Journal of Impact Engneerng, [8] K. Holan, M. Burkett, Senstvty of hypervelocty mpact smulaton to equaton of state, Unversty of Calforna,1987. [9] Petkutowsk, Characterstcs of debrs clouds produced by hypervelocty mpact of alumnum, Unversty of Dayton Research Insttute, [10] W. Herrmann, J.S.Wlbeck, Revew of hypervelocty penetraton theores, Sanda Natonal Laboratores, 1987.

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

CONTROLLED FLOW SIMULATION USING SPH METHOD

CONTROLLED FLOW SIMULATION USING SPH METHOD HERI COADA AIR FORCE ACADEMY ROMAIA ITERATIOAL COFERECE of SCIETIFIC PAPER AFASES 01 Brasov, 4-6 May 01 GEERAL M.R. STEFAIK ARMED FORCES ACADEMY SLOVAK REPUBLIC COTROLLED FLOW SIMULATIO USIG SPH METHOD

More information

SIMULATIONS OF HYPERVELOCITY IMPACTS WITH SMOOTHED PARTICLE HYDRODYNAMICS

SIMULATIONS OF HYPERVELOCITY IMPACTS WITH SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF HYPERVELOCITY IMPACTS WITH SMOOTHED PARTICLE HYDRODYNAMICS Dominique Lacerda, Jean-Luc Lacome, DYNALIS, Paris, France Email : dynalis@dynalis.fr ABSTRACT This paper is devoted to the results

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES Manuel J. C. Mnhoto Polytechnc Insttute of Bragança, Bragança, Portugal E-mal: mnhoto@pb.pt Paulo A. A. Perera and Jorge

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Constitutive Modelling of Superplastic AA-5083

Constitutive Modelling of Superplastic AA-5083 TECHNISCHE MECHANIK, 3, -5, (01, 1-6 submtted: September 19, 011 Consttutve Modellng of Superplastc AA-5083 G. Gulano In ths study a fast procedure for determnng the constants of superplastc 5083 Al alloy

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

A Computational Viewpoint on Classical Density Functional Theory

A Computational Viewpoint on Classical Density Functional Theory A Computatonal Vewpont on Classcal Densty Functonal Theory Matthew Knepley and Drk Gllespe Computaton Insttute Unversty of Chcago Department of Molecular Bology and Physology Rush Unversty Medcal Center

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures IMS 2 Workshop Analytcal Gradent Evaluaton of Cost Functons n General Feld Solvers: A Novel Approach for Optmzaton of Mcrowave Structures P. Harscher, S. Amar* and R. Vahldeck and J. Bornemann* Swss Federal

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Computer Based Porosity Design by Multi Phase Topology Optimization

Computer Based Porosity Design by Multi Phase Topology Optimization Computer Based Porosty Desgn by Mult Phase Topology Optmzaton Andreas Burbles and Matthas Busse Fraunhofer-Insttut für Fertgungstechnk und Angewandte Materalforschung - IFAM Wener Str. 12, 28359 Bremen,

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE PROCEEDINGS, Thrty-Ffth Workshop on Geothermal Reservor Engneerng Stanford Unversty, Stanford, Calforna, February 1-3, 010 SGP-TR-188 GeoSteamNet:. STEAM FLOW SIMULATION IN A PIPELINE Mahendra P. Verma

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST Appled Computer Scence, vol. 13, no. 4, pp. 56 64 do: 10.23743/acs-2017-29 Submtted: 2017-10-30 Revsed: 2017-11-15 Accepted: 2017-12-06 Abaqus Fnte Elements, Plane Stress, Orthotropc Materal Bartosz KAWECKI

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

A New SPH Equations Including Variable Smoothing Lengths Aspects and Its Implementation

A New SPH Equations Including Variable Smoothing Lengths Aspects and Its Implementation COMPUTATIOAL MECHAICS ISCM007, July 30-August 1, 007, Beng,Chna 007 Tsnghua Unversty Press & Sprnger A ew SPH Equatons Includng Varable Smoothng Lengths Aspects and Its Implementaton Hongfu Qang*, Weran

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n N-Body Smulaton Solvng the CBE wth a 6-D grd takes too many cells. Instead, we use a Monte-Carlo method. Example: Monte-Carlo calculaton of π. Scatter n ponts n square; count number ncrcle fallng wthn

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Investigation of a New Monte Carlo Method for the Transitional Gas Flow

Investigation of a New Monte Carlo Method for the Transitional Gas Flow Investgaton of a New Monte Carlo Method for the Transtonal Gas Flow X. Luo and Chr. Day Karlsruhe Insttute of Technology(KIT) Insttute for Techncal Physcs 7602 Karlsruhe Germany Abstract. The Drect Smulaton

More information

Ahmad Shakibaeinia Assistant Professor Department of Civil, Geological & Mining Engineering Polytechnique Montreal

Ahmad Shakibaeinia Assistant Professor Department of Civil, Geological & Mining Engineering Polytechnique Montreal Natonal Center for Atmospherc Research (NCAR) IMAGe TOY2017: Workshop on Multscale Geoscence Numercs Ahmad Shakbaena Assstant Professor Department of Cvl, Geologcal & Mnng Engneerng Polytechnque Montreal

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Numerical Studies of Wave Generation Using Spiral Detonating Cord

Numerical Studies of Wave Generation Using Spiral Detonating Cord Materals Scence Forum Vols. 465-466 (2004) pp. 439-444 onlne at http://www.scentfc.net 2004 Trans Tech Publcatons, Swtzerland Numercal Studes of Wave Generaton Usng Spral Detonatng Cord K. Mahmad 1, S.

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

RECENT DEVELOPMENTS OF SPH IN MODELING EXPLOSION AND IMPACT PROBLEMS

RECENT DEVELOPMENTS OF SPH IN MODELING EXPLOSION AND IMPACT PROBLEMS Recent developments of SPH n modelng exploson and mpact problems III Internatonal Conference on Partcle-based Methods Fundamentals and Applcatons PARTICLES 2013 M. Bschoff, E. Oñate, D.R.J. Owen, E. Ramm

More information

Towards the modeling of microgalvanic coupling in aluminum alloys : the choice of boundary conditions

Towards the modeling of microgalvanic coupling in aluminum alloys : the choice of boundary conditions Presented at the COMSOL Conference 2008 Boston COMSOL Conference BOSTON November 9-11 2008 Towards the modelng of mcrogalvanc couplng n alumnum alloys : the choce of boundary condtons Ncolas Murer *1,

More information

DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS

DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS Munch, Germany, 26-30 th June 2016 1 DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS Q.T. Guo 1*, Z.Y. L 1, T. Ohor 1 and J. Takahash 1 1 Department of Systems Innovaton, School

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Arbitrary Lagrangian Eulerian Electromechanics in 3D

Arbitrary Lagrangian Eulerian Electromechanics in 3D Progress In Electromagnetcs Research Symposum 2006, Cambrdge, USA, March 26-29 265 Arbtrary Lagrangan Euleran Electromechancs n 3D R. Reben, B. Walln, and D. Whte Lawrence Lvermore Natonal Laboratory,

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

Design and Analysis of Landing Gear Mechanic Structure for the Mine Rescue Carrier Robot

Design and Analysis of Landing Gear Mechanic Structure for the Mine Rescue Carrier Robot Sensors & Transducers 214 by IFSA Publshng, S. L. http://www.sensorsportal.com Desgn and Analyss of Landng Gear Mechanc Structure for the Mne Rescue Carrer Robot We Juan, Wu Ja-Long X an Unversty of Scence

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES

OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES ICAMS 204 5 th Internatonal Conference on Advanced Materals and Systems OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES VLAD LUPĂŞTEANU, NICOLAE ŢĂRANU, RALUCA HOHAN, PAUL CIOBANU Gh. Asach Techncal Unversty

More information

Visco-Rubber Elastic Model for Pressure Sensitive Adhesive

Visco-Rubber Elastic Model for Pressure Sensitive Adhesive Vsco-Rubber Elastc Model for Pressure Senstve Adhesve Kazuhsa Maeda, Shgenobu Okazawa, Koj Nshgch and Takash Iwamoto Abstract A materal model to descrbe large deformaton of pressure senstve adhesve (PSA

More information

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM The 5th Internatonal Symposum on Computatonal Scences (ISCS) 28 May 2012, Yogyakarta, Indonesa SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM Dede Tarwd 1,2 1 Graduate School

More information

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220) Bndel, Sprng 2014 Applcatons of Parallel Computers (CS 5220) 1 Dervng SPH The Naver-Stokes equatons wth gravty are ρa = p + µ 2 v + ρg. The acceleraton s the materal dervatve of velocty, and we usually

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

CHAPTER 9 CONCLUSIONS

CHAPTER 9 CONCLUSIONS 78 CHAPTER 9 CONCLUSIONS uctlty and structural ntegrty are essentally requred for structures subjected to suddenly appled dynamc loads such as shock loads. Renforced Concrete (RC), the most wdely used

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Implement of the MPS-FEM Coupled Method for the FSI Simulation of the 3-D Dam-break Problem

Implement of the MPS-FEM Coupled Method for the FSI Simulation of the 3-D Dam-break Problem Implement of the MPS-FEM Coupled Method for the FSI Smulaton of the 3-D Dam-break Problem Youln Zhang State Key Laboratory of Ocean Engneerng, School of Naval Archtecture, Ocean and Cvl Engneerng, Shangha

More information