The Physics of Rainbows

Size: px
Start display at page:

Download "The Physics of Rainbows"

Transcription

1 The Physics of Rainbows Prof. Chad A. Middleton CMU Physics Seminar September 13, 2012 Charles A. Bennett, Principles of Physical Optics, 1 st ed., pps Jearl D. Walker, Multiple rainbows from single drops of water and other liquids, American Journal of Physics Vol. 44, No. 5, May John A. Adam, The mathematical physics of rainbows and glories, Physics Reports 356 (2002),

2

3 Quiz: The Physics of Rainbows 1. For the primary rainbow, what is the exterior (largest observed angle) color? a) Violet b) Red c) Yellow d) Green 2. For the primary rainbow, what is the interior (smallest observed angle) color? a) Violet b) Red c) Yellow d) Green 3. For the secondary rainbow, what is the exterior color? a) Violet b) Red c) Yellow d) Green 4. For the secondary rainbow, what is the interior color? a) Violet b) Red c) Yellow d) Green 5. Is the region between the primary and secondary rainbows dark or bright? 6. Is the interior region of the primary rainbow dark or bright?

4

5 What path should the lifeguard take to minimize her transit time? Lifeguard v i > v t v i v t Drowning swimmer

6 Smallest time interval? v i > v t Shortest distance = smallest time? v i v t

7 Smallest time interval? Shortest H 2 O distance = smallest time? v i > v t v i v t

8 Smallest time interval? v i > v t v i v t Shortest land distance = smallest time?

9 Smallest time interval? Path of smallest time! v i > v t v i v t

10 Smallest time interval? v i > v t v i v t

11 Smallest time interval? v i > v t a v i c v t b

12 c x Smallest time interval? x v i > v t p a2 + x 2 a v i c v t b p b2 +(c x) 2

13 Smallest time interval? x v i > v t p a2 + x 2 a v i To calculate the total time t(x) =t i + t t b p b2 +(c x) 2 v t = p a2 + x 2 v i + p b2 +(c x) 2 v t c x

14 Plot of t(x) vs x t x Time vs Position x The total time is t(x) =t i + t t p a2 + x = 2 + v i p b2 +(c x) 2 v t a, b, c =1 v i =0.8 v t =0.6

15 Smallest time interval? x v i > v t p a2 + x 2 a i v i To calculate the path of smallest time d t(x) =0 yields 1 v i dx x p a2 + x = 1 (c x) p 2 v t b2 +(c x) 2 b c p b2 +(c x) 2 x v t

16 Smallest time interval? n i < n t i n i The path of smallest time n t n i sin i = n t sin n c where v

17 Fermat s Principle: The actual path between two points taken by a beam of light is the one that is traversed in the least time. When light enters a new medium, it s path obeys Snell s Law: n i sin i = n t sin

18 Geometrical setup Sunlight Rays of sunlight are nearly parallel to each other. Suspended H 2 O droplets are nearly spherical due to surface tension. d d is the deviation angle. is the observed angle, measured from the anti-solar direction.

19 Geometrical setup Sunlight At certain observed angles, a particular color will dominate. This angle forms a cone around the anti-solar direction. All raindrops that lie on this cone can contribute to the rainbow => The rainbow is circular!

20 Primary Rainbow: Light is incident at angle i i 1 st refraction transmitted angle given by Snell s Law sin =sin 1 i n where n n t n i n air ' 1.00 n H2O ' 1.33

21 Primary Rainbow: i 1 st refraction, by geometry, same angle

22 Primary Rainbow: i 1 st refraction, 2 nd reflection Law of Reflection, same angle

23 Primary Rainbow: i 1 st refraction, 2 nd reflection Law of Reflection, same angle by geometry, same angle

24 Primary Rainbow: i 1 st refraction, 2 nd reflection, 3 rd refraction by Snell s Law, same i i

25 Calculate the net deviation angle, d i ( i ) d =( i )+ i

26 Calculate the net deviation angle, d i ( i ) (180 2 ) d =( i )+ (180 2 )+ i

27 Calculate the net deviation angle, d i ( i ) (180 2 ) d =( i )+ (180 2 )+ ( i ) i ( i )

28 The net deviation angle, d, is d = i 4 or d ( i ) = i 4 sin 1 sin i n where we used Snell s Law. d = 180 d observed angle

29 An infinite number of parallel sunbeams hit the spherical raindrop, so which ones do we see? Notice: The Cartesian Ray is the ray that has the minimum deviation angle.

30 Plot of θ d vs sin -1 θ i 180 Deviation angle vs sin 1 Θ i The backscattered rays cluster at the minimum deviation angle, yielding an enhanced brightness Θd sin 1 Θ i The net deviation angle is d = i 4 sin 1 sin i n

31 Minimum deviation angle 180 Deviation angle vs sin 1 Θ i 170 Θd To calculate the minimum deviation angle sin 1 Θ i d d =0 d i sin i = r 4 n 2 3 yields

32 Dispersion Different frequencies of light have different indices of refraction. n t,r =1.331 n t,v =1.344 Observed angle vs index of refraction Red r = 42.4 v = 40.5 =1.9 Α Violet Notice: The outside of the primary rainbow is red, whereas the inside is violet! n r! r! 4 n (n) = 2 sin n +4sin n 2

33 Secondary Rainbow d =( i )+ (180 (180 2 )+ 2 )+ ( i ) (180 2 ) i ( i ) (180 2 ) i ( i )

34 The net deviation angle, d, is d = i or d ( i ) = i 6 6 sin 1 sin i n where we again used Snell s Law. d = d 180 observed angle

35 Minimum deviation angle 360 Deviation angle vs sin 1 Θ i Θd To calculate the minimum deviation angle sin 1 Θ i d d =0 d i sin i = yields r 9 n 2 8

36 Secondary Rainbow n t,r =1.331 n t,v = Observed angle vs index of refraction Violet Α 53 r = 50.3 v = 53.8 = Red r n! r! 9 n (n) = sin n 6 sin n 2 Notice: The outside of the secondary rainbow is violet, whereas the inside is red!

37 Why is the interior region of the primary rainbow bright? 40 Observed angle vs Incident angle 30 For the primary rainbow one has backscattering for all angles in the regime: 0 apple apple 42.4 Α deg Θ i rad Normal incidence Primary Grazing incidence Your eye receives backscattered light of all wavelengths from the interior of the primary rainbow => Bright white light!

38 Why is the region between the primary and secondary rainbows dark? For the primary rainbow one has backscattering when 0 apple apple 42.4 For the secondary rainbow one has backscattering when 50.3 apple apple 180 One has ZERO scattering from one or two reflections when 42.4 < < 50.3 => Alexander s dark band! Α deg Α deg Observed angle vs Incident angle Primary Θ i rad Observed angle vs Incident angle Secondary Θ i rad

39 Is a 3 rd (or l th ) rainbow theoretically possible? After allowing for l internal reflections, the net deviation angle is d ( i )=l(180 )+2 i 2(l + 1) sin 1 sin i n To calculate the minimum deviation angle d d d i =0 yields sin i = s (l + 1) 2 n 2 l(l + 2) The first 13 rainbows of water have been observed from a drop suspended in a spectrometer!* *Jearl D. Walker, Multiple rainbows from single drops of water and other liquids, American Journal of Physics Vol. 44, No. 5, May 1976.

40 Why are two rainbows sometimes visible in the sky, but one never sees a third (or fourth)? For the tertiary rainbow (l = 3) r = v = =6.8 So why don t you see it? 1. Each successive Cartesian ray is at a greater incident angle, therefore a reduction in intercepting cross-sectional area. 2. Larger for each successive rainbow. 3. Loss of light due at each successive reflection.

41

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn. ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn http://atm.ucdavis.edu/~grotjahn/course/atm10/index.html Lecture topics: Optics: Scattering Sky Colors and Rays Optics: refraction Mirages and Refraction

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Rayleigh scattering Why the sky is blue Reflected and refracted beams from water droplets Rainbows

More information

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the

DISPERSION VERY SHORT ANSWER QUESTIONS. Two identical prisms made of the same material placed with their based on opposite sides (of the DISPERSION VERY SHORT ANSWER QUESTIONS Q-1. What will be the spectrum of sun during a total solar eclipse? Q-2. Why the secondary rainbow is always fainter than the primary rainbow? Q-3. Two identical

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Why the sky is blue Rayleigh scattering Reflected and refracted beams from water droplets Rainbows

More information

Atmospheric Optics - II

Atmospheric Optics - II Atmospheric Optics - II First midterm exam is this Friday! The exam will be in-class, during our regular lecture this Friday September 28 at 9:30 am The exam will be CLOSED BOOK No textbooks No calculators

More information

2. The spectrum of visible light bounds the region of intensity of light emitted by the Sun. a. maximum b. minimum

2. The spectrum of visible light bounds the region of intensity of light emitted by the Sun. a. maximum b. minimum CHAPTER 14 LIGHT AND SOUND IN THE ATMOSPHERE MULTIPLE CHOICE QUESTIONS 1. As the Sun s rays travel through the atmosphere, they are by cloud droplets or ice crystals, or by raindrops. a. scattered b. reflected

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

PHSC 3033: Meteorology Atmospheric Optics

PHSC 3033: Meteorology Atmospheric Optics PHSC 3033: Meteorology Atmospheric Optics Hot Radiating Objects Imagine a piece of metal placed in a hot furnace. At first, the metal becomes warm, although its visual appearance doesn't change. As it

More information

Scattering. Vog Bank. MET 200 Lecture 14 Nature s Light Show. Atmospheric Optics. Atmospheric Optics. Ahrens Chapter 15

Scattering. Vog Bank. MET 200 Lecture 14 Nature s Light Show. Atmospheric Optics. Atmospheric Optics. Ahrens Chapter 15 MET 200 Lecture 14 Nature s Light Show Vog Bank Atmospheric Optics Ahrens Chapter 15 1 2 Scattering Reflection Refraction Diffraction Atmospheric Optics The amazing variety of optical phenomena observed

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Light as Waves Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 41! In the previous chapter we discussed light as rays! These rays traveled in a straight line except when they were reflected

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Experiment #5: Cauchy s Formula

Experiment #5: Cauchy s Formula Experiment #5: Cauchy s Formula Carl Adams October 14, 2011 1 Purpose This experiment is a continuation of Experiment #4. It is assumed you have an aligned spectrometer. 2 Safety/Protocol 1. The gas discharge

More information

L 31 Light and Optics [1] Galileo s result. Galileo and the speed of light. The speed of light inside matter. Measurement of the speed of light

L 31 Light and Optics [1] Galileo s result. Galileo and the speed of light. The speed of light inside matter. Measurement of the speed of light L 31 Light and Optics [1] Measurements of the speed of light: 186,000 miles per second (1 foot per nanosecond) light propagating through matter transparent vs. opaque materials colors, why is an orange

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6 Sunlight 1 Sunlight 2 Introductory Question Sunlight When you look up at the sky during the day, is the light from distant stars reaching your eyes? A. Yes B. No Sunlight 3 Observations about Sunlight

More information

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. 12. Diffraction grating OBJECT To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. INTRODUCTION: Consider a light beam transmitted through an aperture

More information

DISPERSION OF A GLASS PRISM

DISPERSION OF A GLASS PRISM PH2 page 1 DISPERSION OF A GLASS PRISM OBJECTIVE The objective of this experiment is to analyze the emission spectrum of helium and to analyze the dispersion of a glass prism by measuring the index of

More information

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15 Lecture 17!! Nature s Light Show Atmospheric Optics Nature s Light Show Atmospheric Optics Scattering Reflection Ahrens Chapter 15 1 2 Scattering Reflection Refraction Diffraction Atmospheric Optics The

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

The Electrodynamics of Rainbows

The Electrodynamics of Rainbows Faculty of Science The Electrodynamics of University of Copenhagen Niels Bohr Institute Slide 1/17 Thinking Challenge: Explain the Physics of this Picture? Slide 2/17 Reflection and Transmission of Light

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

Discover why the sky is blue and the sunset is red.

Discover why the sky is blue and the sunset is red. Blue Sky Discover why the sky is blue and the sunset is red. When sunlight travels through the atmosphere, blue light scatters more than the other colors, leaving a dominant yellow-orange hue to the transmitted

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Quest Chapter 29. turned back think bounce. Reread the definition of the law of reflection on page 444.

Quest Chapter 29. turned back think bounce. Reread the definition of the law of reflection on page 444. 1 A wave is turned back when it meets the boundary of the medium in which it is traveling. The wave is said to have undergone 1. interference. 2. diffraction. 3. reflection. 4. refraction. 2 What is the

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

a) What is the diameter of the wire? Assume that the last minima occurs at the right edge where the wire is placed. Problem 1 Problem Weight is: 1

a) What is the diameter of the wire? Assume that the last minima occurs at the right edge where the wire is placed. Problem 1 Problem Weight is: 1 1 Notes: 1. To submit a problem, just click the Submit button under it. The Submit All button is not necessary. 2. A problem accepted as correct by CAPA will be highlighted in green. Once you see this,

More information

4.2 Properties of Visible Light Date: (pages )

4.2 Properties of Visible Light Date: (pages ) 4.2 Properties of Visible Light Date: (pages 144-149) Visible light is a mixture of all the colours of the rainbow. A prism refracts light separating the colours. A second prism can recombine the colours

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

APPENDIX A FIELD GUIDE TO THE RAINBOW

APPENDIX A FIELD GUIDE TO THE RAINBOW APPENDIX A FIELD GUIDE TO THE RAINBOW Q1: What is a rainbow? Observationally, the rainbow is a circular arc of several colors seen in rain or spray opposite the sun and centered around the shadow of your

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

2.710: Solutions to Home work 1

2.710: Solutions to Home work 1 .710: Solutions to Home work 1 Problem 1: Optics Buzzwords You will get full credit for this problem if your comments about the topic indicate a certain depth of understanding about what you have written

More information

Science Lab I Properties of Light

Science Lab I Properties of Light Art & Science of Light Fall 2007 Science Lab I Properties of Light Prepared by: Dr. Dharshi Bopegedera 1 Using the Filtergraph (15 minutes) 1. Turn on the filtergraph, place a card on it and look at the

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

DISPERSION AND SPECTRA CHAPTER 20

DISPERSION AND SPECTRA CHAPTER 20 CHAPTER 20 DISPERSION AND SPECTRA 20.1 DISPERSION As mentioned earlier, the refractive index of a material depends slightly on the wavelength of light. The relation between the two may be approximately

More information

Rainbow. University of Ljubljana Faculty for mathematics and physics. Contents. 1 Introduction. Author: Miha Mihovilovi Mentor: doc. dr.

Rainbow. University of Ljubljana Faculty for mathematics and physics. Contents. 1 Introduction. Author: Miha Mihovilovi Mentor: doc. dr. University of Ljubljana Faculty for mathematics and physics Rainbow Author: Miha Mihovilovi Mentor: doc. dr. Igor Poberaj June 7, 2007 Abstract In this seminar I will talk about rainbow. In the rst part,

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 6, 2016 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246 The Spectrophotometer and Atomic Spectra of Hydrogen Physics 46 Introduction: When heated sufficiently, most elements emit light. With a spectrometer, the emitted light can be broken down into its various

More information

Lecture Outline. Scattering at an Interface Sunrises & Sunsets Rainbows Polarized Sunglasses 8/9/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Scattering at an Interface Sunrises & Sunsets Rainbows Polarized Sunglasses 8/9/2018. EE 4347 Applied Electromagnetics. Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3i Scattering at an Interface: Examples Examples These notes may

More information

Measurements in Optics for Civil Engineers

Measurements in Optics for Civil Engineers Measurements in Optics for Civil Engineers I. FOCAL LENGTH OF LENSES The behavior of simplest optical devices can be described by the method of geometrical optics. For convex or converging and concave

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

By Dr. Hany Farid, Dartmouth College

By Dr. Hany Farid, Dartmouth College Why Is the Sky Blue? Why Is the Sky Blue? By Dr. Hany Farid, Dartmouth College Gas molecules in the atmosphere scatter, in all directions, the short wavelength light that appears blue to us. Longer wavelength

More information

Scattering of EM waves by spherical particles: Overview of Mie Scattering

Scattering of EM waves by spherical particles: Overview of Mie Scattering ATMO 551a Fall 2010 Scattering of EM waves by spherical particles: Overview of Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Current Score: 0/20. Due: Tue Apr :15 PM EDT. Question Points. 0/1 0/1 0/3 0/3 0/1 0/3 0/2 0/2 0/2 0/2 Total 0/20.

Current Score: 0/20. Due: Tue Apr :15 PM EDT. Question Points. 0/1 0/1 0/3 0/3 0/1 0/3 0/2 0/2 0/2 0/2 Total 0/20. 1 of 8 4/10/2010 3:38 PM Current Score: 0/20 Due: Tue Apr 20 2010 10:15 PM EDT Question Points 1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/3 0/3 0/1 0/3 0/2 0/2 0/2 0/2 Total 0/20 Description This assignment is worth

More information

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 8: Electromagnetic Waves at Boundaries

More information

Activity 2: Physics and the Visual Arts

Activity 2: Physics and the Visual Arts Why? An appreciation for and understanding of the physical processes that underpin the visual arts can be satisfying for an artist and lead to production of some unique pieces such as ferrosculptures:

More information

Polarization. If the original light is initially unpolarized, the transmitted intensity I is half the original intensity I 0 :

Polarization. If the original light is initially unpolarized, the transmitted intensity I is half the original intensity I 0 : 33-4 33-4 Polarization Polarization Electromagnetic waves are polarized if their electric field vectors are all in a single plane, called the plane of oscillation. Light waves from common sources are not

More information

ROINN NA FISICE Department of Physics

ROINN NA FISICE Department of Physics ROINN NA FISICE Department of 1.1 Astrophysics Telescopes Profs Gabuzda & Callanan 1.2 Astrophysics Faraday Rotation Prof. Gabuzda 1.3 Laser Spectroscopy Cavity Enhanced Absorption Spectroscopy Prof. Ruth

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

School. Team Number. Optics

School. Team Number. Optics School Team Number Optics Physical Optics (30%) Proceed to the laser shoot (40%) when your team number is called. 1. What are the four colors used in the CMYK color model? (2 points) 2. Muscae Volitantes

More information

Optics. n n. sin c. sin

Optics. n n. sin c. sin Optics Geometrical optics (model) Light-ray: extremely thin parallel light beam Using this model, the explanation of several optical phenomena can be given as the solution of simple geometric problems.

More information

Dispersion. f (increasing frequency)

Dispersion. f (increasing frequency) Dispersion The index of refraction n is usually a property of the medium but equally important, it also varies with the frequency f of light dispersion. n typically increases with increasing f. f (increasing

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

Physics 208 Exam 1 Oct. 3, 2007

Physics 208 Exam 1 Oct. 3, 2007 1 Name: Student ID: Section #: Physics 208 Exam 1 Oct. 3, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed

More information

REFLECTION AND REFRACTION

REFLECTION AND REFRACTION S-108-2110 OPTICS 1/6 REFLECTION AND REFRACTION Student Labwork S-108-2110 OPTICS 2/6 Table of contents 1. Theory...3 2. Performing the measurements...4 2.1. Total internal reflection...4 2.2. Brewster

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

Unit 4 Parent Guide: Waves. What is a wave?

Unit 4 Parent Guide: Waves. What is a wave? Unit 4 Parent Guide: Waves What is a wave? A wave is a disturbance or vibration that carries energy from one location to another. Some waves require a medium to transmit the energy whereas others can travel

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

Using the Spectrometer

Using the Spectrometer Using the Spectrometer Introduction When an atom is stimulated it can respond by emitting a spectrum of light. The spectrum comprises discrete wavelengths whose values are characteristic of the particular

More information

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope Optical Mineralogy Optical Mineralogy Use of the petrographic microscope John Winter, Whitman College with some slides Jane Selverstone, University of New Mexico, 2003 Why use the microscope?? Identify

More information

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us Chapter 33 Nature and Propagation of Light From vision to digital camera to rainbows to pictures of the early universe light is all around us Introduction A coating of oil on water or a delicate glass

More information

LESSON RAY OPTICS Introduction Note Ray of light Beam of light Reflection of Light by Spherical Mirrors Law of reflection Note:

LESSON RAY OPTICS Introduction Note Ray of light Beam of light Reflection of Light by Spherical Mirrors Law of reflection Note: 2 LESSON RAY OPTICS Introduction Electromagnetic radiation belonging to the region of the electromagnetic spectrum (wavelength of about 400 nm to 750 nm) is called light. Nature has endowed the human eye

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

Determination of Cauchy s Contants

Determination of Cauchy s Contants 8. Determination of Cauchy s Contants 8.1 Objective: To determine Cauchy s Constants using a prism and spectrometer. Apparatus: Glass prism, spectrometer and mercury vapour lamp. 8. Theory: The wavelength

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information

20. Aberration Theory

20. Aberration Theory 0. Aberration Theory Wavefront aberrations ( 파면수차 ) Chromatic Aberration ( 색수차 ) Third-order (Seidel) aberration theory Spherical aberrations Coma Astigmatism Curvature of Field Distortion Aberrations

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

earth's atmosphere and aerosols. While studying such phenomena has some practical use

earth's atmosphere and aerosols. While studying such phenomena has some practical use I. Introduction Atmospheric optical phenomena result from visible light interacting with the earth's atmosphere and aerosols. While studying such phenomena has some practical use to scientists, most of

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

HUMAN EYE AND THE COLOURFUL WORLD

HUMAN EYE AND THE COLOURFUL WORLD HUMAN EYE AND THE COLOURFUL WORLD Class: 10 (Boys) Sub: PHYSICS NOTES The Human Eye: The human eye is a sensitive sense organ and acts like a camera, which enable us to capture the colourful picture of

More information

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus Chapter 4 Dispersion of Glass 4.1 Introduction This experiment will develop skills in choosing a suitable fit for data and plotting the resulting curve. Curve fitting will count for a big chunk of the

More information

CLASSROOM SCIENCE ACTIVITY TO SUPPORT STUDENT ENQUIRY-BASED LEARNING

CLASSROOM SCIENCE ACTIVITY TO SUPPORT STUDENT ENQUIRY-BASED LEARNING Red Moon CLASSROOM SCIENCE ACTIVITY TO SUPPORT STUDENT ENQUIRY-BASED LEARNING This classroom-tested teaching plan uses the four innovations of the TEMI project, as detailed in the Teaching the TEMI Way

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second

More information

Chapter Ray Optics and Optical Instrument

Chapter Ray Optics and Optical Instrument Chapter Ray Optics and Optical Instrument Q1. Focal length of a convex lens of refractive index 1.5 is 2 cm. Focal length of the lens when immersed in a liquid of refractive index of 1.25 will be [1988]

More information

Light as electromagnetic wave and as particle

Light as electromagnetic wave and as particle Light as electromagnetic wave and as particle Help to understand and learn exam question 5. (How the wave-particle duality can be applied to light?) and to measurements Microscopy II., Light emission and

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 8, 2015 Prof. Donald P. Greenberg What is Color Science? Quantifying the physical energy which

More information

sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating

sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating Interference Constructive - Destructive 2-slit single slit diff. grating reflection Note: difference = 0 difference destructive 2 d sin reflection constructive d 2 sin tot. inter. = reflection + path length

More information

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab. Physical optics Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you forgot

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information