Graphics Example: Type Setting

Size: px
Start display at page:

Download "Graphics Example: Type Setting"

Transcription

1 D Transformations

2 Graphics Eample: Tpe Setting

3 Modern Computerized Tpesetting Each letter is defined in its own coordinate sstem And positioned on the page coordinate sstem It is ver simple, m she thought, ou get up, ou go, ou do, ou see, ou put one foot in front of the other & along the wa ou do our ver best to enjo it.

4 Local vs. Global Coordinate Sstems m u Converting from local to global? v m. Map [,] to [, ]. Add 3. Map [,] to [, ] 4. Add u v ( ( ( ( ) ) ) ) u,v [,]

5 Map & Translate v m u Converting from local to global? Assume local is defined on [,] a p m. Map [,][,] to a a a a. Translate to p = (, ) a ua va

6 Two Stages: Map & Translate Two basic operations: Mapping the vector (u,v) to a new vector Translating the origin to p u v a a p va ua p v u a a a a v u a a (,)

7 Matri Form a a The matri A = is called a a a Linear Map and it maps a vector (u,v) to a vector (u,v ) a p a u' v' a a a a u v v (,) u Note: we forget the translation for now!

8 Linear Maps & Matrices We have 4 numbers in the matri An combination gives a general linear transformation (map) From Algebra we know that the preserve linear combinations: A( c c Av c Av v cv)

9 Working with Matrices CA BA A C B AC AB C B A C AB BC A C B A C B A BA AB A B B A ) ( ) ( ) ( ) ( ) ( ) ( ) (Note:in general Commutative Law: Associative Laws: Distributive Laws:

10 Special Linear Maps Special combinations of the matri entries give specific tpes of linear maps: Scale (uniform & non-uniform) Reflection Rotation Shear Projection

11 Scale Map: = s = s Eample: Matri form: If s s it is a non-uniform scale 3 3 (,) s s S

12 Mapping Objects Eample: Uniform vs. Non-uniform Scale (,) Non-uniform (,) (,) Uniform (,)

13 Reflections (,) About (,) (,) About (,) (,) About = (,)

14 Rotation Given an angle the map for rotation in counterclockwise direction is: = cos()- sin() = sin()+ cos() Matri form: (,) R cos( ) sin( ) sin( ) cos( )

15 Rotation

16 Shear Map: = + h = + h Eample: Matri form: h h H (,) (,) deforms as function of

17 Projections Onto : (,) (,) Onto : In general if v =(, ) and v are parallel (v =cv =(c, c ) then following map is a projection onto the line of their direction (,) c c

18 Reducing Dimension Man vectors are all mapped to the same vector b projection In fact an line in D is projected onto a point on the projection line This is wh projections reduce the dimension Once projected, the points on the line cannot be distinguished from each other This also means there is no inverse mapping to projection (,) How about the other maps?

19 Inverse Maps The matri of the inverse transformation is the inverse matri of the transformation: ) cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) cos(

20 Combining Transformations I Matri multiplication is associative, hence instead of appling each map alone we can multipl the matrices to create the final map: cba cba cb cb c c A B A C B A M ABC C B A C B A

21 Eample: Rotate & Shear BA AB (,) (,) (,) B A (,) (,)

22 Order is Important! First shear then rotate (AB) is different than first rotate then shear (BA)! Reason: matri multiplication is NOT commutative Eception? rotations are commutative: Rotate b and then b β is the same as rotating b β and then b.

23 The Origin In ALL linear transformation the origin (,) remains stationar: Image(origin) = origin Problem? What operation cannot be represented?

24 Translation Map: = + t = + t Can be defined as p = p+v Note: since vectors do not have position, translation is an operation on points! (,) t v p t p

25 Affine Maps Includes both a linear map A and a translation v p = Ap+v Linear maps can be seen as a subset of affine maps (translation v = )

26 Eample : Rotating Around a Point We defined rotation around (,). How can we rotate in degrees around an arbitrar point q? (,) q Translate Rotate Translate back (,) (,) (,)

27 Eample : Rotating Around a Point. Translate q to the origin (v=q-). Rotate around the origin in degrees 3. Translate back This is an affine map: q (,) p = R (p-v)+v

28 Propert: Does Not Preserve Distance! A transformation that preserves distances is called an isometr. For eample: rotation, translation, reflection. However, most linear maps do not, and therefore also most affine maps don t For eample scaling: (,) (,)

29 Propert: Preserves Line and Ratios Assume Let A+v be an affine map that maps p, p, p 3 to p, p, p 3 Now we have: p 3 p p Affine transformations preserve ratios! p p p 3

30 Matri Notation? The matri notation for the general Affine transformation cannot represent translation using matrices Solution: use homogeneous coordinates

31 Homogeneous Coordinates August Ferdinand Möbius Homogeneous coordinates are a mapping from R n to R n+ as follows: (,) (X,Y,W) where X=W, Y=W Note: for all t the points (t,t,t) correspond to the same point (,): (,3,)(6,9,3) (4,6,). Usuall it is customar to use w= (normalize it if not)

32 Geometric Interpretation W D point is mapped to a line (ra) in 3D passing through the origin. (non-homogeneous) points are obtained b projecting the ras onto the plane Z=. Y (X,Y,) (X,Y,W) X

33 Translation in Homogeneous Coordinates Using homogeneous coordinates we can represent a translation using the following matri: (,) is mapped b this matri to (+t,+t) t t t t

34 General Affine Maps Linear maps can still use the top left minor of the matri Hence, combining both linear maps and translation we get the general affine map matri form: f d c e b a

35 Combining Transformations II Multipling two affine maps creates an affine map: Hence, we can combine transformations in a similar manner as linear maps Remember: order is still important: AB BA f f d e c d d c b c d a c e f b a e b d a b b c a a f d c e b a f d c e b a

36 Eample Revisited Rotating around an arbitrar point (, ) sin ) cos ( cos sin sin ) cos ( sin cos cos sin sin cos Translate Rotate Translate back

37 Eample : Reflection About a Line. Find p on the line. Move p to the origin 3. Rotate so that the line lies on the ais 4. Reflect about the ais 5. Rotate back 6. Move back p v (,)

38 Geometric Stages Translate Rotate v v v p p p - (,) (,) (,) 5 Translate back 4 Rotate back 3 Reflect v v v p p p (,) (,) (,)

39 In Matri Form ) cos( ) sin( ) sin( ) cos( cos sin sin cos p p p p M Translate Rotate Rotate back Reflect Translate back

40 Defining Affine Transformations Given k points (p,p,..p k ) in D that have been transformed to (p',p',..,p' k ) b an affine transformation. How man points are needed to uniquel define the transformation? 6 unknowns a c b d e f

41 Three Points One pair of points can define the translation (translate p to p' ) to get e and f Now we need to define a linear transformation Using another two pairs of points we can define two pairs of vectors: v =p - p, v 3 =p 3 - p, v' =p' - p', v 3 =p' 3 - p' that uniquel define the transformation: d c b a v v v v v v v v d c b a ' ' ' ' p p p 3 p p p 3

42 Mapping Two Triangles Hence, given the mapping between two triangles, or three pairs of points, defines an affine map: p p p 3 p p p 3 p p 3 p p 3 p p

43 Back to Coordinate Sstems In a similar manner: converting from global to local coordinate sstem is done using an affine map Conversion between an coordinate sstem is defined b an affine map (,)

44 Affine Transformations Properties Closed under composition Origin does not map to origin Does not preserve distances Lines map to lines Ratios are preserved Parallel lines remain parallel

45 Projective Transformations What if we use a full 33 matri to transform homogeneous points? We obtain a richer variet of possible maps which are called Projective warps w i h g f e d c b a w ' ' '

46 Transformation Eamples Original Linear: Scale & Rotate Affine Projective

47 Projective Transformations Properties Closed under composition Origin does not map to origin Does not preserve distances Lines map to lines Ratios are not preserved (but cross-ratios are) Parallel lines do not remain parallel

48 More Eamples Original Linear: Scale & Rotate Affine Projective

49 Special Tpes of Transformations Rigid transformation: Translation + Rotation (distance preserving). How man D.O.F? Similarit transformation: Translation + Rotation + uniform Scale (angle preserving). How man D.O.F? Affine transformation: Translation + Rotation + Scale + Shear (parallelism preserving). How man D.O.F? All above transformations are groups where Rigid Similarit Affine.

50 Summar of Transformations Projective Affine Similarit Rigid

2D Geometric Transformations. (Chapter 5 in FVD)

2D Geometric Transformations. (Chapter 5 in FVD) 2D Geometric Transformations (Chapter 5 in FVD) 2D geometric transformation Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2 2D Geometric Transformations Question:

More information

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013 Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 23 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

More information

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which?

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which? walters@buffalo.edu CSE 480/580 Lecture 2 Slide 3-D Transformations 3-D space Two conventions for coordinate sstems Left-Hand vs Right-Hand (Thumb is the ais, inde is the ais) Which is which? Most graphics

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

Affine transformations. Brian Curless CSE 557 Fall 2014

Affine transformations. Brian Curless CSE 557 Fall 2014 Affine transformations Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.1-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.1-5.5. David F. Rogers and J.

More information

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading:

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading: Reading Required: Watt, Section.. Further reading: 4. Affine transformations Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd Ed., McGraw-Hill,

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSE 557 Fall 2009 Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technolog 3D Engines and Scene Graphs Spring 202 Universit of Teas at Austin CS 378 Game Technolog Don Fussell Representation! We can represent a point, p =,), in the plane! as a

More information

Linear and affine transformations

Linear and affine transformations Linear and affine transformations Linear Algebra Review Matrices Transformations Affine transformations in Euclidean space 1 The linear transformation given b a matri Let A be an mn matri. The function

More information

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform linear SO... we will want to represent the geometr of points in space we will often want to perform (rigid) transformations to these objects to position them translate rotate or move them in an animation

More information

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform linear SO... we will want to represent the geometr of points in space we will often want to perform (rigid) transformations to these objects to position them translate rotate or move them in an animation

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

Vector and Affine Math

Vector and Affine Math Vector and Affine Math Computer Science Department The Universit of Teas at Austin Vectors A vector is a direction and a magnitude Does NOT include a point of reference Usuall thought of as an arrow in

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product:

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product: TNM046: Datorgrafik Transformations Sasan Gooran VT 04 Linear Algebra ( ) ( ) =,, 3 =,, 3 Transposition t = 3 t = 3 Scalar (dot) product: Length (Norm): = t = + + 3 3 = = + + 3 Normaliation: ˆ = Linear

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2011 Lecture 11 September 29, 2011 October 8, 2011 College of Computer and Information Science, Northeastern Universit 1 Toda s Topics Linear Algebra Review

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Computer Graphics Lecture #3: 2D Transformations Prof. James O Brien Universit of California, Berkele V2006-S-03-1.0 Toda 2D Transformations Primitive Operations Scale, Rotate, Shear, Flip, Translate

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018 Geometric Image Maniplation Lectre 4 Wednesda, Janar 4, 08 Programming Assignment Image Maniplation: Contet To start with the obvios, an image is a D arra of piels Piel locations represent points on the

More information

Operations depend on pixel s Coordinates. Context free. Independent of pixel values. I(x,y) I (x,y )

Operations depend on pixel s Coordinates. Context free. Independent of pixel values. I(x,y) I (x,y ) Geometric Transformation Operations depend on piel s Coordinates. Contet free. Independent of piel values. f f (, ) = ' (, ) = ' I(, ) = I' ( f (, ), f ( ) ), (,) (, ) I(,) I (, ) Eample: Translation =

More information

Solutions Week 2. D-ARCH Mathematics Fall Linear dependence & matrix multiplication. 1. A bit of vector algebra.

Solutions Week 2. D-ARCH Mathematics Fall Linear dependence & matrix multiplication. 1. A bit of vector algebra. D-ARCH Mathematics Fall 4 Solutions Week Linear dependence & matrix multiplication A bit of vector algebra (a) Find all vectors perpendicular to Drawing a sketch might help! Solution : All vectors in the

More information

CS 335 Graphics and Multimedia. 2D Graphics Primitives and Transformation

CS 335 Graphics and Multimedia. 2D Graphics Primitives and Transformation C 335 Graphics and Multimedia D Graphics Primitives and Transformation Basic Mathematical Concepts Review Coordinate Reference Frames D Cartesian Reference Frames (a) (b) creen Cartesian reference sstems

More information

CSC Computer Graphics

CSC Computer Graphics CSC. Computer Graphics Lecture 4 P T P t, t t P,, P T t P P T Kasun@dscs.sjp.ac.lk Department o Computer Science Universit o Sri Jaewardanepura Kasun@dscs.sjp.ac.lk - Facult o Applied Sciences o USJP r

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 4: Changing Shapes: Linear Maps in 2D Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

RELATIONS AND FUNCTIONS through

RELATIONS AND FUNCTIONS through RELATIONS AND FUNCTIONS 11.1.2 through 11.1. Relations and Functions establish a correspondence between the input values (usuall ) and the output values (usuall ) according to the particular relation or

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Physically Based Rendering ( ) Geometry and Transformations

Physically Based Rendering ( ) Geometry and Transformations Phsicall Based Rendering (6.657) Geometr and Transformations 3D Point Specifies a location Origin 3D Point Specifies a location Represented b three coordinates Infinitel small class Point3D { public: Coordinate

More information

Infinitesimal Rotations

Infinitesimal Rotations Universit of Connecticut DigitalCommons@UConn Chemistr Education Materials Department of Chemistr Januar 007 Infinitesimal Rotations Carl W. David Universit of Connecticut, Carl.David@uconn.edu Follow

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

Computer Graphics: 2D Transformations. Course Website:

Computer Graphics: 2D Transformations. Course Website: Computer Graphics: D Transformations Course Website: http://www.comp.dit.ie/bmacnamee 5 Contents Wh transformations Transformations Translation Scaling Rotation Homogeneous coordinates Matri multiplications

More information

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1 Lecture 04: Transform COMP 75: Computer Graphics February 9, 206 /59 Admin Sign up via email/piazza for your in-person grading Anderson@cs.tufts.edu 2/59 Geometric Transform Apply transforms to a hierarchy

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Geometry review, part I

Geometry review, part I Geometr reie, part I Geometr reie I Vectors and points points and ectors Geometric s. coordinate-based (algebraic) approach operations on ectors and points Lines implicit and parametric equations intersections,

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing.

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing. NY- Learning Standards for Mathematics A.A. Solve a sstem of one linear and one quadratic equation in two variables, where onl factoring is required. A.G.9 Solve sstems of linear and quadratic equations

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year )

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year ) Rising HONORS Algebra TRIG student Summer Packet for 016 (school ear 016-17) Welcome to Algebra TRIG! To be successful in Algebra Trig, ou must be proficient at solving and simplifing each tpe of problem

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14 Lecture 4: Affine Transformations for Satan himself is transformed into an angel of light. 2 Corinthians 11:14 1. Transformations Transformations are the lifeblood of geometry. Euclidean geometry is based

More information

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99 ESC 489 3D ransforms 1 igid Bod ransforms-3d J.C. Dill transforms3d 27Jan99 hese notes on (2D and) 3D rigid bod transform are currentl in hand-done notes which are being converted to this file from that

More information

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted.

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted. 4.1 Strain If an object is placed on a table and then the table is moved, each material particle moves in space. The particles undergo a displacement. The particles have moved in space as a rigid bod.

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technolog Transformations Fall 207 Universit of Teas at Austin CS 354R Game Technolog S. Abraham Transformations What are the? Wh should we care? Universit of Teas at Austin CS 354R

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

A Tutorial on Euler Angles and Quaternions

A Tutorial on Euler Angles and Quaternions A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weimann Institute of Science http://www.weimann.ac.il/sci-tea/benari/ Version.0.1 c 01 17 b Moti Ben-Ari. This work

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

Vectors in Two Dimensions

Vectors in Two Dimensions Vectors in Two Dimensions Introduction In engineering, phsics, and mathematics, vectors are a mathematical or graphical representation of a phsical quantit that has a magnitude as well as a direction.

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates 71 Chapter 1: Conic Sections and Polar Coordinates 1.5 Polar Coordinates rigin (pole) r P(r, ) Initial ra FIGURE 1.5 To define polar coordinates for the plane, we start with an origin, called the pole,

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

1.3. Absolute Value and Piecewise-Defined Functions Absolutely Piece-ful. My Notes ACTIVITY

1.3. Absolute Value and Piecewise-Defined Functions Absolutely Piece-ful. My Notes ACTIVITY Absolute Value and Piecewise-Defined Functions Absolutel Piece-ful SUGGESTED LEARNING STRATEGIES: Activating Prior Knowledge, Create Representations, Quickwrite. Graph both = - for < 3 and = - + 7 for

More information

Trigonometry Outline

Trigonometry Outline Trigonometr Outline Introduction Knowledge of the content of this outline is essential to perform well in calculus. The reader is urged to stud each of the three parts of the outline. Part I contains the

More information

Transformations. Chapter D Transformations Translation

Transformations. Chapter D Transformations Translation Chapter 4 Transformations Transformations between arbitrary vector spaces, especially linear transformations, are usually studied in a linear algebra class. Here, we focus our attention to transformation

More information

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction R = name for resultant vectors R = resultant component

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach

Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach Introduction to 3D Game Programming with DirectX 90c: A Shader Approach Part I Solutions Note : Please email to frank@moon-labscom if ou find an errors Note : Use onl after ou have tried, and struggled

More information

Reading. Affine transformations. Vector representation. Geometric transformations. x y z. x y. Required: Angel 4.1, Further reading:

Reading. Affine transformations. Vector representation. Geometric transformations. x y z. x y. Required: Angel 4.1, Further reading: Reading Required: Angel 4.1, 4.6-4.10 Further reading: Affine transformations Angel, the rest of Chapter 4 Fole, et al, Chapter 5.1-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Unit 2 Notes Packet on Quadratic Functions and Factoring

Unit 2 Notes Packet on Quadratic Functions and Factoring Name: Period: Unit Notes Packet on Quadratic Functions and Factoring Notes #: Graphing quadratic equations in standard form, verte form, and intercept form. A. Intro to Graphs of Quadratic Equations: a

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

03 - Basic Linear Algebra and 2D Transformations

03 - Basic Linear Algebra and 2D Transformations 03 - Basic Linear Algebra and 2D Transformations (invited lecture by Dr. Marcel Campen) Overview In this box, you will find references to Eigen We will briefly overview the basic linear algebra concepts

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Trusses - Method of Sections

Trusses - Method of Sections Trusses - Method of Sections ME 202 Methods of Truss Analsis Method of joints (previous notes) Method of sections (these notes) 2 MOS - Concepts Separate the structure into two parts (sections) b cutting

More information

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ VI. Angular momentum Up to this point, we have been dealing primaril with one dimensional sstems. In practice, of course, most of the sstems we deal with live in three dimensions and 1D quantum mechanics

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

Multiple Choice. 3. The polygons are similar, but not necessarily drawn to scale. Find the values of x and y.

Multiple Choice. 3. The polygons are similar, but not necessarily drawn to scale. Find the values of x and y. Accelerated Coordinate Algebra/Analtic Geometr answers the question. Page 1 of 5 Multiple Choice 1. The dashed triangle is an image of the solid triangle. What is the scale factor of the image?. The polgons

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSEP 557 Fall 2016 Angel 3.1, 3.7-3.11 Further reading: Angel, the rest of Chapter 3 Fole, et al, Chapter 5.1-5.5. David F. Rogers and J. Alan Adams,

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

Homogeneous Coordinates

Homogeneous Coordinates Homogeneous Coordinates Basilio Bona DAUIN-Politecnico di Torino October 2013 Basilio Bona (DAUIN-Politecnico di Torino) Homogeneous Coordinates October 2013 1 / 32 Introduction Homogeneous coordinates

More information

Outline. MA 138 Calculus 2 with Life Science Applications Linear Maps (Section 9.3) Graphical Representation of (Column) Vectors. Addition of Vectors

Outline. MA 138 Calculus 2 with Life Science Applications Linear Maps (Section 9.3) Graphical Representation of (Column) Vectors. Addition of Vectors MA 8 Calculus with Life Science Applications Linear Maps (Section 9) Alberto Corso albertocorso@ukedu Department of Mathematics Uniersit of Kentuck Wednesda, March 8, 07 Outline We mostl focus on matrices,

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

Today. CS-184: Computer Graphics. Introduction. Some Examples. 2D Transformations

Today. CS-184: Computer Graphics. Introduction. Some Examples. 2D Transformations Toda CS-184: Comuter Grahics Lecture #3: 2D Transformations Prof. James O Brien Universit of California, Berkele V2005F-03-1.0 2D Transformations Primitive Oerations Scale, Rotate, Shear, Fli, Translate

More information

+ dxk. dt 2. dt Γi km dxm. . Its equations of motion are second order differential equations. with intitial conditions

+ dxk. dt 2. dt Γi km dxm. . Its equations of motion are second order differential equations. with intitial conditions Homework 7. Solutions 1 Show that great circles are geodesics on sphere. Do it a) using the fact that for geodesic, acceleration is orthogonal to the surface. b ) using straightforwardl equations for geodesics

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix 3.6 Determinants We said in Section 3.3 that a 2 2 matri a b is invertible if and onl if its c d erminant, ad bc, is nonzero, and we saw the erminant used in the formula for the inverse of a 2 2 matri.

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Applications. 12 The Shapes of Algebra. 1. a. Write an equation that relates the coordinates x and y for points on the circle.

Applications. 12 The Shapes of Algebra. 1. a. Write an equation that relates the coordinates x and y for points on the circle. Applications 1. a. Write an equation that relates the coordinates and for points on the circle. 1 8 (, ) 1 8 O 8 1 8 1 (13, 0) b. Find the missing coordinates for each of these points on the circle. If

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

University of Regina Department of Mathematics and Statistics

University of Regina Department of Mathematics and Statistics u z v 1. Consider the map Universit of Regina Department of Mathematics and Statistics MATH431/831 Differential Geometr Winter 2014 Homework Assignment No. 3 - Solutions ϕ(u, v) = (cosusinv, sin u sin

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

7.5 Solve Special Types of

7.5 Solve Special Types of 75 Solve Special Tpes of Linear Sstems Goal p Identif the number of of a linear sstem Your Notes VOCABULARY Inconsistent sstem Consistent dependent sstem Eample A linear sstem with no Show that the linear

More information

Chapter 1 Coordinates, points and lines

Chapter 1 Coordinates, points and lines Cambridge Universit Press 978--36-6000-7 Cambridge International AS and A Level Mathematics: Pure Mathematics Coursebook Hugh Neill, Douglas Quadling, Julian Gilbe Ecerpt Chapter Coordinates, points and

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

Computer Graphics MTAT Raimond Tunnel

Computer Graphics MTAT Raimond Tunnel Computer Graphics MTAT.03.015 Raimond Tunnel Points and Vectors In computer graphics we distinguish: Point a location in space (location vector, kohavektor) Vector a direction in space (direction vector,

More information

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling International Eaminations Advanced Level Mathematics Pure Mathematics Hugh Neill and Douglas Quadling PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street,

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations (9 Fall) Chapter Matrices and Sstems of Equations Chih-Wei Yi Dept. of Computer Science National Chiao Tung Universit October 9, 9 Linear Sstems Linear Sstems Linear Sstems Linear Equations De nition (Linear

More information

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE The SAT Subject Tests Answer Eplanations TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE Mathematics Level & Visit sat.org/stpractice to get more practice and stud tips for the Subject Test

More information

f 0 ab a b: base f

f 0 ab a b: base f Precalculus Notes: Unit Eponential and Logarithmic Functions Sllabus Objective: 9. The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information