Real-Time Integer Optimal Control on FPGA Bartolomeo Stellato and Paul Goulart

Size: px
Start display at page:

Download "Real-Time Integer Optimal Control on FPGA Bartolomeo Stellato and Paul Goulart"

Transcription

1 Real-Time Integer Optimal Control on FPGA and Paul Goulart CDC 2016 Dec 12, 2016 Las Vegas, NV, USA

2 Medium-voltage drives market is worth 4bln $. and is growing 10% every year!

3 Power Distribution Grid Rectifier Inverter Motor Load ~ = ~ = ~ Transformer 3

4 Power Distribution Inverter Motor = ~ 3

5 Power Distribution Inverter Motor = ~ 3

6 Traditional Control Schemes Are Suboptimal Traditional Control Controller u cont Modulator Inverter and Motor = ~ x 4

7 Traditional Control Schemes Are Suboptimal Direct MPC Controller u sw Inverter and Motor = ~ x 5

8 But Direct MPC is Difficult Currents 1 THD Time[ms] Inputs f sw Time[ms] 6

9 But Direct MPC is Difficult Currents 1 THD Time[ms] Tradeoff THD vs f sw Inputs f sw Time[ms] 6

10 But Direct MPC is Difficult Very fast dynamics 7

11 But Direct MPC is Difficult Very fast dynamics Mixed Integer Optimization Problems in 25 µs! 7

12 But Direct MPC is Difficult Control Objectives Timing THD f sw Tradeoff THD vs f sw Mixed Integer Optimization Problems in 25 µs! 8

13 Problem Formulation

14 Total Harmonic Distortion ( ) ( ) = 10

15 Total Harmonic Distortion ( ) ( ) = THD Component in Cost Function = ( ) ( ) 10

16 Total Harmonic Distortion ( ) ( ) = THD Component in Cost Function = ( ) ( ) Internal Motor States 10

17 Total Harmonic Distortion ( ) ( ) = THD Component in Cost Function = ( ) ( ) Internal Motor States Oscillating References 10

18 Switching Frequency = ( ) ( ) = 11

19 Switching Frequency = = ( ) ( ) FIR Filter 11

20 Switching Frequency = = ( ) ( ) Approximate with IIR Filter FIR Filter 11

21 Switching Frequency = = ( ) ( ) Approximate with IIR Filter FIR Filter ˆ ( ) = 11

22 Switching Frequency = = ( ) ( ) Approximate with IIR Filter FIR Filter ˆ ( ) = Frequency Estimate 11

23 Switching Frequency = = ( ) ( ) Approximate with IIR Filter FIR Filter ˆ ( ) = Frequency Estimate Desired Frequency 11

24 Switching Frequency = = ( ) ( ) Approximate with IIR Filter FIR Filter ˆ ( ) = Frequency Estimate Desired Frequency Filter States x iir 11

25 Complete Block Diagram MPC Inverter and Motor = ~ IIR = 12

26 Complete Block Diagram Controller MPC Inverter and Motor = ~ IIR = 12

27 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 13

28 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 where l(x(k))= i(k) i (k) 2 2+δ ˆ f sw (k) f sw 2 2 THD 13

29 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 where l(x(k))= i(k) i (k) 2 2+δ ˆ f sw (k) f sw 2 2 THD 13

30 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 where l(x(k))= i(k) i (k) 2 2+δ ˆ f sw (k) f sw 2 2 THD 13

31 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 where l(x(k))= i(k) i (k) 2 2+δ ˆ f sw (k) f sw 2 2 THD Impossible to Solve Online 13

32 Problem Solution

33 Optimal Control Problem Infinite Horizon minimize γ k l(x(k)) k=0 subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 ( ( )) 15

34 Optimal Control Problem minimize Short Finite Horizon N 1 k=0 γ k l(x(k))+γ N V(x(k)) subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 ( ( )) 15

35 Optimal Control Problem minimize Short Finite Horizon N 1 k=0 γ k l(x(k))+γ N V(x(k)) subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 ( ( )) Very Short Horizon N 15

36 Optimal Control Problem minimize Short Finite Horizon N 1 k=0 γ k l(x(k))+γ N V(x(k)) subjectto x(k+1)=ax(k)+bu(k) x(0)=x 0 x(k) X,u(k) { 1,0,1} 3 ( ( )) Very Short Horizon N Approximate ( ( )) Offline 15

37 Approximate Dynamic Programming ( )= Bellman Equality { ( )+ ( + )} 16

38 Approximate Dynamic Programming ( )= Bellman Equality { ( )+ ( + )} T Bellman Operator T 16

39 Approximate Dynamic Programming ( )= Bellman Equality { ( )+ ( + )} T Bellman Operator T Contractive lim M TM V =V 16

40 Approximate Dynamic Programming ( )= Bellman Equality { ( )+ ( + )} T Bellman Operator T Contractive Monotone lim M TM V =V = T T 16

41 Approximate Dynamic Programming Bellman Inequality V(x) min u {l(x)+γv(ax+bu)} T Bellman Operator T Contractive Monotone lim M TM V =V = T T 16

42 Approximate Dynamic Programming Bellman Inequality V(x) min u {l(x)+γv(ax+bu)} T Bellman Operator T Contractive Monotone lim M TM V =V = T T Sufficient condition for underestimating T = 16

43 Finding the Best Underestimator Infinite Dimensional LP X ( ) ( ) ( ) T ( ) 17

44 Finding the Best Underestimator Infinite Dimensional LP maximize X V(x)c(dx) subjectto V(x) T M V(x) x Iterated Bellman Inequality 17

45 Finding the Best Underestimator Infinite Dimensional LP maximize X V(x)c(dx) subjectto V(x) T M V(x) x Iterated Bellman Inequality Restrict to Quadratic Functions V(x)=x Px+2q x+r 17

46 Finding the Best Underestimator Infinite Dimensional LP maximize X V(x)c(dx) subjectto V(x) T M V(x) x Iterated Bellman Inequality Restrict to Quadratic Functions V(x)=x Px+2q x+r Tractable SDP (Offline) 17

47 FPGA Implementation PROTOIP Toolbox (Suardi et al.) Brute force enumeration Pipelined Evaluation of Switch Sequences Parallelized Matrix Computations

48 Timing Benchmarks =.. =.. [ ] 19

49 Timing Benchmarks =.. =.. [ ] Computation Times under 25 µs! 19

50 Hardware in the Loop Tests

51 Steady-State Performance at = 300 Hz THD [%] ADP State of the art Horizon Length N 21

52 Steady-State Performance at = 300 Hz THD [%] ADP State of the art Horizon Length N Better Performance with Short Horizons 21

53 Conclusions - New Approach to Direct MPC 22

54 Conclusions - New Approach to Direct MPC Meaningful formulation ( ) THDvsf sw 22

55 Conclusions - New Approach to Direct MPC Meaningful formulation ( THDvsf sw ) Complexity reduction with good performance (ADP) 22

56 Conclusions - New Approach to Direct MPC Meaningful formulation ( THDvsf sw ) Complexity reduction with good performance (ADP) Real-Time FPGA implementation (< 25 µs ) 22

57 Conclusions - New Approach to Direct MPC Meaningful formulation ( THDvsf sw ) Complexity reduction with good performance (ADP) Real-Time FPGA implementation (< 25 µs ) High-Speed Finite Control Set Model Predictive Control for Power Electronics B. Stellato, T. Geyer, P. J. Goulart IEEE Transactions on Power Electronics (In Press) 22

58

59 Backup - Transient Currents = ( ) Time[ms] 24

60 Backup - Dense Formulation Integer Program + ( ) ( ) {,, } 25

61 Backup - SDP Formulation Quadratic Cost Function X ( ) ( )= ( )+ + SDP Formulation ( )+ + ( ), M, =,..., = S, R, R, =,..., 26

62 Backup - Switch Positions C dc C dc C dc V dc N i x V dc N i x V dc N i x C dc C dc C dc 27

High-Speed Integer Optimal Control using ADP Bartolomeo Stellato and Paul Goulart

High-Speed Integer Optimal Control using ADP Bartolomeo Stellato and Paul Goulart High-Speed Integer Optimal Control using ADP and Paul Goulart EUCCO 2016 13/09/2016 Leuven, Belgium Medium-voltage drives market is worth 4bln $. and is growing 10% every year! Power Distribution Grid

More information

High-Speed Finite Control Set Model Predictive Control for Power Electronics. Abstract

High-Speed Finite Control Set Model Predictive Control for Power Electronics. Abstract High-Speed Finite Control Set Model Predictive Control for Power Electronics Bartolomeo Stellato, Student Member, IEEE, Tobias Geyer, Senior Member, IEEE and Paul J. Goulart, Member, IEEE Abstract arxiv:50.05578v3

More information

Model Predictive Torque and Flux Control Minimizing Current Distortions

Model Predictive Torque and Flux Control Minimizing Current Distortions Model Predictive Torque and Flux Control Minimizing Current istortions Petros Karamanakos, Member, IEEE, and Tobias Geyer, Senior Member, IEEE Abstract A new model predictive torque and flux controller

More information

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini, Daniele Bernardini, Alberto Bemporad and Stephen Levijoki ODYS Srl General Motors Company 2015 IEEE International

More information

Switching Time Optimization Bartolomeo Stellato, Sina Ober-Blöbaum and Paul Goulart

Switching Time Optimization Bartolomeo Stellato, Sina Ober-Blöbaum and Paul Goulart Switching Time Optimization, Sina Ober-Blöbaum and Paul Goulart CDC 2016 Dec 14, 2016 Las Vegas, NV, USA Switched System Dynamics ẋ=f i (x(t)) t [τ i,τ i+1 ) 3 Switching Time Optimization Problem minimize

More information

Distributed and Real-time Predictive Control

Distributed and Real-time Predictive Control Distributed and Real-time Predictive Control Melanie Zeilinger Christian Conte (ETH) Alexander Domahidi (ETH) Ye Pu (EPFL) Colin Jones (EPFL) Challenges in modern control systems Power system: - Frequency

More information

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

An improved deadbeat predictive current control for permanent magnet linear synchronous motor Indian Journal of Engineering & Materials Sciences Vol. 22, June 2015, pp. 273-282 An improved deadbeat predictive current control for permanent magnet linear synchronous motor Mingyi Wang, iyi i, Donghua

More information

Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach

Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach Real Time Economic Dispatch for Power Networks: A Distributed Economic Model Predictive Control Approach Johannes Köhler, Matthias A. Müller, Na Li, Frank Allgöwer Abstract Fast power fluctuations pose

More information

CASCADED DUAL MODEL PREDICTIVE CONTROL OF AN ACTIVE FRONT-END RECTIFIER

CASCADED DUAL MODEL PREDICTIVE CONTROL OF AN ACTIVE FRONT-END RECTIFIER CASCADED DUAL MODEL PREDICTIVE CONTROL OF AN ACTIVE FRONT-END RECTIFIER 1 PENTA SRAVANTHI, 2 RAVULA SWATHI 1 M.Tech, BALAJI INSTITUTE OF TECHNOLOGY AND SCIENCE 2 Assistant professor, BALAJI INSTITUTE OF

More information

DISTURBANCE LOAD MODELLING WITH EQUIVALENT VOLTAGE SOURCE METHOD IN GRID HARMONIC ASSESSMENT

DISTURBANCE LOAD MODELLING WITH EQUIVALENT VOLTAGE SOURCE METHOD IN GRID HARMONIC ASSESSMENT DISTURBANCE LOAD MODELLING WITH EQUIVALENT VOLTAGE SOURCE METHOD IN GRID HARMONIC ASSESSMENT Xavier YANG Xingyan NIU Bruno PASZKIER EDF R&D France EDF R&D China EDF R&D - France xavier.yang@edf.fr xingyan.niu@edf.fr

More information

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid ESNRajuP Research Scholar, Electrical Engineering IIT Indore Indore, India Email:pesnraju88@gmail.com Trapti Jain Assistant Professor,

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

Modeling & Simulation of Passive Shunt Filter for Power Quality Improvement Using TCR and TSC Combination By MATLAB/Simulink

Modeling & Simulation of Passive Shunt Filter for Power Quality Improvement Using TCR and TSC Combination By MATLAB/Simulink Modeling & Simulation of Passive Shunt Filter for Power Quality Improvement Using TCR and TSC Combination By MATLAB/Simulink Neha Shaktawat*,Manjari Sharma** EEE departement, (M. Tech student) M.I.T. Mandsaur,

More information

Control Strategies for Microgrids

Control Strategies for Microgrids Control Strategies for Microgrids Ali Mehrizi-Sani Assistant Professor School of Electrical Engineering and Computer Science Washington State University Graz University of Technology Thursday, November

More information

Novel Approach to Develop Behavioral Model Of 12-Pulse Converter

Novel Approach to Develop Behavioral Model Of 12-Pulse Converter Novel Approach to Develop Behavioral Model Of 12-Pulse Converter Amit Sanglikar, and Vinod John, Member, IEEE Abstract--A novel approach to develop behavioral model of 12- pulse converter, which reduces

More information

Model Predictive Pulse Pattern Control with Very Fast Transient Responses

Model Predictive Pulse Pattern Control with Very Fast Transient Responses Model Predictive Pulse Pattern Control with Very Fast Transient Responses Tobias Geyer, Senior Member, IEEE and Nikolaos Oikonomou, Member, IEEE Abstract Closed-loop control and modulation of AC drives

More information

Model Predictive Controller of Boost Converter with RLE Load

Model Predictive Controller of Boost Converter with RLE Load Model Predictive Controller of Boost Converter with RLE Load N. Murali K.V.Shriram S.Muthukumar Nizwa College of Vellore Institute of Nizwa College of Technology Technology University Technology Ministry

More information

Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems

Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems Dynamic Phasors in Modeling, Analysis and Control of Energy Processing Systems 6/20/02 Alex M. Stanković Northeastern University, Boston, MA 1 Research Program Overview My research program focuses on the

More information

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )

More information

Evaluation of Uncertainty in AC Power Calculation with Asynchronously Sampled Data

Evaluation of Uncertainty in AC Power Calculation with Asynchronously Sampled Data Journal of Physics: Conference Series OPEN ACCESS Evaluation of Uncertainty in AC Power Calculation with Asynchronously Sampled Data To cite this article: D Lindenthaler and H Zangl 01 J. Phys.: Conf.

More information

Repetitive control : Power Electronics. Applications

Repetitive control : Power Electronics. Applications Repetitive control : Power Electronics Applications Ramon Costa Castelló Advanced Control of Energy Systems (ACES) Instituto de Organización y Control (IOC) Universitat Politècnica de Catalunya (UPC) Barcelona,

More information

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION

MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE SUPPRESSION POWER ELECTRONICS AND DRIVES 2(37), No. 2, 217 DOI: 1.5277/PED1728 MODIFIED SCHEME OF PREDICTIVE TORQUE CONTROL FOR THREE-PHASE FOUR-SWITCH INVERTER-FED MOTOR DRIVE WITH ADAPTIVE DC-LINK VOLTAGE IMBALANCE

More information

THE power transfer capability is one of the most fundamental

THE power transfer capability is one of the most fundamental 4172 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 9, SEPTEMBER 2012 Letters Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC DC Converter With Dual-Phase-Shift Control Biao

More information

FPGA Implementation of Model Predictive Direct Current Control

FPGA Implementation of Model Predictive Direct Current Control 1 FPGA Implementation of Model Predictive Direct Current Control Joël Vallone, Tobias Geyer, Eduardo Rath Rohr Abstract An FPGA implementation of Model Predictive Direct Current Control (MPDCC) is reported

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Lecture 1 Pipelining & Retiming ADSP Lecture1 - Pipelining & Retiming (cwliu@twins.ee.nctu.edu.tw) 1-1 Introduction DSP System Real time requirement Data driven synchronized by data

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Control Design Techniques in Power Electronics Devices

Control Design Techniques in Power Electronics Devices Hebertt Sira-Ramfrez and Ramön Silva-Ortigoza Control Design Techniques in Power Electronics Devices With 202 Figures < } Spri inger g< Contents 1 Introduction 1 Part I Modelling 2 Modelling of DC-to-DC

More information

Managing Emergency Generators

Managing Emergency Generators Managing Emergency Generators with nonlinear loads Author akshay thakur Application Engineer Kohler Co. Power Systems Division In this paper we will be focusing on the harmonic distortion that occurs in

More information

Temporal-Difference Q-learning in Active Fault Diagnosis

Temporal-Difference Q-learning in Active Fault Diagnosis Temporal-Difference Q-learning in Active Fault Diagnosis Jan Škach 1 Ivo Punčochář 1 Frank L. Lewis 2 1 Identification and Decision Making Research Group (IDM) European Centre of Excellence - NTIS University

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Section 1: Introduction

Section 1: Introduction Section 1: Introduction Input Power Power Electronic Switching onverter Output Power ontrol Input Figure 1.1 Input Power: Output Power: D, A mains, randomly variable egulated under regenerative duty D,

More information

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem Dimitris J. Bertsimas Dan A. Iancu Pablo A. Parrilo Sloan School of Management and Operations Research Center,

More information

An FPGA Implementation of the Fast Gradient Method for Solving the Model Predictive Pulse Pattern Control Problem

An FPGA Implementation of the Fast Gradient Method for Solving the Model Predictive Pulse Pattern Control Problem An FPGA Implementation of the Fast Gradient Method for Solving the Model Predictive Pulse Pattern Control Problem Helfried Peyrl ABB Corporate Research 5405 Baden-Dättwil, Switzerland Email: helfried.peyrl@ch.abb.com

More information

Lecture 10: Grid Faults and Disturbances

Lecture 10: Grid Faults and Disturbances / 2 Lecture : Grid Faults and Disturbances ELEC-E842 Control of Electric Drives and Power Converters (5 ECTS) Jarno Kukkola and Marko Hinkkanen Spring 27 2 / 2 Learning Outcomes After this lecture you

More information

Generalized Periodic Disturbance Observer Technology with Automatic Learning Functions

Generalized Periodic Disturbance Observer Technology with Automatic Learning Functions Power Electronics Technology Generalized Periodic Disturbance Observer Technology with Automatic Learning Functions Yugo Tadano, Kazunobu Oi, Takashi Yamaguchi Keywords Harmonics suppression, Active filter,

More information

Quadratic and Polynomial Inequalities in one variable have look like the example below.

Quadratic and Polynomial Inequalities in one variable have look like the example below. Section 8 4: Polynomial Inequalities in One Variable Quadratic and Polynomial Inequalities in one variable have look like the example below. x 2 5x 6 0 (x 2) (x + 4) > 0 x 2 (x 3) > 0 (x 2) 2 (x + 4) 0

More information

Alleviating tuning sensitivity in Approximate Dynamic Programming

Alleviating tuning sensitivity in Approximate Dynamic Programming Alleviating tuning sensitivity in Approximate Dynamic Programming Paul Beuchat, Angelos Georghiou and John Lygeros Abstract Approximate Dynamic Programming offers benefits for large-scale systems compared

More information

IN ADJUSTABLE-SPEED ac drives, dc ac inverters are

IN ADJUSTABLE-SPEED ac drives, dc ac inverters are 1894 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 6, JUNE 2009 Model Predictive Direct Torque Control Part I: Concept, Algorithm, and Analysis Tobias Geyer, Member, IEEE, Georgios Papafotiou,

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

Selected paper. Consistent circuit technique for zero-sequence currents evaluation in interconnected single/three-phase power networks

Selected paper. Consistent circuit technique for zero-sequence currents evaluation in interconnected single/three-phase power networks Diego Bellan 1,*, Sergio A. Pignari 1, Gabrio Superti- Furga 2 J. Electrical Systems Special issue AMPE2015 Selected paper Consistent circuit technique for zero-sequence currents evaluation in interconnected

More information

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Dmitry Yershov and Steve LaValle Computer Science niversity of Illinois at rbana-champaign WAFR 2010 December 15, 2010

More information

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India MODELING AND ANALYSIS OF 6/4 SWITCHED RELUCTANCE MOTOR WITH TORQUE RIPPLE REDUCTION Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women,

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Verteilte modellprädiktive Regelung intelligenter Stromnetze

Verteilte modellprädiktive Regelung intelligenter Stromnetze Verteilte modellprädiktive Regelung intelligenter Stromnetze Institut für Mathematik Technische Universität Ilmenau in Zusammenarbeit mit Philipp Braun, Lars Grüne (U Bayreuth) und Christopher M. Kellett,

More information

Problems in VLSI design

Problems in VLSI design Problems in VLSI design wire and transistor sizing signal delay in RC circuits transistor and wire sizing Elmore delay minimization via GP dominant time constant minimization via SDP placement problems

More information

Modeling Capacitor Commutated Converters in Power System Stability Studies

Modeling Capacitor Commutated Converters in Power System Stability Studies IEEE/PES Summer Meeting, July 2002. Published in Transactions on Power Systems, May 2002. Modeling Capacitor Commutated Converters in Power System Stability Studies Sergio Gomes Jr. (CEPEL) Nelson Martins

More information

A simple model based control of self excited induction generators over a wide speed range

A simple model based control of self excited induction generators over a wide speed range ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 10 (2014) No. 3, pp. 206-213 A simple model based control of self excited induction generators over a wide speed range Krishna

More information

Adaptive Fuzzy Logic Power Filter for Nonlinear Systems

Adaptive Fuzzy Logic Power Filter for Nonlinear Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 30-3331, Volume 11, Issue Ver. I (Mar. Apr. 016), PP 66-73 www.iosrjournals.org Adaptive Fuzzy Logic Power Filter

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Position Controller for PMSM Based on Finite Control Set Model Predictive Control

Position Controller for PMSM Based on Finite Control Set Model Predictive Control http://dx.doi.org/10.5755/j01.eie..6.1717 Position Controller for PMSM Based on Finite Control Set Model Predictive Control Vior Slapak 1 Karol Kyslan 1 Frantisek Durovsky 1 1 Department of Electrical

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

Alexander M. Weinger CONTROLLED AC DRIVES

Alexander M. Weinger CONTROLLED AC DRIVES Alexander M. Weinger CONTROLLED AC DRIVES Shortened introductory course Moscow 28 CONTENTS 1. MAIN REQUIREMENTS TO CONTROLLED ELECTRIC DRIVES AND THEIR MAIN FEATURES... 5 1.1. Definition of a controlled

More information

PMU-Based Power System Real-Time Stability Monitoring. Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center

PMU-Based Power System Real-Time Stability Monitoring. Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center PMU-Based Power System Real-Time Stability Monitoring Chen-Ching Liu Boeing Distinguished Professor Director, ESI Center Dec. 2015 Real-Time Monitoring of System Dynamics EMS Real-Time Data Server Ethernet

More information

A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters

A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters Wu Sheng Lu akao Hinamoto University of Victoria Hiroshima University Victoria, Canada Higashi Hiroshima, Japan

More information

Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models

Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models Shinichi Nishiyama Graduate School of Economics Kyoto University January 10, 2019 Abstract In this lecture, we solve and simulate

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Nonlinear control of power converters for HVDC applications

Nonlinear control of power converters for HVDC applications Nonlinear control of power converters for HVDC applications Morten Hovd and Mohsen Vatani Workshop on Distributed Energy Management Systems Washington DC, April 22, 215 2 Table of Contents Modular Multilevel

More information

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control Australian Journal of Basic and Applied Sciences, 8(4) Special 214, Pages: 49-417 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A Novel

More information

Analytical Closed-Form Investigation of PWM Inverter Induction- Motor Drive Performance under DC-Bus Voltage Pulsation

Analytical Closed-Form Investigation of PWM Inverter Induction- Motor Drive Performance under DC-Bus Voltage Pulsation 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November -, 007 7 Analytical Closed-Form Investigation of PWM Inverter Induction- Motor Drive

More information

Synthesis of Nonlinear Control of Switching Topologies of Buck-Boost Converter Using Fuzzy Logic on Field Programmable Gate Array (FPGA)

Synthesis of Nonlinear Control of Switching Topologies of Buck-Boost Converter Using Fuzzy Logic on Field Programmable Gate Array (FPGA) Journal of Intelligent Learning Systems and Applications, 2010, 2: 36-42 doi:10.4236/jilsa.2010.21005 Published Online February 2010 (http://www.scirp.org/journal/jilsa) Synthesis of Nonlinear Control

More information

FEEDBACK AND STABILITY

FEEDBACK AND STABILITY FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H02M 7/483 ( )

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H02M 7/483 ( ) (19) TEPZZ 7849 6A T (11) EP 2 784 926 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 01..14 Bulletin 14/40 (1) Int Cl.: H02M 7/483 (07.01) (21) Application number: 14162389.2 (22) Date

More information

Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales

Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales Takanori YAMAZAKI*, Yoshiharu SAKURAI**, Hideo OHNISHI*** Masaaki KOBAYASHI***, Shigeru KUROSU** *Tokyo Metropolitan College of Technology,

More information

arxiv: v2 [cs.sy] 29 Mar 2016

arxiv: v2 [cs.sy] 29 Mar 2016 Approximate Dynamic Programming: a Q-Function Approach Paul Beuchat, Angelos Georghiou and John Lygeros 1 ariv:1602.07273v2 [cs.sy] 29 Mar 2016 Abstract In this paper we study both the value function and

More information

Small Data, Mid data, Big Data vs. Algebra, Analysis, and Topology

Small Data, Mid data, Big Data vs. Algebra, Analysis, and Topology Small Data, Mid data, Big Data vs. Algebra, Analysis, and Topology Xiang-Gen Xia I have been thinking about big data in the last a few years since it has become a hot topic. On most of the time I have

More information

Modeling Buck Converter by Using Fourier Analysis

Modeling Buck Converter by Using Fourier Analysis PIERS ONLINE, VOL. 6, NO. 8, 2010 705 Modeling Buck Converter by Using Fourier Analysis Mao Zhang 1, Weiping Zhang 2, and Zheng Zhang 2 1 School of Computing, Engineering and Physical Sciences, University

More information

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

More information

HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK

HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK Xavier YANG EDF R&D - France xavier.yang@edf.fr Ludovic BERTIN EDF R&D - France ludovic-g.bertin@edf.fr

More information

Iron core loss calculation with QuickField

Iron core loss calculation with QuickField Iron core loss calculation with QuickField Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd. Alexander Lyubimtsev Support Engineer Tera Analysis Ltd. QuickField Analysis Options Magnetic

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2) Discrete Time Signals and Switched Capacitor Circuits (rest of chapter 9 + 10.1, 10.2) Tuesday 16th of February, 2010, 0, 9:15 11:45 Snorre Aunet, sa@ifi.uio.no Nanoelectronics Group, Dept. of Informatics

More information

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring A New Unsupervised Event Detector for Non-Intrusive Load Monitoring GlobalSIP 2015, 14th Dec. Benjamin Wild, Karim Said Barsim, and Bin Yang Institute of Signal Processing and System Theory of,, Germany

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

Chapter 7 DC-DC Switch-Mode Converters

Chapter 7 DC-DC Switch-Mode Converters Chapter 7 DC-DC Switch-Mode Converters dc-dc converters for switch-mode dc power supplies and dc-motor drives 7-1 Block Diagram of DC-DC Converters Functional block diagram 7-2 Stepping Down a DC Voltage

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL What is Model Predictive Control (MPC)? CBE495 LECTURE IV MODEL PREDICTIVE CONTROL Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University * Some parts are from

More information

Value and Policy Iteration

Value and Policy Iteration Chapter 7 Value and Policy Iteration 1 For infinite horizon problems, we need to replace our basic computational tool, the DP algorithm, which we used to compute the optimal cost and policy for finite

More information

Solution to Tutorial 5 Isolated DC-DC Converters & Inverters

Solution to Tutorial 5 Isolated DC-DC Converters & Inverters ELEC464 University of New South Wales School of Electrical Engineering & Telecommunications Solution to Tutorial 5 Isolated DC-DC Converters & Inverters. i D O d T The maximum value of L m which will ensure

More information

An Application to Growth Theory

An Application to Growth Theory An Application to Growth Theory First let s review the concepts of solution function and value function for a maximization problem. Suppose we have the problem max F (x, α) subject to G(x, β) 0, (P) x

More information

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band UKSim 2009: th International Conference on Computer Modelling and Simulation A Direct Torque Controlled Induction Motor with Variable Hysteresis Band Kanungo Barada Mohanty Electrical Engineering Department,

More information

Stability Analysis of Single-Phase Grid-Feeding Inverters with PLL using Harmonic Linearisation and Linear Time Periodic (LTP) Theory

Stability Analysis of Single-Phase Grid-Feeding Inverters with PLL using Harmonic Linearisation and Linear Time Periodic (LTP) Theory Stability Analysis of Single-Phase Grid-Feeding Inverters with PLL using Harmonic Linearisation and Linear Time Periodic (LTP) Theory Valerio Salis, Alessandro Costabeber, Pericle Zanchetta Power Electronics,

More information

Simple hardware implementation of voltage balancing in capacitor-clamped inverter

Simple hardware implementation of voltage balancing in capacitor-clamped inverter Simple hardware implementation of voltage balancing in capacitor-clamped inverter Petr Kokeš, Radko Semerád Abstract. The basic principle of voltage balancing in capacitor-clamped voltage source inverters

More information

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 ISSN 0976 6464(Print)

More information

Power Electronics

Power Electronics Prof. Dr. Ing. Joachim Böcker Power Electronics 3.09.06 Last Name: Student Number: First Name: Study Program: Professional Examination Performance Proof Task: (Credits) (0) (0) 3 (0) 4 (0) Total (80) Mark

More information

A Stable Block Model Predictive Control with Variable Implementation Horizon

A Stable Block Model Predictive Control with Variable Implementation Horizon American Control Conference June 8-,. Portland, OR, USA WeB9. A Stable Block Model Predictive Control with Variable Implementation Horizon Jing Sun, Shuhao Chen, Ilya Kolmanovsky Abstract In this paper,

More information

Theory in Model Predictive Control :" Constraint Satisfaction and Stability!

Theory in Model Predictive Control : Constraint Satisfaction and Stability! Theory in Model Predictive Control :" Constraint Satisfaction and Stability Colin Jones, Melanie Zeilinger Automatic Control Laboratory, EPFL Example: Cessna Citation Aircraft Linearized continuous-time

More information

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC 1 RAJENDRA S. SONI, 2 S. S. DHAMAL 1 Student, M. E. Electrical (Control Systems), K. K. Wagh College of Engg. & Research, Nashik 2

More information

Fast Model Predictive Control with Soft Constraints

Fast Model Predictive Control with Soft Constraints European Control Conference (ECC) July 7-9,, Zürich, Switzerland. Fast Model Predictive Control with Soft Constraints Arthur Richards Department of Aerospace Engineering, University of Bristol Queens Building,

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Improvement of an Existing Method of Asynchronous Sampling for Determining RMS Value

Improvement of an Existing Method of Asynchronous Sampling for Determining RMS Value SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No., February 208, 3-28 UDC: 59.243:53.08]:004.942 DOI: https://doi.org/0.2298/sjee8003m Improvement of an Existing Method of Asynchronous Sampling for

More information

ECE7850 Lecture 7. Discrete Time Optimal Control and Dynamic Programming

ECE7850 Lecture 7. Discrete Time Optimal Control and Dynamic Programming ECE7850 Lecture 7 Discrete Time Optimal Control and Dynamic Programming Discrete Time Optimal control Problems Short Introduction to Dynamic Programming Connection to Stabilization Problems 1 DT nonlinear

More information

Approximate active fault detection and control

Approximate active fault detection and control Approximate active fault detection and control Jan Škach Ivo Punčochář Miroslav Šimandl Department of Cybernetics Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic 11th European

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Trajectory Etension Methods for Model Predictive irect Torque Control This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version

More information

Hilbert Transformator IP Cores

Hilbert Transformator IP Cores Introduction Hilbert Transformator IP Cores Martin Kumm December 27, 28 The Hilbert Transform is an important component in communication systems, e.g. for single sideband modulation/demodulation, amplitude

More information