Haar function construction of Brownian bridge and Brownian motion Wellner; 10/30/2008

Size: px
Start display at page:

Download "Haar function construction of Brownian bridge and Brownian motion Wellner; 10/30/2008"

Transcription

1 Haar function construction of Brownian bridge and Brownian motion Wellner; 1/3/28 Existence of Brownian motion and Brownian bridge as continuous processes on C[, 1] The aim of this subsection to convince you that both Brownian motion and Brownian bridge exist as continuous Gaussian processes on [, 1], and that we can then extend the definition of Brownian motion to [, ). Definition 1. Brownian motion (or standard Brownian motion, or a Wiener process) S is a Gaussian process with continuous sample functions and: (i) S() = ; (ii) E(S(t)) =, t 1; (iii) E{S(s)S(t)} = s t, s, t 1. Definition 2. A Brownian bridge process U is a Gaussian process with continuous sample functions and: (i) U() = U(1) = ; (ii) E(U(t)) =, t 1; (iii) E{U(s)U(t)} = s t st, s, t 1. Theorem 1. Brownian motion S and Brownian bridge U exist. Proof. We first construct a Brownian bridge process U. Let t t 1/2, h (t) h(t) 1 t 1/2 t 1, elsewhere. For n 1 let h nj (t) 2 n/2 h(2 n t j), j =,..., 2 n 1. (2) For example, h 1 (t) = 2 1/2 h(2t), h 11 (t) = 2 1/2 h(2t 1), while h 2 (t) = 2 1 h(4t), h 21 (t) = 2 1 h(4t 1), h 22 (t) = 2 1 h(4t 2), h 23 (t) = 2 1 h(4t 3). Note that h nj (t) 2 n/ The functions {h nj : j =,..., 2 n 1, n } are called the Schauder functions; they are integrals of the orthonormal (with respect to Lebesgue 1 (1)

2 measure on [, 1]) family of functions {g nj : j =,..., 2 n 1, n } called the Haar functions defined by Thus 1 and g (t) g(t) 21 [,1/2] (t) 1, g nj (t) 2 n/2 g (2 n t j), j =,..., 2 n 1, n 1. g 2 nj(t)dt = 1, 1 h nj (t) = g nj (t)g n j (t)dt = if n n, or j j, t (3) g nj (s)ds, t 1. (4) Furthermore, the family {g nj } 2n 1 j=, n {g( /2)} is complete: any f L 2(, 1) has an expansion in terms of the g s. In fact the Haar basis is the simplest wavelet basis of L 2 (, 1), and is the starting point for further developments in the area of wavelets. Now let {Z nj } 2n 1 j=, n be independent identically distributed N(, 1) random variables; if we wanted, we could construct all these random variables on the probability space ([, 1], B [,1], λ). Define For m > k where V n (t, ω) = U m (t, ω) = U m (t, ω) U k (t, ω) = V n (t, ω) 2 n 1 j= 2 n 1 j= Z nj (ω)h nj (t), m V n (t, ω). n= m n=k+1 V n (t, ω) m n=k+1 V n (t, ω) (5) Z nj (ω) h nj (t) 2 (n/2+1) max j 2 n 1 Z nj(ω) (6) since the h nj, j =,..., 2 n 1 are on disjoint t intervals. 2

3 Now P (Z nj > z) = 1 Φ(z) z 1 φ(z) for z > (by Mill s ratio ) so that P ( Z nj 2 n) = 2P ((Z nj 2 n) 2 (2 n) 1 e 2n. (7) 2π Hence ( P max Z nj 2 ) n 2 n P ( Z 2 n) 2n n 1/2 e 2n ; (8) j 2 n 1 2π since this is a term of a convergent series, by the Borel-Cantelli lemma max j 2 n 1 Z nj 2 n occurs infinitely often with probability zero; i.e. except on a null set, for all ω there is an N = N(ω) such that max j 2 n 1 X nj (ω) < 2 n for all n > N(ω). Hence sup U m (t) U k (t) t 1 m n=k+1 2 n/2 n 1/2 (9) for all k, m N N(ω). Thus U m (t, ω) converges uniformly as m with probability one to the (necessarily continuous) function U(t, ω) V n (t, ω). (1) n= Define U on the exceptional set. Then U is continuous for all ω. Now {U(t) : t 1} is clearly a Gaussian process since it is the sum of Gaussian processes. We now show that U is in fact a Brownian bridge: by formal calculation (it remains only to justify the interchange of summation 3

4 and expectation), { E{U(s)U(t)} = E V n (s) = = = = = n= } V m (t) m= E{V n (s)v n (t)} n= E n= n= { 2 n 1 j= 2 n 1 s j= 2 n 1 n= j= 1 = s t st 1 Z nj s g nj dλ t 2 n 1 t g nj dλ Z nk 1 [,s] g nj dλ g nj dλ 1 1 [,s] (u)1 [,t] (u)du st k= g nk dλ } 1 [,t] g nj dλ + st st where the next to last equality follows from Parseval s identity. Thus U is Brownian bridge. Now let Z be one additional N(, 1) random variable independent of all the others used in the construction, and define S(t) U(t) + tz = Then S is also Gaussian with mean and V n (t) + tz. (11) n= Cov[S(s), S(t)] = Cov[U(s) + sz, U(t) + tz] = Cov[U(s), U(t)] + stv ar(z) = s t st + st = s t. Thus S is Brownian motion. Since U has continuous sample paths, so does S. The following figures illustrate the construction given in the theorem. 4

5 Figure 1: The Schauder function h. Here is the Mathematica code that produced the plots for the case m = 8. Needs["Histograms "] ndist = NormalDistribution[, 1] m = 8 Z = Table[RandomReal[ndist, 2^n], {n,, m}] Histogram[Flatten[Z]] h[t_] := t /; <= t <= 1/2 h[t_] := 1 - t /; 1/2 < t <= 1 h[t_] := /; t < t > 1 h1[t_, n_, j_] := 2^(-n/2)*h[2^n *t - j] V[t_] := Z[[1, 1]]*h[t] V[t_, n_] := Sum[Z[[n + 1, j + 1]]*h1[t, n, j], {j,, 2^n - 1}] U[t_, m_] := Sum[V[t, n], {n, 1, m}] + V[t] P1 = Plot[h[t], {t,, 1}] P2 = Plot[h1[t, 1, ], {t,, 1}] P3 = Plot[h1[t, 1, 1], {t,, 1}] Show[P2, P3] P4 = Plot[h1[t, 2, ], {t,, 1}, PlotRange -> {,.5}] P5 = Plot[h1[t, 2, 1], {t,, 1}, PlotRange -> {,.5}] P6 = Plot[h1[t, 2, 2], {t,, 1}, PlotRange -> {,.5}] 5

6 Figure 2: The Schauder functions h 1 and h 11. P7 = Plot[h1[t, 2, 3], {t,, 1}, PlotRange -> {,.5}] Show[P4, P5, P6, P7] Plot[V[t], {t,, 1}] Plot[V[t, 1], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.,., 1.], Plot[V[t, 2], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.1,.,.9], Plot[V[t, 3], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.2,.,.8], Plot[V[t, 4], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.3,.,.7], Plot[V[t, 5], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.4,.,.6], Plot[V[t, 6], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.5,.,.5], Plot[V[t, 7], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.6,.,.4], Plot[V[t, 8], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.7,.,.3], Plot[U[t, 8], {t,, 1}, PlotStyle -> {Thickness[1/2], RGBColor[.,.5,.5], 6

7 Figure 3: The Schauder functions h 2, h 21, h 22, h Figure 4: A sample path of the random function V (t). 7

8 Figure 5: A sample path of the random function V 1 (t) Figure 6: A sample path of the random function V 2 (t). 8

9 Figure 7: A sample path of the random function V 3 (t) Figure 8: A sample path of the random function V 4 (t). 9

10 Figure 9: A sample path of the random function V 5 (t) Figure 1: A sample path of the random function V 6 (t). 1

11 Figure 11: A sample path of the random function V 7 (t) Figure 12: A sample path of the random function V 8 (t). 11

12 Figure 13: A sample path of the random function U 8 (t) Figure 14: A sample path of the random function S 8 (t). 12

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

17. Convergence of Random Variables

17. Convergence of Random Variables 7. Convergence of Random Variables In elementary mathematics courses (such as Calculus) one speaks of the convergence of functions: f n : R R, then lim f n = f if lim f n (x) = f(x) for all x in R. This

More information

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM STEVEN P. LALLEY 1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion)

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Optimal series representations of continuous Gaussian random fields

Optimal series representations of continuous Gaussian random fields Optimal series representations of continuous Gaussian random fields Antoine AYACHE Université Lille 1 - Laboratoire Paul Painlevé A. Ayache (Lille 1) Optimality of continuous Gaussian series 04/25/2012

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Some uniqueness results for the determination of forces acting over Germain-Lagrange plates

Some uniqueness results for the determination of forces acting over Germain-Lagrange plates Some uniqueness results for the determination of forces acting over Germain-Lagrange plates Three different techniques A. Kawano Escola Politecnica da Universidade de Sao Paulo A. Kawano (Poli-USP) Germain-Lagrange

More information

A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges

A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges A Wavelet Construction for Quantum Brownian Motion and Quantum Brownian Bridges David Applebaum Probability and Statistics Department, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield,

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

Cramér-von Mises Gaussianity test in Hilbert space

Cramér-von Mises Gaussianity test in Hilbert space Cramér-von Mises Gaussianity test in Hilbert space Gennady MARTYNOV Institute for Information Transmission Problems of the Russian Academy of Sciences Higher School of Economics, Russia, Moscow Statistique

More information

Almost Sure Convergence of a Sequence of Random Variables

Almost Sure Convergence of a Sequence of Random Variables Almost Sure Convergence of a Sequence of Random Variables (...for people who haven t had measure theory.) 1 Preliminaries 1.1 The Measure of a Set (Informal) Consider the set A IR 2 as depicted below.

More information

A Fourier analysis based approach of rough integration

A Fourier analysis based approach of rough integration A Fourier analysis based approach of rough integration Massimiliano Gubinelli Peter Imkeller Nicolas Perkowski Université Paris-Dauphine Humboldt-Universität zu Berlin Le Mans, October 7, 215 Conference

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

SELECTED TOPICS CLASS FINAL REPORT

SELECTED TOPICS CLASS FINAL REPORT SELECTED TOPICS CLASS FINAL REPORT WENJU ZHAO In this report, I have tested the stochastic Navier-Stokes equations with different kind of noise, when i am doing this project, I have encountered several

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

Take-Home Final Examination of Math 55a (January 17 to January 23, 2004)

Take-Home Final Examination of Math 55a (January 17 to January 23, 2004) Take-Home Final Eamination of Math 55a January 17 to January 3, 004) N.B. For problems which are similar to those on the homework assignments, complete self-contained solutions are required and homework

More information

THE RADON NIKODYM PROPERTY AND LIPSCHITZ EMBEDDINGS

THE RADON NIKODYM PROPERTY AND LIPSCHITZ EMBEDDINGS THE RADON NIKODYM PROPERTY AND LIPSCHITZ EMBEDDINGS Motivation The idea here is simple. Suppose we have a Lipschitz homeomorphism f : X Y where X and Y are Banach spaces, namely c 1 x y f (x) f (y) c 2

More information

A Fourier analysis based approach of integration

A Fourier analysis based approach of integration A Fourier analysis based approach of integration Massimiliano Gubinelli Peter Imkeller Nicolas Perkowski Université Paris-Dauphine Humboldt-Universität zu Berlin Stochastic analysis, controlled dynamical

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

Some basic elements of Probability Theory

Some basic elements of Probability Theory Chapter I Some basic elements of Probability Theory 1 Terminology (and elementary observations Probability theory and the material covered in a basic Real Variables course have much in common. However

More information

On the Converse Law of Large Numbers

On the Converse Law of Large Numbers On the Converse Law of Large Numbers H. Jerome Keisler Yeneng Sun This version: March 15, 2018 Abstract Given a triangular array of random variables and a growth rate without a full upper asymptotic density,

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Lecture 2: Convergence of Random Variables

Lecture 2: Convergence of Random Variables Lecture 2: Convergence of Random Variables Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Introduction to Stochastic Processes, Fall 2013 1 / 9 Convergence of Random Variables

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

Austin Mohr Math 704 Homework 6

Austin Mohr Math 704 Homework 6 Austin Mohr Math 704 Homework 6 Problem 1 Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as x. a. There exists a positive continuous function f on R so that f is integrable

More information

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 4 1998 ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS C. Sonoc Abstract: A sufficient condition for uniqueness of solutions of ordinary

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2)

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2) WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS We will use the familiar Hilbert spaces H = L 2 (Ω) and V = H 1 (Ω). We consider the Cauchy problem (.1) c u = ( 2 t c )u = f L 2 ((, T ) Ω) on [, T ] Ω u() = u H

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

arxiv: v2 [math.pr] 10 Jun 2008

arxiv: v2 [math.pr] 10 Jun 2008 A Discrete Construction for Gaussian Markov Processes arxiv:85.48v [math.pr] Jun 8 Thibaud Taillefumier Laboratory of Mathematical Physics 3 York Avenue, New York, NY 65, USA e-mail: ttaillefum@rockefeller.edu

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

NOTES ON FRAMES. Damir Bakić University of Zagreb. June 6, 2017

NOTES ON FRAMES. Damir Bakić University of Zagreb. June 6, 2017 NOTES ON FRAMES Damir Bakić University of Zagreb June 6, 017 Contents 1 Unconditional convergence, Riesz bases, and Bessel sequences 1 1.1 Unconditional convergence of series in Banach spaces...............

More information

Introduction to Signal Spaces

Introduction to Signal Spaces Introduction to Signal Spaces Selin Aviyente Department of Electrical and Computer Engineering Michigan State University January 12, 2010 Motivation Outline 1 Motivation 2 Vector Space 3 Inner Product

More information

White noise generalization of the Clark-Ocone formula under change of measure

White noise generalization of the Clark-Ocone formula under change of measure White noise generalization of the Clark-Ocone formula under change of measure Yeliz Yolcu Okur Supervisor: Prof. Bernt Øksendal Co-Advisor: Ass. Prof. Giulia Di Nunno Centre of Mathematics for Applications

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Daubechies orthonormal wavelet bases

Daubechies orthonormal wavelet bases Daubechies orthonormal wavelet bases Teacher: Anatoliy Malyareno May 7, 04 Abstract Contents of the lecture. Construction of filters Calculating the scaling function in the frequency domain Calculating

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sections 1.3-1.5

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

Gaussian Random Fields

Gaussian Random Fields Gaussian Random Fields Mini-Course by Prof. Voijkan Jaksic Vincent Larochelle, Alexandre Tomberg May 9, 009 Review Defnition.. Let, F, P ) be a probability space. Random variables {X,..., X n } are called

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix GT APSSE - April 2017, the 13th joint work with Xavier Bay. 1 / 29 Sommaire 1 Preliminaries on Gaussian processes 2

More information

4 Sums of Independent Random Variables

4 Sums of Independent Random Variables 4 Sums of Independent Random Variables Standing Assumptions: Assume throughout this section that (,F,P) is a fixed probability space and that X 1, X 2, X 3,... are independent real-valued random variables

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

DIFFERENTIABILITY IN LOCAL FIELDS

DIFFERENTIABILITY IN LOCAL FIELDS DIFFERENTIABILITY IN LOCAL FIELDS OF PRIME CHARACTERISTIC CARL G. WAGNER 1. Introduction. In 1958 Mahler proved that every continuous p-adic function defined on the ring of p-adic integers is the uniform

More information

Wiener Chaos Solution of Stochastic Evolution Equations

Wiener Chaos Solution of Stochastic Evolution Equations Wiener Chaos Solution of Stochastic Evolution Equations Sergey V. Lototsky Department of Mathematics University of Southern California August 2003 Joint work with Boris Rozovskii The Wiener Chaos (Ω, F,

More information

November 27 Lecturer Dmitri Zaitsev Michaelmas Term Course S h e e t 2. Due: after the lecture. + O(4)) (z 3! + O(5)) = c z3 + O(4),

November 27 Lecturer Dmitri Zaitsev Michaelmas Term Course S h e e t 2. Due: after the lecture. + O(4)) (z 3! + O(5)) = c z3 + O(4), November 7 Lecturer Dmitri Zaitsev Michaelmas Term 017 Course 343 017 S h e e t Due: after the lecture Exercise 1 Determine the zero order of f at 0: (i) f(z) = z cosz sinz; Solution Use power series expansion

More information

Real Variables: Solutions to Homework 3

Real Variables: Solutions to Homework 3 Real Variables: Solutions to Homework 3 September 3, 011 Exercise 0.1. Chapter 3, # : Show that the cantor set C consists of all x such that x has some triadic expansion for which every is either 0 or.

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

Potential Theory on Wiener space revisited

Potential Theory on Wiener space revisited Potential Theory on Wiener space revisited Michael Röckner (University of Bielefeld) Joint work with Aurel Cornea 1 and Lucian Beznea (Rumanian Academy, Bukarest) CRC 701 and BiBoS-Preprint 1 Aurel tragically

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, R. M. Dudley

THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, R. M. Dudley THE DVORETZKY KIEFER WOLFOWITZ INEQUALITY WITH SHARP CONSTANT: MASSART S 1990 PROOF SEMINAR, SEPT. 28, 2011 R. M. Dudley 1 A. Dvoretzky, J. Kiefer, and J. Wolfowitz 1956 proved the Dvoretzky Kiefer Wolfowitz

More information

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Rotations of a torus, the doubling map In this lecture we give two methods by which one can show that a given

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

On pathwise stochastic integration

On pathwise stochastic integration On pathwise stochastic integration Rafa l Marcin Lochowski Afican Institute for Mathematical Sciences, Warsaw School of Economics UWC seminar Rafa l Marcin Lochowski (AIMS, WSE) On pathwise stochastic

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality Statistics 581, Problem Set 1 Solutions Wellner; 1/3/218 1. (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality and is usually written P ( X ɛ) E( X )/ɛ for an arbitrary random

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion

Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion Antoine Ayache and Julien Hamonier Université Lille 1 - Laboratoire Paul Painlevé and Université

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information

Probability Theory. Richard F. Bass

Probability Theory. Richard F. Bass Probability Theory Richard F. Bass ii c Copyright 2014 Richard F. Bass Contents 1 Basic notions 1 1.1 A few definitions from measure theory............. 1 1.2 Definitions............................. 2

More information

Elementary Probability. Exam Number 38119

Elementary Probability. Exam Number 38119 Elementary Probability Exam Number 38119 2 1. Introduction Consider any experiment whose result is unknown, for example throwing a coin, the daily number of customers in a supermarket or the duration of

More information

HW #6. 1. Inflaton. (a) slow-roll regime. HW6.nb 1

HW #6. 1. Inflaton. (a) slow-roll regime. HW6.nb 1 HW6.nb HW #6. Inflaton (a) slow-roll regime In the slow-roll regime, we neglect the kinetic energy as well as f ÿÿ term in the equation of motion. Then H = ÅÅÅ 8 p 3 G N ÅÅÅ m f, 3 H f ÿ + m f = 0. We

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Stat 643 Review of Probability Results (Cressie)

Stat 643 Review of Probability Results (Cressie) Stat 643 Review of Probability Results (Cressie) Probability Space: ( HTT,, ) H is the set of outcomes T is a 5-algebra; subsets of H T is a probability measure mapping from T onto [0,] Measurable Space:

More information

Gaussian Processes. 1. Basic Notions

Gaussian Processes. 1. Basic Notions Gaussian Processes 1. Basic Notions Let T be a set, and X : {X } T a stochastic process, defined on a suitable probability space (Ω P), that is indexed by T. Definition 1.1. We say that X is a Gaussian

More information

A generalization of Strassen s functional LIL

A generalization of Strassen s functional LIL A generalization of Strassen s functional LIL Uwe Einmahl Departement Wiskunde Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussel, Belgium E-mail: ueinmahl@vub.ac.be Abstract Let X 1, X 2,... be a sequence

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Bases in Banach spaces

Bases in Banach spaces Chapter 3 Bases in Banach spaces Like every vector space a Banach space X admits an algebraic or Hamel basis, i.e. a subset B X, so that every x X is in a unique way the (finite) linear combination of

More information

Lecture 3: Probability Measures - 2

Lecture 3: Probability Measures - 2 Lecture 3: Probability Measures - 2 1. Continuation of measures 1.1 Problem of continuation of a probability measure 1.2 Outer measure 1.3 Lebesgue outer measure 1.4 Lebesgue continuation of an elementary

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Infinite-dimensional Vector Spaces and Sequences

Infinite-dimensional Vector Spaces and Sequences 2 Infinite-dimensional Vector Spaces and Sequences After the introduction to frames in finite-dimensional vector spaces in Chapter 1, the rest of the book will deal with expansions in infinitedimensional

More information

On the Set of Limit Points of Normed Sums of Geometrically Weighted I.I.D. Bounded Random Variables

On the Set of Limit Points of Normed Sums of Geometrically Weighted I.I.D. Bounded Random Variables On the Set of Limit Points of Normed Sums of Geometrically Weighted I.I.D. Bounded Random Variables Deli Li 1, Yongcheng Qi, and Andrew Rosalsky 3 1 Department of Mathematical Sciences, Lakehead University,

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

Karhunen-Loève Expansions of Lévy Processes

Karhunen-Loève Expansions of Lévy Processes Karhunen-Loève Expansions of Lévy Processes Daniel Hackmann June 2016, Barcelona supported by the Austrian Science Fund (FWF), Project F5509-N26 Daniel Hackmann (JKU Linz) KLE s of Lévy Processes 0 / 40

More information

Convergence of Random Variables

Convergence of Random Variables 1 / 15 Convergence of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay March 19, 2014 2 / 15 Motivation Theorem (Weak

More information

The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth

The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de M. Griebel, F.Y. Kuo and I.H. Sloan The ANOVA decomposition of a non-smooth function of infinitely many

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

ASYMPTOTIC PROPERTIES OF SOME GOODNESS-OF-FIT TESTS BASED ON THE L1-NORM

ASYMPTOTIC PROPERTIES OF SOME GOODNESS-OF-FIT TESTS BASED ON THE L1-NORM Ann. Inst. Statist. Math. Vol. 41, No. 4, 753-764 (1989) ASYMPTOTIC PROPERTIES OF SOME GOODNESS-OF-FIT TESTS BASED ON THE L1-NORM SIGEO AKI* AND NOBUHISA KASHIWAGI The Institute of Statistical Mathematics,

More information

A Banach Gelfand Triple Framework for Regularization and App

A Banach Gelfand Triple Framework for Regularization and App A Banach Gelfand Triple Framework for Regularization and Hans G. Feichtinger 1 hans.feichtinger@univie.ac.at December 5, 2008 1 Work partially supported by EUCETIFA and MOHAWI Hans G. Feichtinger hans.feichtinger@univie.ac.at

More information