Computational Lower Bounds for Community Detection on Random Graphs

Size: px
Start display at page:

Download "Computational Lower Bounds for Community Detection on Random Graphs"

Transcription

1 Computational Lower Bounds for Community Detection on Random Graphs Bruce Hajek, Yihong Wu, Jiaming Xu Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana-Champaign Wharton School of Statistics University of Pennsylvannia COLT, July 3-6, 2015

2 Community detection in networks Networks with community structures arise in many applications Collaboration network: 118 scientists [Girvan-Newman 02]

3 Community detection in networks Networks with community structures arise in many applications Collaboration network: 118 scientists [Girvan-Newman 02] Task: Find underlying communities based on the network topology

4 Community detection in networks Networks with community structures arise in many applications Collaboration network: 118 scientists [Girvan-Newman 02] Task: Find underlying communities based on the network topology Applications: Friend or movie recommendation in online social networks

5 Stochastic block model (Planted partition model) n = 40, K = 10, r = 3

6 Stochastic block model (Planted partition model) p = 0.9

7 Stochastic block model (Planted partition model) p = 0.9 q = 0.1

8 Stochastic block model (Planted partition model) p = 0.9 q = 0.1

9 This paper focuses on r = 1: a single community p q q q One cluster of size K plus n K outliers Connectivity p within cluster and q otherwise Also known as Planted Dense Subgraph model p = 1, q = γ corresponds to Planted Clique model

10 Planted clique hardness hypothesis Bern(γ) H 0 : Bern(γ) vs H 1 : K Bern(1) K [Alon et al. 98] [Dekel et al. 10] [Deshpande-Montanari 13]... Intermediate regime: log n K n, γ = Θ(1) detection is possible but believed to have high computational complexity: [Alon et al. 11] [Feldman et al. 13]...

11 Planted clique hardness hypothesis Bern(γ) H 0 : Bern(γ) vs H 1 : K Bern(1) K [Alon et al. 98] [Dekel et al. 10] [Deshpande-Montanari 13]... Intermediate regime: log n K n, γ = Θ(1) detection is possible but believed to have high computational complexity: [Alon et al. 11] [Feldman et al. 13]... many (worst-case) hardness results assuming Planted Clique hardness with γ = 1 2 detecting sparse principal component [Berthet-Rigollet 13] detecting sparse submatrix [Ma-Wu 13] cryptography [Applebaum et al. 10]: γ = 2 log0.99 n

12 Main result: Hardness for detecting a single cluster Assuming Planted Clique hardness for any constant γ > 0 β 1 K = Θ(n β ) easy 1/2 O hard impossible 2/3 r = 1 p = cq = Θ(n α ) 1 α

13 Main result: Hardness for detecting a single cluster Assuming Planted Clique hardness for any constant γ > 0 β 1 K = Θ(n β ) easy 1/2 O hard impossible 2/3 r = 1 p = cq = Θ(n α ) 1 α Detecting a single cluster in the red regime is at least as hard as detecting a clique of size K = o( n)

14 Corollary: Hardness for recovering a single cluster Can show: Hardness of detection implies hardness or recovery, so: Assuming Planted Clique hardness for any constant γ > 0 β 1 K = Θ(n β ) 1/2 easy spectral barrier r = 1 O impossible 2/3 p = cq = Θ(n α ) 1 α

15 Corollary: Hardness for recovering a single cluster Can show: Hardness of detection implies hardness or recovery, so: Assuming Planted Clique hardness for any constant γ > 0 β 1 K = Θ(n β ) easy spectral barrier 1/2 hard impossible r = 1 O 2/3 p = cq = Θ(n α ) 1 α Recovering a single cluster in the red regime is at least as hard as detecting a clique of size K = o( n)

16 Proof requires a polynomial time reduction h : A n n à N N H 0 : Bern(γ) Bern(q) vs vs H 1 : k clique k K Bern(p) K

17 Proof requires a polynomial time reduction h : A n n à N N H 0 : Bern(γ) Bern(q) vs vs H 1 : k clique k K Bern(p) K h : A à is agnostic to the clique and can be computed in P-time

18 Given an integer l, two probability distributions P, Q on {0, 1,..., l 2 } Split each node into l new nodes N = nl, K = kl l l

19 Given an integer l, two probability distributions P, Q on {0, 1,..., l 2 } Split each node into l new nodes N = nl, K = kl Assign edges with distributions P, Q l l 0 Q

20 Given an integer l, two probability distributions P, Q on {0, 1,..., l 2 } Split each node into l new nodes N = nl, K = kl Assign edges with distributions P, Q l l 0 Q 1 P

21 Given an integer l, two probability distributions P, Q on {0, 1,..., l 2 } Split each node into l new nodes N = nl, K = kl Assign edges with distributions P, Q l l 0 Q 1 P H 0 : H 1 : Bern(γ) Bern(1) (in-clique) (1 γ)q + γp P (in-cluster)

22 Given an integer l, two probability distributions P, Q on {0, 1,..., l 2 } Split each node into l new nodes N = nl, K = kl Assign edges with distributions P, Q l l 0 Q 1 P H 0 : H 1 : Bern(γ) Bern(1) (in-clique) (1 γ)q + γp P (in-cluster) How to choose P, Q? Matching H 0 : (1 γ)q + γp = Binom(l 2, q) Matching H 1 approximately: P Binom(l 2, p) in total variation distance

23 Please see paper for more information and references Thanks!

24

Statistical and Computational Phase Transitions in Planted Models

Statistical and Computational Phase Transitions in Planted Models Statistical and Computational Phase Transitions in Planted Models Jiaming Xu Joint work with Yudong Chen (UC Berkeley) Acknowledgement: Prof. Bruce Hajek November 4, 203 Cluster/Community structure in

More information

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jiaming Xu Joint work with Rui Wu, Kai Zhu, Bruce Hajek, R. Srikant, and Lei Ying University of Illinois, Urbana-Champaign

More information

Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices

Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices Journal of Machine Learning Research 17 (2016) 1-57 Submitted 8/14; Revised 5/15; Published 4/16 Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number

More information

Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting

Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting : The High-Dimensional Setting Yudong Chen YUDONGCHEN@EECSBERELEYEDU Department of EECS, University of California, Berkeley, Berkeley, CA 94704, USA Jiaming Xu JXU18@ILLINOISEDU Department of ECE, University

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

arxiv: v1 [cond-mat.dis-nn] 16 Feb 2018

arxiv: v1 [cond-mat.dis-nn] 16 Feb 2018 Parallel Tempering for the planted clique problem Angelini Maria Chiara 1 1 Dipartimento di Fisica, Ed. Marconi, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma Italy arxiv:1802.05903v1 [cond-mat.dis-nn]

More information

Planted Cliques, Iterative Thresholding and Message Passing Algorithms

Planted Cliques, Iterative Thresholding and Message Passing Algorithms Planted Cliques, Iterative Thresholding and Message Passing Algorithms Yash Deshpande and Andrea Montanari Stanford University November 5, 2013 Deshpande, Montanari Planted Cliques November 5, 2013 1 /

More information

Reconstruction in the Sparse Labeled Stochastic Block Model

Reconstruction in the Sparse Labeled Stochastic Block Model Reconstruction in the Sparse Labeled Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign

More information

arxiv: v2 [math.st] 21 Oct 2015

arxiv: v2 [math.st] 21 Oct 2015 Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix T. Tony Cai, Tengyuan Liang and Alexander Rakhlin arxiv:1502.01988v2 [math.st] 21 Oct 2015 Department of Statistics

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Ensuring Strong Dominance of the Leading Eigenvalues for Cluster Ensembles

Ensuring Strong Dominance of the Leading Eigenvalues for Cluster Ensembles Ensuring Strong Dominance of the Leading Eigenvalues for Cluster Ensembles H.. Kung School of Engineering Applied Sciences Harvard University Cambridge, MA 0478 Bruce W. Suter Air Force Research Laboratory/RIB

More information

Community detection in stochastic block models via spectral methods

Community detection in stochastic block models via spectral methods Community detection in stochastic block models via spectral methods Laurent Massoulié (MSR-Inria Joint Centre, Inria) based on joint works with: Dan Tomozei (EPFL), Marc Lelarge (Inria), Jiaming Xu (UIUC),

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Non-overlapping vs. overlapping communities 11/10/2010 Jure Leskovec, Stanford CS224W: Social

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization

Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization Jess Banks Cristopher Moore Roman Vershynin Nicolas Verzelen Jiaming Xu Abstract We study the problem

More information

Wasserstein Training of Boltzmann Machines

Wasserstein Training of Boltzmann Machines Wasserstein Training of Boltzmann Machines Grégoire Montavon, Klaus-Rober Muller, Marco Cuturi Presenter: Shiyu Liang December 1, 2016 Coordinated Science Laboratory Department of Electrical and Computer

More information

Learning latent structure in complex networks

Learning latent structure in complex networks Learning latent structure in complex networks Lars Kai Hansen www.imm.dtu.dk/~lkh Current network research issues: Social Media Neuroinformatics Machine learning Joint work with Morten Mørup, Sune Lehmann

More information

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria Community Detection fundamental limits & efficient algorithms Laurent Massoulié, Inria Community Detection From graph of node-to-node interactions, identify groups of similar nodes Example: Graph of US

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

Average-case hardness of RIP certification

Average-case hardness of RIP certification Average-case hardness of RIP certification Tengyao Wang Centre for Mathematical Sciences Cambridge, CB3 0WB, United Kingdom t.wang@statslab.cam.ac.uk Quentin Berthet Centre for Mathematical Sciences Cambridge,

More information

Spectral Clustering for Dynamic Block Models

Spectral Clustering for Dynamic Block Models Spectral Clustering for Dynamic Block Models Sharmodeep Bhattacharyya Department of Statistics Oregon State University January 23, 2017 Research Computing Seminar, OSU, Corvallis (Joint work with Shirshendu

More information

Formal definition of P

Formal definition of P Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity. In SAT we want to know if

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Spectral thresholds in the bipartite stochastic block model

Spectral thresholds in the bipartite stochastic block model JMLR: Workshop and Conference Proceedings vol 49:1 17, 2016 Spectral thresholds in the bipartite stochastic block model Laura Florescu New York University Will Perkins University of Birmingham FLORESCU@CIMS.NYU.EDU

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

NCG Group New Results and Open Problems

NCG Group New Results and Open Problems NCG Group Ne Results and Open Problems Table of Contents NP-Completeness 1 NP-Completeness 2 3 4 2 / 19 NP-Completeness 3 / 19 (P)NSP OPT - Problem Definition An instance I of (P)NSP opt : I = (G, F ),

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE

A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE Boaz Barak Sam Hopkins Jon Kelner Pravesh Kothari Ankur Moitra Aaron Potechin on the market! PLANTED CLIQUE ("DISTINGUISHING") Input: graph

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

Spectral thresholds in the bipartite stochastic block model

Spectral thresholds in the bipartite stochastic block model Spectral thresholds in the bipartite stochastic block model Laura Florescu and Will Perkins NYU and U of Birmingham September 27, 2016 Laura Florescu and Will Perkins Spectral thresholds in the bipartite

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 5: Subcubic Equivalences Karl Bringmann Reminder: Relations = Reductions transfer hardness of one problem to another one by reductions problem P instance

More information

PU Learning for Matrix Completion

PU Learning for Matrix Completion Cho-Jui Hsieh Dept of Computer Science UT Austin ICML 2015 Joint work with N. Natarajan and I. S. Dhillon Matrix Completion Example: movie recommendation Given a set Ω and the values M Ω, how to predict

More information

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES JIŘÍ ŠÍMA AND SATU ELISA SCHAEFFER Academy of Sciences of the Czech Republic Helsinki University of Technology, Finland elisa.schaeffer@tkk.fi SOFSEM

More information

: Approximation and Online Algorithms with Applications Lecture Note 2: NP-Hardness

: Approximation and Online Algorithms with Applications Lecture Note 2: NP-Hardness 4810-1183: Approximation and Online Algorithms with Applications Lecture Note 2: NP-Hardness Introduction Suppose that you submitted a research manuscript to a journal. It is very unlikely that your paper

More information

Lecture 18: More NP-Complete Problems

Lecture 18: More NP-Complete Problems 6.045 Lecture 18: More NP-Complete Problems 1 The Clique Problem a d f c b e g Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) G is an undirected graph with

More information

Comparing linear modularization criteria using the relational notation

Comparing linear modularization criteria using the relational notation Comparing linear modularization criteria using the relational notation Université Pierre et Marie Curie Laboratoire de Statistique Théorique et Appliquée April 30th, 2014 1/35 Table of contents 1 Introduction

More information

Modularity and Graph Algorithms

Modularity and Graph Algorithms Modularity and Graph Algorithms David Bader Georgia Institute of Technology Joe McCloskey National Security Agency 12 July 2010 1 Outline Modularity Optimization and the Clauset, Newman, and Moore Algorithm

More information

The non-backtracking operator

The non-backtracking operator The non-backtracking operator Florent Krzakala LPS, Ecole Normale Supérieure in collaboration with Paris: L. Zdeborova, A. Saade Rome: A. Decelle Würzburg: J. Reichardt Santa Fe: C. Moore, P. Zhang Berkeley:

More information

Intrinsic products and factorizations of matrices

Intrinsic products and factorizations of matrices Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 5 3 www.elsevier.com/locate/laa Intrinsic products and factorizations of matrices Miroslav Fiedler Academy of Sciences

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Problem set 8: solutions 1. Fix constants a R and b > 1. For n N, let f(n) = n a and g(n) = b n. Prove that f(n) = o ( g(n) ). Solution. First we observe that g(n) 0 for all

More information

Project in Computational Game Theory: Communities in Social Networks

Project in Computational Game Theory: Communities in Social Networks Project in Computational Game Theory: Communities in Social Networks Eldad Rubinstein November 11, 2012 1 Presentation of the Original Paper 1.1 Introduction In this section I present the article [1].

More information

Deterministic Consensus Algorithm with Linear Per-Bit Complexity

Deterministic Consensus Algorithm with Linear Per-Bit Complexity Deterministic Consensus Algorithm with Linear Per-Bit Complexity Guanfeng Liang and Nitin Vaidya Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University of Illinois

More information

Nonparametric Bayesian Matrix Factorization for Assortative Networks

Nonparametric Bayesian Matrix Factorization for Assortative Networks Nonparametric Bayesian Matrix Factorization for Assortative Networks Mingyuan Zhou IROM Department, McCombs School of Business Department of Statistics and Data Sciences The University of Texas at Austin

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 3, 207 Scribed by Keyhan Vakil Lecture 3 In which we complete the study of Independent Set and Max Cut in G n,p random graphs.

More information

OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS. Philippe Rigollet (joint with Quentin Berthet)

OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS. Philippe Rigollet (joint with Quentin Berthet) OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS Philippe Rigollet (joint with Quentin Berthet) High dimensional data Cloud of point in R p High dimensional data Cloud of point in R p High dimensional

More information

Lecture 9: SVD, Low Rank Approximation

Lecture 9: SVD, Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 9: SVD, Low Rank Approimation Lecturer: Shayan Oveis Gharan April 25th Scribe: Koosha Khalvati Disclaimer: hese notes have not been subjected

More information

Asymptotic Modularity of some Graph Classes

Asymptotic Modularity of some Graph Classes Asymptotic Modularity of some Graph Classes Fabien de Montgolfier 1, Mauricio Soto 1, and Laurent Viennot 2 1 LIAFA, UMR 7089 CNRS - Université Paris Diderot. 2 INRIA and Université Paris Diderot fm@liafa.jussieu.fr

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

On efficient use of entropy centrality for social network analysis and community detection

On efficient use of entropy centrality for social network analysis and community detection On efficient use of entropy centrality for social network analysis and community detection ALEXANDER G. NIKOLAEV, RAIHAN RAZIB, ASHWIN KUCHERIYA PRESENTER: PRIYA BALACHANDRAN MARY ICSI 445/660 12/1/2015

More information

Inference And Learning: Computational Difficulty And Efficiency

Inference And Learning: Computational Difficulty And Efficiency University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Inference And Learning: Computational Difficulty And Efficiency Tengyuan Liang University of Pennsylvania, tengyuan@wharton.upenn.edu

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

Community Detection. Data Analytics - Community Detection Module

Community Detection. Data Analytics - Community Detection Module Community Detection Data Analytics - Community Detection Module Zachary s karate club Members of a karate club (observed for 3 years). Edges represent interactions outside the activities of the club. Community

More information

Modelling self-organizing networks

Modelling self-organizing networks Paweł Department of Mathematics, Ryerson University, Toronto, ON Cargese Fall School on Random Graphs (September 2015) Outline 1 Introduction 2 Spatial Preferred Attachment (SPA) Model 3 Future work Multidisciplinary

More information

Privacy and Fault-Tolerance in Distributed Optimization. Nitin Vaidya University of Illinois at Urbana-Champaign

Privacy and Fault-Tolerance in Distributed Optimization. Nitin Vaidya University of Illinois at Urbana-Champaign Privacy and Fault-Tolerance in Distributed Optimization Nitin Vaidya University of Illinois at Urbana-Champaign Acknowledgements Shripad Gade Lili Su argmin x2x SX i=1 i f i (x) Applications g f i (x)

More information

Sparse Matrix Theory and Semidefinite Optimization

Sparse Matrix Theory and Semidefinite Optimization Sparse Matrix Theory and Semidefinite Optimization Lieven Vandenberghe Department of Electrical Engineering University of California, Los Angeles Joint work with Martin S. Andersen and Yifan Sun Third

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems

Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems JMLR: Workshop and Conference Proceedings vol 40:1 40, 015 8th Annual Conference on Learning Theory Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems Yash Deshpande Andrea

More information

Sparse Recovery with Graph Constraints

Sparse Recovery with Graph Constraints Sparse Recovery with Graph Constraints Meng Wang, Weiyu Xu, Enrique Mallada, Ao Tang arxiv:107.89v [cs.it] 9 Mar 013 Abstract Sparse recovery can recover sparse signals from a set of underdetermined linear

More information

Peter J. Dukes. 22 August, 2012

Peter J. Dukes. 22 August, 2012 22 August, 22 Graph decomposition Let G and H be graphs on m n vertices. A decompostion of G into copies of H is a collection {H i } of subgraphs of G such that each H i = H, and every edge of G belongs

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Week 4. (1) 0 f ij u ij.

Week 4. (1) 0 f ij u ij. Week 4 1 Network Flow Chapter 7 of the book is about optimisation problems on networks. Section 7.1 gives a quick introduction to the definitions of graph theory. In fact I hope these are already known

More information

Matching Triangles and Basing Hardness on an Extremely Popular Conjecture

Matching Triangles and Basing Hardness on an Extremely Popular Conjecture Matching Triangles and Basing Hardness on an Extremely Popular Conjecture Amir Abboud 1, Virginia Vassilevska Williams 1, and Huacheng Yu 1 1 Computer Science Department, Stanford University Abstract Due

More information

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4149

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4149 Int. Statistical Inst.: Proc. 58th orld Statistical Congress, 011, Dublin (Session CPS014) p.4149 Invariant heory for Hypothesis esting on Graphs Priebe, Carey Johns Hopkins University, Applied Mathematics

More information

CS/COE

CS/COE CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ P vs NP But first, something completely different... Some computational problems are unsolvable No algorithm can be written that will always produce the correct

More information

Algorithms. Sudoku. Rubik s cube. Evaluating how good (how efficient) an algorithm is 3/4/17. Algorithms, complexity and P vs NP SURVEY

Algorithms. Sudoku. Rubik s cube. Evaluating how good (how efficient) an algorithm is 3/4/17. Algorithms, complexity and P vs NP SURVEY Algorithms, complexity and P vs NP SURVEY Can creativity be automated? Slides by Avi Wigderson + Bernard Chazelle (with some extras) Finding an efficient method to solve SuDoku puzzles is: 1: A waste of

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

Probabilistic Method. Benny Sudakov. Princeton University

Probabilistic Method. Benny Sudakov. Princeton University Probabilistic Method Benny Sudakov Princeton University Rough outline The basic Probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

Clustering from Labels and Time-Varying Graphs

Clustering from Labels and Time-Varying Graphs Clustering from Labels and Time-Varying Graphs Shiau Hong Lim National University of Singapore mpelsh@nus.edu.sg Yudong Chen EECS, University of California, Berkeley yudong.chen@eecs.berkeley.edu Huan

More information

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES COMBINATORICA Bolyai Society Springer-Verlag Combinatorica 10pp. DOI: 10.1007/s00493-015-3291-8 THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES HENRY A. KIERSTEAD*, ALEXANDR V. KOSTOCHKA,

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix

Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 2017 Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix Tony Cai University

More information

Information-theoretic Limits for Community Detection in Network Models

Information-theoretic Limits for Community Detection in Network Models Information-theoretic Limits for Community Detection in Network Models Chuyang Ke Department of Computer Science Purdue University West Lafayette, IN 47907 cke@purdue.edu Jean Honorio Department of Computer

More information

The Strong Largeur d Arborescence

The Strong Largeur d Arborescence The Strong Largeur d Arborescence Rik Steenkamp (5887321) November 12, 2013 Master Thesis Supervisor: prof.dr. Monique Laurent Local Supervisor: prof.dr. Alexander Schrijver KdV Institute for Mathematics

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Nicolò Cesa-Bianchi Università degli Studi di Milano Joint work with: Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft

More information

From Adversaries to Algorithms. Troy Lee Rutgers University

From Adversaries to Algorithms. Troy Lee Rutgers University From Adversaries to Algorithms Troy Lee Rutgers University Quantum Query Complexity As in classical complexity, it is difficult to show lower bounds on the time or number of gates required to solve a problem

More information

Matrix Factorizations over Non-Conventional Algebras for Data Mining. Pauli Miettinen 28 April 2015

Matrix Factorizations over Non-Conventional Algebras for Data Mining. Pauli Miettinen 28 April 2015 Matrix Factorizations over Non-Conventional Algebras for Data Mining Pauli Miettinen 28 April 2015 Chapter 1. A Bit of Background Data long-haired well-known male Data long-haired well-known male ( ) 1

More information

Shortest paths with negative lengths

Shortest paths with negative lengths Chapter 8 Shortest paths with negative lengths In this chapter we give a linear-space, nearly linear-time algorithm that, given a directed planar graph G with real positive and negative lengths, but no

More information

Ramsey theory, trees, and ultrafilters

Ramsey theory, trees, and ultrafilters Ramsey theory, trees, and ultrafilters Natasha Dobrinen University of Denver Lyon, 2017 Dobrinen Ramsey, trees, ultrafilters University of Denver 1 / 50 We present two areas of research. Part I The first

More information

The Trouble with Community Detection

The Trouble with Community Detection The Trouble with Community Detection Aaron Clauset Santa Fe Institute 7 April 2010 Nonlinear Dynamics of Networks Workshop U. Maryland, College Park Thanks to National Science Foundation REU Program James

More information

A Dimensionality Reduction Framework for Detection of Multiscale Structure in Heterogeneous Networks

A Dimensionality Reduction Framework for Detection of Multiscale Structure in Heterogeneous Networks Shen HW, Cheng XQ, Wang YZ et al. A dimensionality reduction framework for detection of multiscale structure in heterogeneous networks. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(2): 341 357 Mar. 2012.

More information

Chromatic number, clique subdivisions, and the conjectures of

Chromatic number, clique subdivisions, and the conjectures of Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov MIT UCLA UCLA Hajós conjecture Hajós conjecture Conjecture: (Hajós 1961) If

More information

A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities

A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities Journal of Advanced Statistics, Vol. 3, No. 2, June 2018 https://dx.doi.org/10.22606/jas.2018.32001 15 A Modified Method Using the Bethe Hessian Matrix to Estimate the Number of Communities Laala Zeyneb

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Rani M. R, Mohith Jagalmohanan, R. Subashini Binary matrices having simultaneous consecutive

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley Jure Leskovec (@jure) Joint work with Jaewon Yang, Julian McAuley Given a network, find communities! Sets of nodes with common function, role or property 2 3 Q: How and why do communities form? A: Strength

More information

arxiv: v1 [cs.dc] 4 Oct 2018

arxiv: v1 [cs.dc] 4 Oct 2018 Distributed Reconfiguration of Maximal Independent Sets Keren Censor-Hillel 1 and Mikael Rabie 2 1 Department of Computer Science, Technion, Israel, ckeren@cs.technion.ac.il 2 Aalto University, Helsinki,

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Announcements Problem Set 9 due right now. Final exam this Monday, Hewlett 200 from 12:15PM- 3:15PM Please let us know immediately after lecture if you want to take the final at

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information