Modeling Li + Ion Battery Electrode Properties

Size: px
Start display at page:

Download "Modeling Li + Ion Battery Electrode Properties"

Transcription

1 Modeling Li + Ion Battery Electrode Properties June 20, / 39

2 Students Annalinda Arroyo: Rensselaer Polytechnic Institute Thomas Bellsky: Michigan State University Anh Bui: SUNY at Buffalo Haoyan Chi: SUNY at Buffalo Ioana Cipcigan: University of Maryland, Baltimore County Michael Franklin: Claremont Graduate University Luyen Nguyen: University of Delaware Javed Siddiqeu: George Mason University Sumanth Swaminathan: Northwestern University Olga Trichtchenko: McGill University Chen Zhang: SUNY at Buffalo 2 / 39

3 Contributing Faculty and TIAX Team Contributing Faculty Daniel M. Anderson: George Mason University Sean Bohun: Ontario Institute of Technology Chris Breward: University of Oxford, UK Joseph D. Fehribach: Worcester Polytechnic Institute Luis Melara: University of Colorado, Boulder Colin P. Please: Southampton, UK Giles Richardson: Nottingham, UK Bogdan Vernescu: Worcester Polytechnic Institute TIAX Jacqueline Ashmore David Clatterbuck 3 / 39

4 Outline / 39

5 The Big Picture 5 / 39

6 The Little Picture Figure: Cathode schematic. 6 / 39

7 The Really Little Picture Figure: Cathode particles with different geometric properties. 7 / 39

8 Project Goals TIAX would benefit from algorithms, methods, models, scaling relations, or frameworks to analyze the effect of different particle characteristics on electrode properties. 8 / 39

9 Conservation Laws v.2 Conservation of concentrations: c 1 t + q 1 = 0 c 2 t + q 2 = 0 c 1 = c 2 where c 1 = [Li + ] and c 2 = [PF ], and the flux is given by: 6 q 1 = D 1 ( c 1 + F RT c 1 Φ e ) q 2 = D 2 ( c 2 F RT c 2 Φ e ) 9 / 39

10 Butler-Volmer Kinetics v.2 At the electrolyte/solid interface, reaction rate R: ( F k 1 c s exp 2RT (φ s φ e u(c s )) R = q 1 ˆn Ω = q s ˆn Ω = ) k 2 c exp ( F 2RT (φ s φ e u(c s )) This is the reaction governing the departure of Li + ions from the solid into the electrolyte. ) 10 / 39

11 Dimensionless Equations v.2 Dimensionless conservation: c t + α λ [ c ] λc φ e = 0 c t + D 2α λ [ c ] + λc φ e = 0 where α/λ dimensionless diffusivity of Li + λ = Fφ 0 RT >> 1 Dimensionless Butler-Volmer reaction: R = k 1c s λ ( ) λ exp 2 (φ s φ e u(c s)) k 2c λ exp ( λ 2 (φ s φ e u(c s)) ) 11 / 39

12 Electrode Equations v.2 c s : Concentration of Li in solid electrode particles. Diffusion equation for c s coupled to Laplace s equation 2 ψ = 0 for potential in particles. Various conditions on interface relating ψ, c s in electrode particles, φ, c in electrolyte to reaction rate R. 12 / 39

13 Model Problem v.2 13 / 39

14 Nondimensional Equations v.2 Electrolyte χ O(1), λ O(100), Σ O(1) α λ = O(1), β = O(1) Electrode c t = α ( ) 1 + D2 2 c λ D 2 (c φ) = 1 ( ) 1 D2 2 c λ 1 + D 2 c s t = β 2 c s 2 ψ = 0 14 / 39

15 Nondimensional Equations v.2 Boundary Conditions c φ n Ω = R 2, ψ n Ω = R Σ, c n Ω = λr 2 c s n Ω = R χ R = k 1c s λ ( ) λ exp 2 (φ s φ e u(c s)) k ( 2c λ exp λ ) 2 (φ s φ e u(c s)) 15 / 39

16 Expanding in powers of 1/λ v.2 Since 1/λ << 1, expand dependent variables as: c(z, t) = c 0 (z, t) + 1 λ c 1(z, t) + c s (z, t) = c s0 (z, t) + 1 λ c s1(z, t) + φ(z, t) = φ 0 (t) + 1 λ φ 1(z, t) + etc. Φ(z, t) = Φ 0 (t) + 1 λ Φ 1(z, t) + 16 / 39

17 v.2 Qualitative Results At O(1) we find Φ 0 determined by Butler-Volman conditions is constant. By proceeding to O(1/λ) can find evolution of Φ 1, the correction to the potential drop across electrode. Show timescale analysis would yield evolution of Φ 0 (t/λ) over long times as c s0 (t/λ). 17 / 39

18 v.2 Unsystematically averaged macroscale model Some wild assumptions transport of ions occurs in spaces between spheres (which form a porous medium). spheres provide source of ions. Rate given by solving the microscale problem and is proportional to surface area per sphere and number of spheres per control-layer volume 18 / 39

19 v.2 Unsystematically averaged macroscale model Some wild assumptions transport of ions occurs in spaces between spheres (which form a porous medium). spheres provide source of ions. Rate given by solving the microscale problem and is proportional to surface area per sphere and number of spheres per control-layer volume 19 / 39

20 v.2 The Model Notation: C is the concentration of lithium ions (also counterions) in the electrolyte at a certain height Φ is the electric field at a certain height C s is the concentration of lithium atoms at a certain height θ is the liquid volume fraction = 1 4/3πa 3 N/V 20 / 39

21 The Model v.2 Notation: C is the concentration of lithium ions (also counterions) in the electrolyte at a certain height Φ is the electric field at a certain height C s is the concentration of lithium atoms at a certain height θ is the liquid volume fraction = 1 4/3πa 3 N/V C t = ( λ 1 θ C ) + 2πa2 N z z V R (1) ( λ 2 θ C z z λ 3θC Φ ) = 4πa2 N z V R (2) dc s dt = 4πa2 N V R (3) 21 / 39

22 Initial conditions v.2 Boundary conditions C s = C H(m 1 z), C = C 0, (4) C z = 0, Φ = 0, Φ = J at z = 0 (5) z C z = 0, at z = L (6) 22 / 39

23 v.2 Numerical Solution of the Model 23 / 39

24 v.2 Flux stuff Simple model says that reaction at surface has Butler-Volmer form particles small enough that diffusion ensures that c s is constant in each sphere, i.e. C s is constant at each level (NB - not what TIAX wants!). 24 / 39

25 Flux stuff Simple model says that v.2 reaction at surface has Butler-Volmer form particles small enough that diffusion ensures that c s is constant in each sphere, i.e. C s is constant at each level (NB - not what TIAX wants!). R = C k s 1 N eφ U(Cs/N) k 2 Ce (Φ U(C s/n)) cathode (7) R = 0 in between (8) R = k 3 C s N eφ V(C s/n) + k 4 Ce (Φ V(C s/n)) anode (9) 25 / 39

26 Flux stuff Simple model says that v.2 reaction at surface has Butler-Volmer form particles small enough that diffusion ensures that c s is constant in each sphere, i.e. C s is constant at each level (NB - not what TIAX wants!). R = C k s 1 N eφ U(Cs/N) k 2 Ce (Φ U(C s/n)) cathode (7) R = 0 in between (8) R = k 3 C s N eφ V(C s/n) + k 4 Ce (Φ V(C s/n)) anode (9) Better plan: solve microscale problem and relate what s going on in each sphere to the reaction on the surface Can get c s as an infinite sum of exponentials and will (probably) get Abel-esque equation for c s on the surface. 26 / 39

27 v.2 What can we do with model? Vary surface area while keeping volume fraction constant. Vary volume fraction while keeping surface area constant. Consider populations of spheres - the surface area will become average surface area and formula for θ will change. 27 / 39

28 v.2 Nondimensional Steady-State Potential Equations PDE : { u + = 0 (ɛ u s ) = g x Ω e x Ω s BC : n u + = ɛ n u s = i 0 sinh(u s u + ) x Γ where u s : Li atom potential in the solid particles u + : Li ion potential in the electrolyte ɛ := κ s /κ + 28 / 39

29 v.2 Bounds on Effective Cathode Conductivity u : Homogenized Li potential throughout the cathode (κ u) = θ p g x Cathode 29 / 39

30 v.2 Bounds on Effective Cathode Conductivity u : Homogenized Li potential throughout the cathode (κ u) = θ p g x Cathode ( ) 1 κ 1 m 0 θ p c 30 / 39

31 v.2 Bounds on Effective Cathode Conductivity u : Homogenized Li potential throughout the cathode (κ u) = θ p g x Cathode ( ) 1 κ 1 m 0 θ p c κ 1 ɛ + θ e i 0 + θ p λ ɛ i 0 λ θ eλɛ θ pɛi / 39

32 Kinetic Monte Carlo Method Model of circular lithium metal oxide particles: Initial battery setup allows for variable particle size and packing. 32 / 39

33 Kinetic Monte Carlo Method Based on KMC models of Schulze (2002, 2006) and Voter. Atoms in the solid hop with rates determined by the number of neighbors. Atoms hop out of the solid into electrolyte with specified rate. Lithium ions diffuse away in the electrolyte instantaneously. 33 / 39

34 34 / 39

35 Volume Fraction Results: Donev, Science 2004 Ellipsoids with an aspect ratio close to M&M s candies can randomly pack more densely, up to φ = According to their experiments, the aspect ratio α 1.3 gives the best density φ with no significant orientational ordering. Higher density related to the larger number of particle contacts required to mechanically stabilize the packing. 35 / 39

36 Volume Fraction 36 / 39

37 Made progress on several areas TIAX requested, including: 1 Developed thorough microscopic and macroscopic models. 2 Scaling relations. 3 Various numerical approaches. 37 / 39

38 Thank you Questions? 38 / 39

39 West, K., Jacobsen, T. Modeling of Porous Insertion Electrodes with Liquid Electrolyte, J. Electrochem. Soc. 129, (1982). Fuller, T., Doyle, M., Newman, J. Simulation and Optimization of the Dual Lithium Ion Insertion Cell, J. Electrochem. Soc. 141, 1 10 (1994). Doyle, M., Fuller, T., Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell, J. Electrochem. Soc. 140, (1993). Ionix ionixpower.com/lithium-ion-battery.htm, url:, (2008). 39 / 39

Phase Field Formulation for Microstructure Evolution in Oxide Ceramics

Phase Field Formulation for Microstructure Evolution in Oxide Ceramics Phase Field Formulation for Microstructure Evolution in Oxide Ceramics Corning Problem Presenter: Leslie Button (Corning) Problem Participants: Daniel Anderson 1, Chris Breward 2, Yanping Chen 3, Brendan

More information

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Carmelo Speltino, Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract In this work an experimental

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter Carmelo Speltino, Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract In this

More information

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Journal of Power Sources 165 (2007 880 886 Short communication Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Qi Zhang, Ralph E. White Center

More information

Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes

Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes A984 Journal of The Electrochemical Society, 52 5 A984-A988 2005 003-465/2005/525/A984/5/$7.00 The Electrochemical Society, Inc. Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

Mathematical Modeling All Solid State Batteries

Mathematical Modeling All Solid State Batteries Katharina Becker-Steinberger, Stefan Funken, Manuel Landsdorfer, Karsten Urban Institute of Numerical Mathematics Konstanz, 04.03.2010 Mathematical Modeling All Solid State Batteries Page 1/31 Mathematical

More information

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Preprints of the 19th World Congress The International Federation of Automatic Control Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Sohel

More information

8 Phenomenological treatment of electron-transfer reactions

8 Phenomenological treatment of electron-transfer reactions 8 Phenomenological treatment of electron-transfer reactions 8.1 Outer-sphere electron-transfer Electron-transfer reactions are the simplest class of electrochemical reactions. They play a special role

More information

Introduction to Dualfoil 5.0

Introduction to Dualfoil 5.0 Introduction to Dualfoil 5.0 Paul Albertus and John Newman August 14, 2007 Contents 1 Introduction 2 Description of what an average user should be able to do 2 Notes on operating dualfoil5.f 3 Input file

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model 17th EEE nternational Conference on Control Applications Part of 2008 EEE Multi-conference on Systems and Control San Antonio, Texas, USA, September 3-5, 2008 ThB01.3 Lithium-on battery State of Charge

More information

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Utsav Kumar Atanu K. Metya Jayant K. Singh Department of Chemical Engineering IIT Kanpur INTRODUCTION Christensen

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

surface c, c. Concentrations in bulk s b s b red red ox red

surface c, c. Concentrations in bulk s b s b red red ox red CHEM465/865, 26-3, Lecture 16, Oct. 13, 26 compact layer S c ox,red b c ox,red Note, that we explicitly distinguish concentrations at surface bulk b red c, c from those in s red b ox s ox c, c. Concentrations

More information

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell Electrochemical Impedance Spectroscopy of a ifepo 4 /i Half-Cell Mikael Cugnet*, Issam Baghdadi and Marion Perrin French Institute of Solar Energy (INES), CEA / ITEN *Corresponding author: 50 Avenue du

More information

Modeling lithium/hybrid-cathode batteries

Modeling lithium/hybrid-cathode batteries Available online at www.sciencedirect.com Journal of Power Sources 174 (2007) 872 876 Short communication Modeling lithium/hybrid-cathode batteries Parthasarathy M. Gomadam a,, Don R. Merritt a, Erik R.

More information

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 0, 202 Comsol Conference Europe 202, Milan, CEA Italy 0 AVRIL 202 PAGE Excerpt from the Proceedings of the 202 COMSOL Conference in Milan SUMMARY

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries E. Wikner *1 1 Chalmers University of Technology *Hörsalvägen 11, evelina.wikner@chalmers.se Abstract:

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Three-Dimensional Numerical Simulation of Lead-Acid Battery

Three-Dimensional Numerical Simulation of Lead-Acid Battery 1 Three--Dimensional Numerical Simulation Three of Lead Lead--Acid Battery Vahid Esfahanian Hamid Afshari Arman Pouyaei Amir Babak Ansari Vehicle, Fuel and Environment Research Institute (VFRI) Department

More information

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 Supporting Information for The Most Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries Kyle M. Diederichsen, Eric J. McShane, Bryan D. McCloskey* Department of Chemical

More information

Battery Design Studio Update

Battery Design Studio Update Advanced Thermal Modeling of Batteries Battery Design Studio Update March 20, 2012 13:30 13:55 New Features Covered Today 3D models Voltage dependent diffusion Let s start with brief introduction to Battery

More information

Thermal-Electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery

Thermal-Electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery A publication of VOL. 33, 2013 CHEMICAL ENGINEERING TRANSACTIONS Guest Editors: Enrico Zio, Piero Baraldi Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-24-2; ISSN 1974-9791 The Italian Association

More information

Capacity fade analysis of a lithium ion cell

Capacity fade analysis of a lithium ion cell Available online at www.sciencedirect.com Journal of Power Sources 179 (2008) 793 798 Short communication Capacity fade analysis of a lithium ion cell Qi Zhang, Ralph E. White Department of Chemical Engineering,

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

Overview of electrochemistry

Overview of electrochemistry Overview of electrochemistry 1 Homogeneous Heterogeneous Equilibrium electrochemistry (no current flows) Thermodynamics of electrolyte solutions: electrolytic dissociation thermodynamics and activities

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

Mathematical Modeling of Electrodeposition

Mathematical Modeling of Electrodeposition Mathematical Modeling of Electrodeposition Ralph E. White * and Venkat R. Subramanian Center for Electrochemical Engineering Department of Chemical Engineering, University of South Carolina Columbia, SC

More information

Lecture 14. Electrolysis.

Lecture 14. Electrolysis. Lecture 14 Electrolysis: Electrosynthesis and Electroplating. 95 Electrolysis. Redox reactions in which the change in Gibbs energy G is positive do not occur spontaneously. However they can be driven via

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

Modeling Filtration with Multiple Layers 33 rd Annual Workshop on Mathematical Problems in Industry. June 23, 2017

Modeling Filtration with Multiple Layers 33 rd Annual Workshop on Mathematical Problems in Industry. June 23, 2017 Modeling Filtration with Multiple Layers 33 rd Annual Workshop on Mathematical Problems in Industry Shuchi Agarwal Ryan Allaire 2 Manuchehr Aminian 3 Chris Breward 4 Chuan Bi 5 Anqi Chen 6 Jon Chapman

More information

Development of First Principles Capacity Fade Model for Li-Ion Cells

Development of First Principles Capacity Fade Model for Li-Ion Cells A196 Journal of The Electrochemical Society, 151 2 A196-A203 2004 0013-4651/2004/151 2 /A196/8/$7.00 The Electrochemical Society, Inc. Development of First Principles Capacity Fade Model for Li-Ion Cells

More information

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction...

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Transport phenomena 1/16 Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Flux of mass, charge, momentum, heat,...... J = amount (of quantity) transported

More information

GORE: Modeling Filter Compression, Fluid Generation and Parallelizing the Potts Model

GORE: Modeling Filter Compression, Fluid Generation and Parallelizing the Potts Model GORE: Modeling Filter Compression, Fluid Generation and Parallelizing the Potts Model Mathematical Problems in Industry, June 12 17, 2016 June 17, 2016 (Mathematical Problems in Industry, June 12 17, 2016)

More information

Solutions for Assignment-6

Solutions for Assignment-6 Solutions for Assignment-6 Q1. What is the aim of thin film deposition? [1] (a) To maintain surface uniformity (b) To reduce the amount (or mass) of light absorbing materials (c) To decrease the weight

More information

The Mechanism of Electropolishing of Nb in Hydrofluoric-Sulfuric Acid (HF+H 2 SO 4 ) Electrolyte

The Mechanism of Electropolishing of Nb in Hydrofluoric-Sulfuric Acid (HF+H 2 SO 4 ) Electrolyte The Mechanism of Electropolishing of Nb in Hydrofluoric-Sulfuric Acid (HF+H 2 SO 4 ) Electrolyte Hui Tian *+, Charles E. Reece +, Michael J. Kelley *+ Applied Science Department, College of William and

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

A Mathematical Model for All Solid-State Lithium Ion Batteries

A Mathematical Model for All Solid-State Lithium Ion Batteries A Mathematical Model for All Solid-State Lithium Ion Batteries Katharina Becker-Steinberger, Stefan Funken, Manuel Landstorfer und Karsten Urban Preprint Series: 29-26 Fakultät für Mathematik und Wirtschaftswissenschaften

More information

Mathematical Modeling and Numerical Solution of Iron Corrosion Problem Based on Condensation Chemical Properties

Mathematical Modeling and Numerical Solution of Iron Corrosion Problem Based on Condensation Chemical Properties Australian Journal of Basic and Applied Sciences, 5(1): 79-86, 2011 ISSN 1991-8178 Mathematical Modeling and Numerical Solution of Iron Corrosion Problem Based on Condensation Chemical Properties Basuki

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

Modeling the Effects of Ion Association on Alternating Current Impedance of Solid Polymer Electrolytes

Modeling the Effects of Ion Association on Alternating Current Impedance of Solid Polymer Electrolytes E242 Journal of The Electrochemical Society, 49 7 E242-E25 2002 003-465/2002/497/E242/0/$7.00 The Electrochemical Society, Inc. Modeling the Effects of Ion Association on Alternating Current Impedance

More information

Understanding Impedance of Li-Ion Batteries with Battery Design Studio

Understanding Impedance of Li-Ion Batteries with Battery Design Studio Understanding Impedance of Li-Ion Batteries with Battery Design Studio Robert Spotnitz Battery Consultant Thursday July 6, 2017 16:40-17:10 Understanding Impedance Li-Ion Batteries with Battery Design

More information

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018 M Ü N S T E R Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models Mario Ohlberger, Stephan Rave living knowledge ECMI 2018 Budapest June 20, 2018 M Ü N S T E R Reduction of Pore-Scale

More information

Evaluation of design options for tubular redox flow batteries

Evaluation of design options for tubular redox flow batteries Dept. Mechanical Engineering and Production Heinrich-Blasius-Institute for Physical Technologies Evaluation of design options for tubular redox flow batteries Thorsten Struckmann, Max Nix, Simon Ressel

More information

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries Supporting Information Fabrication, Testing and Simulation of All Solid State Three Dimensional -ion Batteries A. Alec Talin* 1, Dmitry Ruzmetov 2, Andrei Kolmakov 2, Kim McKelvey 3, Nicholas Ware 4, Farid

More information

arxiv: v2 [physics.app-ph] 23 May 2018

arxiv: v2 [physics.app-ph] 23 May 2018 ASYMPTOTC REDUCTON OF A POROUS ELECTRODE MODEL FOR LTHUM-ON BATTERES AN R. MOYLES, MATTHEW G. HENNESSY, TMOTHY G. MYERS, AND BRAN R. WETTON arxiv:1805.07093v2 [physics.app-ph] 23 May 2018 Abstract. We

More information

The Importance of Electrochemistry for the Development of Sustainable Mobility

The Importance of Electrochemistry for the Development of Sustainable Mobility TUM CREATE Centre for Electromobility, Singapore The Importance of Electrochemistry for the Development of Sustainable Mobility Jochen Friedl, Ulrich Stimming DPG-Frühjahrstagung, Working Group on Energy,

More information

Lecture 29: Forced Convection II

Lecture 29: Forced Convection II Lecture 29: Forced Convection II Notes by MIT Student (and MZB) As discussed in the previous lecture, the magnitude of limiting current can be increased by imposing convective transport of reactant in

More information

State of Charge Estimation in Li-ion Batteries Using an Isothermal Pseudo Two-Dimensional Model

State of Charge Estimation in Li-ion Batteries Using an Isothermal Pseudo Two-Dimensional Model Preprints of the 1th IFAC International Symposium on Dynamics and Control of Process Systems The International Federation of Automatic Control December 18-2, 213. Mumbai, India State of Charge Estimation

More information

Reactive Transport in Porous Media

Reactive Transport in Porous Media Reactive Transport in Porous Media Daniel M. Tartakovsky Department of Mechanical & Aerospace Engineering University of California, San Diego Alberto Guadagnini, Politecnico di Milano, Italy Peter C. Lichtner,

More information

Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles Journal of Industrial Engineeringand Management JIEM, 2013 6(2): 686-697 Online ISSN: 2013-0953 Print ISSN: 2013-8423 http://dx.doi.org/10.3926/jiem.895 Modeling charge polarization voltage for large lithium-ion

More information

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Supporting Information to Silicon/Carbon Nanotube/BaTiO 3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential Byoung-Sun Lee a, Jihyun Yoon b, Changhoon

More information

THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES

THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES A Thesis Presented to The Academic Faculty by Daniel William Gaddes In Partial Fulfillment of the Requirements for the Degree Masters of Science

More information

Performance Simulation of Passive Direct Methanol Fuel Cell

Performance Simulation of Passive Direct Methanol Fuel Cell International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 8, Number 1 (018), pp. 05-1 Research India Publications http://www.ripublication.com Performance Simulation of Passive Direct

More information

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Electrochemical Kinetics

More information

Modelling a Generalized Dialysis Device

Modelling a Generalized Dialysis Device Modelling a Generalized Dialysis Device Brian Wetton Mathematics Department University of British Columbia www.math.ubc.ca/~wetton UPC, November 11, 2015 Overview Advertising UBC Institute of Applied Mathematics

More information

Parameterization and Estimation of Surrogate Critical Surface Concentration in Lithium-Ion Batteries

Parameterization and Estimation of Surrogate Critical Surface Concentration in Lithium-Ion Batteries UNCLASSIFIED: Dist A. Approved for public release 1 Parameterization and Estimation of Surrogate Critical Surface Concentration in Lithium-Ion Batteries Abstract: In this paper a surrogate electrochemical

More information

Battery System Safety and Health Management for Electric Vehicles

Battery System Safety and Health Management for Electric Vehicles Battery System Safety and Health Management for Electric Vehicles Guangxing Bai and Pingfeng Wang Department of Industrial and Manufacturing Engineering Wichita State University Content Motivation for

More information

A dynamic battery model for co-design in cyber-physical systems

A dynamic battery model for co-design in cyber-physical systems 2009 29th IEEE International Conference on Distributed Computing Systems Workshops A dynamic battery model for co-design in cyber-physical systems Fumin Zhang, Zhenwu Shi School of Electrical and Computer

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

VI. Porous Media. Lecture 34: Transport in Porous Media

VI. Porous Media. Lecture 34: Transport in Porous Media VI. Porous Media Lecture 34: Transport in Porous Media 4/29/20 (corrected 5/4/2 MZB) Notes by MIT Student. Conduction In the previous lecture, we considered conduction of electricity (or heat conduction

More information

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell Supporting Information for Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries Nobuhiro Ogihara,*

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

Simulation and Analysis of Inhomogeneous Degradation in Large Format LiMn 2 O 4 / Carbon Cells

Simulation and Analysis of Inhomogeneous Degradation in Large Format LiMn 2 O 4 / Carbon Cells University of South Carolina Scholar Commons Faculty Publications Chemical Engineering, Department of 6-4-2014 Simulation and Analysis of Inhomogeneous Degradation in Large Format LiMn 2 O 4 / Carbon Cells

More information

THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES. Kevin Siniard

THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES. Kevin Siniard THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with

More information

BEM for Modelling Cathodic Protection Systems in Multi-Layer Electrolytes

BEM for Modelling Cathodic Protection Systems in Multi-Layer Electrolytes BEM for Modelling Cathodic Protection Systems in Multi-Layer Electrolytes Industrial Applications in Well Casing Structures A. B. Peratta aperatta@beasy.com R. A. Adey radey@beasy.com J. M. W Baynham j.baynham@beasy.com

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Quantitative analysis of GITT measurements of Li-S batteries

Quantitative analysis of GITT measurements of Li-S batteries Quantitative analysis of GITT measurements of Li-S batteries James Dibden, Nina Meddings, Nuria Garcia-Araez, and John R. Owen Acknowledgements to Oxis and EPSRC for EP/M5066X/1 - CASE studentship, EP/P019099/1-

More information

arxiv: v1 [cond-mat.mtrl-sci] 3 Sep 2009

arxiv: v1 [cond-mat.mtrl-sci] 3 Sep 2009 Mass Transport Phenomena in a MCFC Cathode Peter Berg 1 and Justin Findlay arxiv:0909.0528v1 [cond-mat.mtrl-sci] 3 Sep 2009 Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

Continuum Representation for Simulating Discrete Events of Battery Operation

Continuum Representation for Simulating Discrete Events of Battery Operation A98 0013-4651/009/157 1 /A98/7/$8.00 The Electrochemical Society Continuum Representation for Simulating Discrete Events of Battery Operation Vijayasekaran Boovaragavan, a, *, ** Venkatasailanathan Ramadesigan,

More information

Enhanced Power Systems Through Nanotechnology

Enhanced Power Systems Through Nanotechnology Enhanced Power Systems Through Nanotechnology Applied Power Electronics Conference and Exposition Fort Worth, Texas March 19, 2014 Dale Teeters Chemistry and Biochemistry The University of Tulsa The Movie,

More information

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany

CZ České Budějovice, Czech Republic b Technical University of Liberec, Department of Materials Science, Hálkova 6, D Dresden, Germany INVESTIGATION OF ELECTRIC CONDITIONS IN THE VICINITY OF CARBON NANOTUBES GROWN IN A DC PLASMA SHEATH J. Blažek a, P. Špatenka b, Ch. Taeschner c, A. Leonhardt c a University of South Bohemia, Department

More information

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer Formation

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer Formation 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries:

More information

Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett. Department of Chemistry and Center for Electrochemistry

Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett. Department of Chemistry and Center for Electrochemistry REDOX Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett Department of Chemistry and Center for Electrochemistry The University of Texas at Austin 1 What is a redox

More information

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations.

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations. Impedance Basics Electrochemical Impedance Spectroscopy (EIS) is a frequency domain measurement made by applying a sinusoidal perturbation, often a voltage, to a system. The impedance at a given frequency

More information

An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell

An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell Journal of Power Sources 14 (005 17 178 Short communication An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell Vamsi K. Maddirala, Venkat

More information

Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries

Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries 2014 American Control Conference (ACC) June 4-6, 2014. Portland, Oregon, USA Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries Satadru Dey and Beshah Ayalew Abstract State-of-Charge

More information

Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 1. Model Development

Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 1. Model Development J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 1. Model Development C.Y. Wang 1 and W.B. Gu Department of Mechanical Engineering and Pennsylvania

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals K.G. Wang 1, M. and M. Ortiz 2 Universidad de Sevilla 1 Virginia Polytechnic Institute and State University 2 California Institute of Technology

More information

Summary of Terminal Master s Degree Programs in Philosophy

Summary of Terminal Master s Degree Programs in Philosophy Summary of Terminal Master s Degree Programs in Philosophy Faculty and Student Demographics All data collected by the ican Philosophical Association. The data in this publication have been provided by

More information

Electrochemical modeling of lithium polymer batteries $

Electrochemical modeling of lithium polymer batteries $ Journal of Power Sources 110 (2002) 310 320 Electrochemical modeling of lithium polymer batteries $ Dennis W. Dees a,*, Vincent S. Battaglia a, André Bélanger b a Electrochemical Technology Program, Chemical

More information

529 Lecture #8 of 18

529 Lecture #8 of 18 Lecture #8 of 18 529 530 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta Electrochimica Acta 64 (2012) 46 64 Contents lists available at SciVerse ScienceDirect Electrochimica Acta j ourna l ho me pag e: www.elsevier.com/locate/electacta 3-D pore-scale resolved model for coupled

More information

STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY

STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY By Danghe Shi A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Mechanical

More information

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms.

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms. Executive Summary One of the critical hurdles of the success of many clean energy technologies is energy storage. For this, new and advanced computational tools to predict battery properties are very important.

More information

A chemo-mechanical model coupled with thermal effect on the hollow core shell electrodes in lithium-ion batteries

A chemo-mechanical model coupled with thermal effect on the hollow core shell electrodes in lithium-ion batteries Accepted Manuscript A chemo-mechanical model coupled with thermal effect on the hollow core shell electrodes in lithium-ion batteries Bin Hu, Zengsheng Ma, Weixin Lei, Youlan Zou, Chunsheng Lu PII: S2095-0349(17)30096-X

More information

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis Application note #18 Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis I- Introduction It is sometimes useful to automate measurements. With EC-Lab and EC-Lab

More information

Micro-coolers fabricated as a component in an integrated circuit

Micro-coolers fabricated as a component in an integrated circuit Micro-coolers fabricated as a component in an integrated circuit James Glover 1, Ata Khalid 2, Alex Stephen 3, Geoff Dunn 3, David Cumming 2 & Chris H Oxley 1 1Electronic Engineering Dept., Faculty of

More information

Components of output signal in Chronoamperometry

Components of output signal in Chronoamperometry Chronoamperometry Stationary electrode Unstirred = mass transport by diffusion Constant potential Measure current vs time Theory assume Ox + n e - Red - both Ox and Red are soluble - reversible reaction

More information

Electrode kinetics, finally!

Electrode kinetics, finally! 1183 Q: What s in this set of lectures? A: B&F Chapter 3 main concepts: Sections 3.1 & 3.6: Homogeneous Electron-Transfer (ET) (Arrhenius, Eyring, TST (ACT), Marcus Theory) Sections 3.2, 3.3, 3.4 & 3.6:

More information

Solid State electrochemistry

Solid State electrochemistry Solid State electrochemistry edited by Peter G. Bruce Department of Chemistry, University of St Andrews, Scotland IH CAMBRIDGE ^pf UNIVERSITY PRESS 1 1.1 1.2 1.3 1.4 1.5 1.6 Preface Introduction P. G.

More information

654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY /$ IEEE

654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY /$ IEEE 654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY 2010 Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries Kandler A. Smith,

More information

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL The Pennsylvania State University The Graduate School College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL MORPHOLOGY ON POLYMER ELECTROLYTE FUEL CELL PERFORMANCE A Thesis in

More information

Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of. reaction distributions with simultaneous mixing in tanks

Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of. reaction distributions with simultaneous mixing in tanks Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of reaction distributions with simultaneous mixing in tanks V. Pavan Nemani a,d and Kyle C. Smith a,b,c,d * a Department

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information