A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE

Size: px
Start display at page:

Download "A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE"

Transcription

1 A NEARLY-TIGHT SUM-OF-SQUARES LOWER BOUND FOR PLANTED CLIQUE Boaz Barak Sam Hopkins Jon Kelner Pravesh Kothari Ankur Moitra Aaron Potechin on the market!

2 PLANTED CLIQUE ("DISTINGUISHING") Input: graph G Goal: determine (with high probability) whether G G (n, 1 2 ) G G (n, 1 2 ("random distribution"), or ) + k-clique ("planted distribution"). FOR WHAT k IS THIS POSSIBLE IN POLYNOMIAL TIME?

3 [J '92, K '95] BASICS k = O(1): information-theoretically-impossible max clique in BRUTE FORCE k > G (n, ) 2 log n requires n O(log n) 1 2 [GM '75, M '76, BE '78] time ("quasipolynomial") SPECTRAL (ADJACENCY MATRIX) k > n, polynomial time [AKS '98]

4 HYPOTHESIS: NO POLYNOMIAL-TIME ALGORITHM FOR k = n 0.49 "SPECTRAL IS BEST"

5 IF SPECTRAL IS BEST, HARDNESS RESULTS GALORE! Sparse PCA [BR '13] Compressed Sensing [KZ '14] Property Testing [AAK+ '07] Mathematical Finance [DBL '10] Cryptography [JP '00, ABW '10] Computational Biology [PS000, MSOI+ '02, JM '15] Best Nash Equilibrium [HK '11, ABC '13] (and P N P ) Problems which have: a distribution on inputs n O(log n) -time algorithms TO BEAT SPECTRAL SEEMS TO REQUIRE NEW ALGORITHMIC IDEAS

6 WHY BELIEVE SPECTRAL IS BEST? no algorithmic progress in 20 years? bad science reductions? (3SAT planted clique) distribution on inputs Rule out large classes of algorithms Markov-Chain Monte Carlo [Jerrum '93] Lovasz-Schrijver+ Convex Hierarchy [Feige-Krauthgamer '04] Statistical Algorithms [Feldman et al '12] All do not beat spectral

7 WHY BELIEVE SPECTRAL COULD BE BEATEN?

8 THE SUM-OF-SQUARES (META-) ALGORITHM

9 Generalization of linear programming, basic semide nite programming, spectral algorithms Optimal among all (poly-sized) SDPs for constraint satisfaction [LRS '15] Solves all known hard instances of unique games, max cut in polynomial time [BBHKSZ '12, OZ '13, DMN '12] Best known algorithm for many planted problems, beating corresponding spectral algorithms! (dictionary learning, planted CSPs, tensor PCA, tensor decomposition, ) [BKS '15ab, AOW '15, RRS '16, HSS '15, HSSS '16, GM '15, MSS '16, ]

10 QUESTION: DOES SPECTRAL-IS-BEST WITHSTAND THE SUM-OF- SQUARES ALGORITHM?

11 Theorem (informal): The Sum-of-Squares hierarchy requires n Ω(log n) time to distinguish planted from random when k = n Spectral-is-best withstands the Sum-of-Squares algorithm.

12 WHAT IS THE SUM-OF-SQUARES ALGORITHM? nasty optimization problem

13 WHAT IS THE SUM-OF-SQUARES ALGORITHM? max S a clique in G S

14 WHAT IS THE SUM-OF-SQUARES ALGORITHM? A hierarchy of increasing-strength semide nite programming (SDP) relaxations of an underlying (nonconvex) problem. Generalizing linear programming, basic SDP, spectral methods.

15 WHAT IS THE SUM-OF-SQUARES ALGORITHM? ( ) d = n : 0 2 n 2 n ( ) d = 2 : 0 n 2 n 2 d = 1 : ( ) 0 n n Regime of interest:. d < o(log n) { "degree d" add variables, constriants huge, exact SDP small SDP, weak relaxation

16 Convex Relaxations for Planted Clique If max X So SIZE(X) S d (G) n 0.49, output PLANTED else RANDOM.

17 max X So SIZE(X) Question: How big is S d (G) in the random case? (If, we can beat the spectral algorithm!) n

18

19 Goal: X = X(G) So S (G) d so that n E G G(n,1/2) SIZE(X(G)) n 0.49

20 (G) Goal: X = X(G) So S d so that E G G(n,1/2) SIZE(X(G)) n 0.49 Prior work [FK '04, folklore]: X(G) feasible for LP, basic SDP, spectral, Sherali-Adams, Lovasz-Schrijver+ with SIZE(X(G)) n 0.49 w.h.p. Related [MPW '15, DM '15, HKPRS '16]: X(G) So Same (G) S d SIZE(X(G)) E G G(n,1/2) n 1/poly(d) n X(G) cannot work for tight SoS bound [Kelner]

21 Original Goal: X = X(G) So S d E G G(n,1/2) n 0.49 SIZE(X(G)) (G) so that X(G) So (G) Dif cult to construct S d ( highdimensional positive-semide nite matrices) New (harder) Goal (pseudocalibration) : Construct X = X(G) So S (G) d which shares more properties of a planted clique than just SIZE(X(G)) n 0.49.

22 New (harder) Goal (pseudocalibration) : X = X(G) So so that S (G) d (X(G)) = ( ) E G G(n,1/2) T G EplantedT 1 G clique for some family { T : R} G R n of G-dependent linear functions ("tests"), including SIZE. T ( 1 ) = G clique 4 Example: number of -cliques containing a typical clique vertex.

23 So (G) thinks there is an -size clique in S d n Lemma: If T G linear functions whose coef cients are low-degree polynomials in entries of A and X(G) G satis es 1. { } = E G G(n,1/2) T (X(G)) = ( ) G EplantedT 1 G clique X(G) 2. E G G(n,1/2) 2 2 is "small" X(G) So then with high probability S d d = o(log n) and SIZE(X(G)) n (G) for Lemma: X(G) satisfying these conditions exists.

24 G G (n, ). 2

25 WRAPPING UP (Nearly) resolved "SoS versus planted clique" using new pseudocalibration approach. Future work/open problems: Pseudocalibration suggests SoS lower bound construction for other planted problems.

26 THANKS! QUESTIONS?

linear programming and approximate constraint satisfaction

linear programming and approximate constraint satisfaction linear programming and approximate constraint satisfaction Siu On Chan MSR New England James R. Lee University of Washington Prasad Raghavendra UC Berkeley David Steurer Cornell results MAIN THEOREM: Any

More information

Sum-of-Squares and Spectral Algorithms

Sum-of-Squares and Spectral Algorithms Sum-of-Squares and Spectral Algorithms Tselil Schramm June 23, 2017 Workshop on SoS @ STOC 2017 Spectral algorithms as a tool for analyzing SoS. SoS Semidefinite Programs Spectral Algorithms SoS suggests

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

arxiv: v2 [cs.ds] 3 Nov 2016

arxiv: v2 [cs.ds] 3 Nov 2016 Strongly Refuting Random CSPs Below the Spectral Threshold Prasad Raghavendra Satish Rao Tselil Schramm arxiv:1605.00058v2 [cs.ds] 3 Nov 2016 Abstract Random constraint satisfaction problems CSPs) are

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

Lecture 8: Statistical vs Computational Complexity Tradeoffs via SoS

Lecture 8: Statistical vs Computational Complexity Tradeoffs via SoS CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 8: Statistical vs Computational Complexity Tradeoffs via SoS Pravesh Kothari Scribes: Carrie and Vaggos Overview We show

More information

STATISTICAL INFERENCE AND THE SUM OF SQUARES METHOD

STATISTICAL INFERENCE AND THE SUM OF SQUARES METHOD STATISTICAL INFERENCE AND THE SUM OF SQUARES METHOD A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor

More information

Introduction to LP and SDP Hierarchies

Introduction to LP and SDP Hierarchies Introduction to LP and SDP Hierarchies Madhur Tulsiani Princeton University Local Constraints in Approximation Algorithms Linear Programming (LP) or Semidefinite Programming (SDP) based approximation algorithms

More information

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n )

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n ) Hierarchies Today 1. Some more familiarity with Hierarchies 2. Examples of some basic upper and lower bounds 3. Survey of recent results (possible material for future talks) Hierarchies 1. Lovasz-Schrijver

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Approximation Algorithms for the k-set Packing Problem

Approximation Algorithms for the k-set Packing Problem Approximation Algorithms for the k-set Packing Problem Marek Cygan Institute of Informatics University of Warsaw 20th October 2016, Warszawa Marek Cygan Approximation Algorithms for the k-set Packing Problem

More information

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona

MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS. Albert Atserias Universitat Politècnica de Catalunya Barcelona MINI-TUTORIAL ON SEMI-ALGEBRAIC PROOF SYSTEMS Albert Atserias Universitat Politècnica de Catalunya Barcelona Part I CONVEX POLYTOPES Convex polytopes as linear inequalities Polytope: P = {x R n : Ax b}

More information

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs

Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Tight Size-Degree Lower Bounds for Sums-of-Squares Proofs Massimo Lauria KTH Royal Institute of Technology (Stockholm) 1 st Computational Complexity Conference, 015 Portland! Joint work with Jakob Nordström

More information

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley Collaborators Joint work with Samy Bengio, Moritz Hardt, Michael Jordan, Jason Lee, Max Simchowitz,

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems

Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems Yash Deshpande and Andrea Montanari February 3, 015 Abstract Given a large data matrix A R n n, we consider the problem

More information

Planted Cliques, Iterative Thresholding and Message Passing Algorithms

Planted Cliques, Iterative Thresholding and Message Passing Algorithms Planted Cliques, Iterative Thresholding and Message Passing Algorithms Yash Deshpande and Andrea Montanari Stanford University November 5, 2013 Deshpande, Montanari Planted Cliques November 5, 2013 1 /

More information

Proof Complexity Meets Algebra

Proof Complexity Meets Algebra ICALP 17, Warsaw 11th July 2017 (CSP problem) P 3-COL S resolution (proof system) Proofs in S of the fact that an instance of P is unsatisfiable. Resolution proofs of a graph being not 3-colorable. Standard

More information

Nets vs hierarchies for hard optimization problems

Nets vs hierarchies for hard optimization problems Nets vs hierarchies for hard optimization problems Aram Harrow arxiv:1509.05065 (with Fernando Brandão) in preparation (with Anand Natarajan and Xiaodi Wu) QuiCS QMA(2) 1.8.2016 outline 1. separable states

More information

CS264: Beyond Worst-Case Analysis Lectures #9 and 10: Spectral Algorithms for Planted Bisection and Planted Clique

CS264: Beyond Worst-Case Analysis Lectures #9 and 10: Spectral Algorithms for Planted Bisection and Planted Clique CS64: Beyond Worst-Case Analysis Lectures #9 and 10: Spectral Algorithms for Planted Bisection and Planted Clique Tim Roughgarden February 7 and 9, 017 1 Preamble Lectures #6 8 studied deterministic conditions

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

Statistical Algorithms and a Lower Bound for Detecting Planted Cliques

Statistical Algorithms and a Lower Bound for Detecting Planted Cliques Statistical Algorithms and a Lower Bound for Detecting Planted Cliques Vitaly Feldman Elena Grigorescu Lev Reyzin Santosh S. Vempala Ying Xiao Abstract We introduce a framework for proving lower bounds

More information

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs 1 Cambridge, July 2013 1 Joint work with Franklin Djeumou Fomeni and Adam N. Letchford Outline 1. Introduction 2. Literature Review

More information

Unique Games Conjecture & Polynomial Optimization. David Steurer

Unique Games Conjecture & Polynomial Optimization. David Steurer Unique Games Conjecture & Polynomial Optimization David Steurer Newton Institute, Cambridge, July 2013 overview Proof Complexity Approximability Polynomial Optimization Quantum Information computational

More information

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 We present the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre

More information

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover Grant Schoenebeck Luca Trevisan Madhur Tulsiani Abstract We study semidefinite programming relaxations of Vertex Cover arising

More information

How Robust are Thresholds for Community Detection?

How Robust are Thresholds for Community Detection? How Robust are Thresholds for Community Detection? Ankur Moitra (MIT) joint work with Amelia Perry (MIT) and Alex Wein (MIT) Let me tell you a story about the success of belief propagation and statistical

More information

Hypergraph Matching by Linear and Semidefinite Programming. Yves Brise, ETH Zürich, Based on 2010 paper by Chan and Lau

Hypergraph Matching by Linear and Semidefinite Programming. Yves Brise, ETH Zürich, Based on 2010 paper by Chan and Lau Hypergraph Matching by Linear and Semidefinite Programming Yves Brise, ETH Zürich, 20110329 Based on 2010 paper by Chan and Lau Introduction Vertex set V : V = n Set of hyperedges E Hypergraph matching:

More information

The complexity of approximate counting Part 1

The complexity of approximate counting Part 1 The complexity of approximate counting Part 1 Leslie Ann Goldberg, University of Oxford Counting Complexity and Phase Transitions Boot Camp Simons Institute for the Theory of Computing January 2016 The

More information

CS369N: Beyond Worst-Case Analysis Lecture #4: Probabilistic and Semirandom Models for Clustering and Graph Partitioning

CS369N: Beyond Worst-Case Analysis Lecture #4: Probabilistic and Semirandom Models for Clustering and Graph Partitioning CS369N: Beyond Worst-Case Analysis Lecture #4: Probabilistic and Semirandom Models for Clustering and Graph Partitioning Tim Roughgarden April 25, 2010 1 Learning Mixtures of Gaussians This lecture continues

More information

Probabilistic Method. Benny Sudakov. Princeton University

Probabilistic Method. Benny Sudakov. Princeton University Probabilistic Method Benny Sudakov Princeton University Rough outline The basic Probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Applications of Convex Optimization on the Graph Isomorphism problem

Applications of Convex Optimization on the Graph Isomorphism problem Applications of Convex Optimization on the Graph Isomorphism problem 1 1 Department of Information and Computer Sciences UC Irvine March 8, 2011 Outline Motivation 1 Motivation The Graph Isomorphism problem

More information

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Aditya Bhaskara Moses Charikar Venkatesan Guruswami Aravindan Vijayaraghavan Yuan Zhou July 12, 2011 Abstract The Densest k-subgraph

More information

Subsampling Semidefinite Programs and Max-Cut on the Sphere

Subsampling Semidefinite Programs and Max-Cut on the Sphere Electronic Colloquium on Computational Complexity, Report No. 129 (2009) Subsampling Semidefinite Programs and Max-Cut on the Sphere Boaz Barak Moritz Hardt Thomas Holenstein David Steurer November 29,

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Approximating Graph Spanners

Approximating Graph Spanners Approximating Graph Spanners Michael Dinitz Johns Hopkins University Joint work with combinations of Robert Krauthgamer (Weizmann), Eden Chlamtáč (Ben Gurion), Ran Raz (Weizmann), Guy Kortsarz (Rutgers-Camden)

More information

Applications of semidefinite programming in Algebraic Combinatorics

Applications of semidefinite programming in Algebraic Combinatorics Applications of semidefinite programming in Algebraic Combinatorics Tohoku University The 23rd RAMP Symposium October 24, 2011 We often want to 1 Bound the value of a numerical parameter of certain combinatorial

More information

Approximate Nash Equilibria with Near Optimal Social Welfare

Approximate Nash Equilibria with Near Optimal Social Welfare Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 015) Approximate Nash Equilibria with Near Optimal Social Welfare Artur Czumaj, Michail Fasoulakis, Marcin

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

The non-backtracking operator

The non-backtracking operator The non-backtracking operator Florent Krzakala LPS, Ecole Normale Supérieure in collaboration with Paris: L. Zdeborova, A. Saade Rome: A. Decelle Würzburg: J. Reichardt Santa Fe: C. Moore, P. Zhang Berkeley:

More information

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations LAAS-CNRS and Institute of Mathematics, Toulouse, France EECI Course: February 2016 LP-relaxations LP- VERSUS SDP-relaxations

More information

quantum information and convex optimization Aram Harrow (MIT)

quantum information and convex optimization Aram Harrow (MIT) quantum information and convex optimization Aram Harrow (MIT) Simons Institute 25.9.2014 outline 1. quantum information, entanglement, tensors 2. optimization problems from quantum mechanics 3. SDP approaches

More information

Computational Lower Bounds for Community Detection on Random Graphs

Computational Lower Bounds for Community Detection on Random Graphs Computational Lower Bounds for Community Detection on Random Graphs Bruce Hajek, Yihong Wu, Jiaming Xu Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

Lecture 2: November 9

Lecture 2: November 9 Semidefinite programming and computational aspects of entanglement IHP Fall 017 Lecturer: Aram Harrow Lecture : November 9 Scribe: Anand (Notes available at http://webmitedu/aram/www/teaching/sdphtml)

More information

A FINE-GRAINED APPROACH TO

A FINE-GRAINED APPROACH TO A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY Virginia Vassilevska Williams MIT ICDT 2018 THE CENTRAL QUESTION OF ALGORITHMS RESEARCH ``How fast can we solve fundamental problems, in the worst case?

More information

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut CMPUT 675: Approximation Algorithms Fall 011 Lecture 17 (Nov 3, 011 ): Approximation via rounding SDP: Max-Cut Lecturer: Mohammad R. Salavatipour Scribe: based on older notes 17.1 Approximation Algorithm

More information

How to Play Unique Games against a Semi-Random Adversary

How to Play Unique Games against a Semi-Random Adversary How to Play Unique Games against a Semi-Random Adversary Study of Semi-Random Models of Unique Games Alexandra Kolla Microsoft Research Konstantin Makarychev IBM Research Yury Makarychev TTIC Abstract

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Non-convex Robust PCA: Provable Bounds

Non-convex Robust PCA: Provable Bounds Non-convex Robust PCA: Provable Bounds Anima Anandkumar U.C. Irvine Joint work with Praneeth Netrapalli, U.N. Niranjan, Prateek Jain and Sujay Sanghavi. Learning with Big Data High Dimensional Regime Missing

More information

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 Not a requirement, but fun: OPEN PROBLEM Sessions!!! (more about this in a week) 6.S078 REQUIREMENTS 1. Class participation: worth

More information

Spectral thresholds in the bipartite stochastic block model

Spectral thresholds in the bipartite stochastic block model Spectral thresholds in the bipartite stochastic block model Laura Florescu and Will Perkins NYU and U of Birmingham September 27, 2016 Laura Florescu and Will Perkins Spectral thresholds in the bipartite

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Janabel Xia and Tejas Gopalakrishna MIT PRIMES Reading Group, mentors Gwen McKinley and Jake Wellens December 7th, 2018 Janabel Xia and Tejas Gopalakrishna Probabilistic Method

More information

Copositive Programming and Combinatorial Optimization

Copositive Programming and Combinatorial Optimization Copositive Programming and Combinatorial Optimization Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria joint work with M. Bomze (Wien) and F. Jarre (Düsseldorf) and

More information

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations LAAS-CNRS and Institute of Mathematics, Toulouse, France Tutorial, IMS, Singapore 2012 LP-relaxations LP- VERSUS SDP-relaxations

More information

Approximating Sparsest Cut in Graphs of Bounded Treewidth

Approximating Sparsest Cut in Graphs of Bounded Treewidth Approximating Sparsest Cut in Graphs of Bounded Treewidth Eden Chlamtac Weizmann Institute Robert Krauthgamer Weizmann Institute Prasad Raghavendra Microsoft Research New England Abstract We give the first

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

Lecture 6: Random Walks versus Independent Sampling

Lecture 6: Random Walks versus Independent Sampling Spectral Graph Theory and Applications WS 011/01 Lecture 6: Random Walks versus Independent Sampling Lecturer: Thomas Sauerwald & He Sun For many problems it is necessary to draw samples from some distribution

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

arxiv: v1 [cs.ds] 6 Oct 2011

arxiv: v1 [cs.ds] 6 Oct 2011 Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph Aditya Bhaskara Moses Charikar Venkatesan Guruswami Aravindan Vijayaraghavan Yuan Zhou arxiv:1110.1360v1 [cs.ds] 6 Oct 2011

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 2 Luca Trevisan August 29, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 2 Luca Trevisan August 29, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout Luca Trevisan August 9, 07 Scribe: Mahshid Montazer Lecture In this lecture, we study the Max Cut problem in random graphs. We compute the probable

More information

arxiv: v15 [math.oc] 19 Oct 2016

arxiv: v15 [math.oc] 19 Oct 2016 LP formulations for mixed-integer polynomial optimization problems Daniel Bienstock and Gonzalo Muñoz, Columbia University, December 2014 arxiv:1501.00288v15 [math.oc] 19 Oct 2016 Abstract We present a

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Sherali-Adams Relaxations of Graph Isomorphism Polytopes. Peter N. Malkin* and Mohammed Omar + UC Davis

Sherali-Adams Relaxations of Graph Isomorphism Polytopes. Peter N. Malkin* and Mohammed Omar + UC Davis Sherali-Adams Relaxations of Graph Isomorphism Polytopes Peter N. Malkin* and Mohammed Omar + UC Davis University of Washington May 18th 2010 *Partly funded by an IBM OCR grant and the NSF. + Partly funded

More information

How to refute a random CSP

How to refute a random CSP How to refute a random CSP Sarah R. Allen Ryan O Donnell David Witmer July 4, 015 Abstract Let P be a nontrivial k-ary predicate over a finite alphabet. Consider a random CSP(P ) instance I over n variables

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation)

Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation) Electronic Colloquium on Computational Complexity, Report No. 60 (2017) Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation) Boaz Barak Zvika Brakerski Ilan Komargodski

More information

Computational and Statistical Tradeoffs via Convex Relaxation

Computational and Statistical Tradeoffs via Convex Relaxation Computational and Statistical Tradeoffs via Convex Relaxation Venkat Chandrasekaran Caltech Joint work with Michael Jordan Time-constrained Inference o Require decision after a fixed (usually small) amount

More information

Statistical and Computational Phase Transitions in Planted Models

Statistical and Computational Phase Transitions in Planted Models Statistical and Computational Phase Transitions in Planted Models Jiaming Xu Joint work with Yudong Chen (UC Berkeley) Acknowledgement: Prof. Bruce Hajek November 4, 203 Cluster/Community structure in

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Lecture notes for the course Games on Graphs B. Srivathsan Chennai Mathematical Institute, India 1 Markov Chains We will define Markov chains in a manner that will be useful to

More information

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 20: Course summary and open problems Dec. 7, 2005 Lecturer: Ryan O Donnell Scribe: Ioannis Giotis Topics we discuss in this

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

Sherali-Adams relaxations of the matching polytope

Sherali-Adams relaxations of the matching polytope Sherali-Adams relaxations of the matching polytope Claire Mathieu Alistair Sinclair November 17, 2008 Abstract We study the Sherali-Adams lift-and-project hierarchy of linear programming relaxations of

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Detecting pure entanglement is easy, so detecting mixed entanglement is hard

Detecting pure entanglement is easy, so detecting mixed entanglement is hard A quantum e-meter Detecting pure entanglement is easy, so detecting mixed entanglement is hard Aram Harrow (University of Washington) and Ashley Montanaro (University of Cambridge) arxiv:1001.0017 Waterloo

More information

Approximating Sparsest Cut in Graphs of Bounded Treewidth

Approximating Sparsest Cut in Graphs of Bounded Treewidth Approximating Sparsest Cut in Graphs of Bounded Treewidth Eden Chlamtac 1, Robert Krauthgamer 1, and Prasad Raghavendra 2 1 Weizmann Institute of Science, Rehovot, Israel. {eden.chlamtac,robert.krauthgamer}@weizmann.ac.il

More information

Label Cover Algorithms via the Log-Density Threshold

Label Cover Algorithms via the Log-Density Threshold Label Cover Algorithms via the Log-Density Threshold Jimmy Wu jimmyjwu@stanford.edu June 13, 2017 1 Introduction Since the discovery of the PCP Theorem and its implications for approximation algorithms,

More information

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Counting and Sampling Fall 2017 Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Lecturer: Shayan Oveis Gharan November 29th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Positive Semi-definite programing and applications for approximation

Positive Semi-definite programing and applications for approximation Combinatorial Optimization 1 Positive Semi-definite programing and applications for approximation Guy Kortsarz Combinatorial Optimization 2 Positive Sem-Definite (PSD) matrices, a definition Note that

More information

Lift-and-Project Techniques and SDP Hierarchies

Lift-and-Project Techniques and SDP Hierarchies MFO seminar on Semidefinite Programming May 30, 2010 Typical combinatorial optimization problem: max c T x s.t. Ax b, x {0, 1} n P := {x R n Ax b} P I := conv(k {0, 1} n ) LP relaxation Integral polytope

More information

Long-Run versus Short-Run Player

Long-Run versus Short-Run Player Repeated Games 1 Long-Run versus Short-Run Player a fixed simultaneous move stage game Player 1 is long-run with discount factor δ actions a A a finite set 1 1 1 1 2 utility u ( a, a ) Player 2 is short-run

More information

On Finding Planted Cliques and Solving Random Linear Equa9ons. Math Colloquium. Lev Reyzin UIC

On Finding Planted Cliques and Solving Random Linear Equa9ons. Math Colloquium. Lev Reyzin UIC On Finding Planted Cliques and Solving Random Linear Equa9ons Math Colloquium Lev Reyzin UIC 1 random graphs 2 Erdős- Rényi Random Graphs G(n,p) generates graph G on n ver9ces by including each possible

More information

Submodular Functions and Their Applications

Submodular Functions and Their Applications Submodular Functions and Their Applications Jan Vondrák IBM Almaden Research Center San Jose, CA SIAM Discrete Math conference, Minneapolis, MN June 204 Jan Vondrák (IBM Almaden) Submodular Functions and

More information

Lecture: Expanders, in theory and in practice (2 of 2)

Lecture: Expanders, in theory and in practice (2 of 2) Stat260/CS294: Spectral Graph Methods Lecture 9-02/19/2015 Lecture: Expanders, in theory and in practice (2 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Hardness for easy problems. An introduction

Hardness for easy problems. An introduction Hardness for easy problems An introduction The real world and hard problems I ve got data. I want to solve this algorithmic problem but I m stuck! Ok, thanks, I feel better that none of my attempts worked.

More information

On Linear and Semidefinite Programming Relaxations for Hypergraph Matching

On Linear and Semidefinite Programming Relaxations for Hypergraph Matching On Linear and Semidefinite Programming Relaxations for Hypergraph Matching Yuk Hei Chan Lap Chi Lau Department of Computer Science and Engineering The Chinese University of Hong Kong Abstract The hypergraph

More information

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states.

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states. Chapter 8 Finite Markov Chains A discrete system is characterized by a set V of states and transitions between the states. V is referred to as the state space. We think of the transitions as occurring

More information

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University Matrix completion: Fundamental limits and efficient algorithms Sewoong Oh Stanford University 1 / 35 Low-rank matrix completion Low-rank Data Matrix Sparse Sampled Matrix Complete the matrix from small

More information

Graph Sparsifiers: A Survey

Graph Sparsifiers: A Survey Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Approximating Dense Objects

More information

On the Complexity of Random Satisfiability Problems with Planted Solutions

On the Complexity of Random Satisfiability Problems with Planted Solutions On the Complexity of Random Satisfiability Problems with Planted Solutions Vitaly Feldman Will Perkins Santosh Vempala Abstract The problem of identifying a planted assignment given a random k-sat formula

More information

CMPUT 675: Approximation Algorithms Fall 2014

CMPUT 675: Approximation Algorithms Fall 2014 CMPUT 675: Approximation Algorithms Fall 204 Lecture 25 (Nov 3 & 5): Group Steiner Tree Lecturer: Zachary Friggstad Scribe: Zachary Friggstad 25. Group Steiner Tree In this problem, we are given a graph

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Copositive Programming and Combinatorial Optimization

Copositive Programming and Combinatorial Optimization Copositive Programming and Combinatorial Optimization Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria joint work with I.M. Bomze (Wien) and F. Jarre (Düsseldorf) IMA

More information

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde A Convex Approach for Designing Good Linear Embeddings Chinmay Hegde Redundancy in Images Image Acquisition Sensor Information content

More information