Missions of Small Satellite with Deployable Membrane Using Spiral Folding Lines

Size: px
Start display at page:

Download "Missions of Small Satellite with Deployable Membrane Using Spiral Folding Lines"

Transcription

1 Missions of Small Satellite with Deployable Membrane Using Spiral Folding Lines Tomoyuki MIYASHITA ), Nobuhisa KATSUMATA ), Hiroshi YAMAKAWA ), Michihiro NATORI ) ) Department of Modern Mechanical Engineering, Waseda University, Tokyo, Japan ) Department of Aeronautics and Astronautics, The Muroran Institute of Technology, Hokkaido, Japan ) The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan (Received st Dec, 06) In microgravity conditions, the structures where the components with low stiffness are installed could maintain its initial shape. By deploying the membrane in space, it is possible to arrange the structural elements in wide area. Attention has been focused on the availability of satellites in low orbit due to its missions related with the distance to earth. We have developed WASEDA-SAT as U size satellite, by reducing the development costs using consumer products, to grasp the behavior of the film surface in low orbit. In this paper, we report all of the functions and the verification results of the satellite on ground and on orbit if the launch is finished and the operation is stared normally. Assuming the disturbance in low orbit, the spiral folding procedure is newly invented and applied to fold the curved surface into cylindrical shape. In flight model, the surface is implemented as a parabolic surface with the focal length as 80cm. A polyimide film coated one side with silver is used. The paint on the other side for facilitating image projected onto the polyimide surface is coated, for measuring the film surface shape by photographing images projected an image projected from the satellite body. On the other hand, takes into account the number of functionality. The focal length is the same as extension distance, although prospects improved reception gain of the satellite body, in an anechoic chamber, gain enhancement was not confirmed by the problems of deployment accuracy. The silver-deposited surface, are arranged thin-film solar cell to indicate the characteristics of the folding helix corresponding to film thickness variation. In addition, the satellite body, has been to place the LCD panel on one side, to confirm the effect of radiant heat controlled by the current situation, which has been confirmed in the ground experiment. Key Words: Small Satellite, Expansion of Membrane, Radiation Control Nomenclature N the number of vertexes of polygon at the center R distance from the center to Folding Line A angle between x axis and Folding Line A angle between a tangent of Folding Line A and a straight line from the center fold interval vector for vertical direction to a straight S line from the center fold interval vector for vertical direction to a tangent b of Folding Line A r radius of folded shape t* distance of a gap of folded membrane l height of parabolic surface from center slit angle a focal length of parabola u horizontal distance of the arc in parabola radiation shape factor m mass property of finite element of membrane c damping property of finite element of membrane k stiffness property of finite element of membrane a facial length of parabolic membrane F d C d drag force density of atmosphere at altitude 00 km drag coefficient. Introduction The launch by piggy bag style becomes popular and many launch opportunities are offered to us. The downsizing of the satellite has progressed. Here, the parts used in satellite become smaller and equip higher performance and sometimes selected from consumer products with a confirmation of adaptability for space environment. Then the environment of launch opportunities and profit of functions are greatly improved. In Japan, launch pod from U to U for several rockets and so on are developed and mechanical interface between rocket and satellite is offered. In this situation, nano-satellite can be frequently used for experiments of fundamental and aggressive missions due to many launch opportunities. In this paper, we will explain about missions of WASEDA-SAT with several missions. In these missions, an extension of dynamic hingeless mast and deployment of the parabolic membrane folded by spiral folding lines and measurement its shape on orbit. Unfortunately, the schedule of launch was not adapted for this paper and we could not obtain data until now. WASEDA-SAT is launched on 9 th Dec. as a transfer to ISS and scheduled to be launched from ISS. From the experiment on ground and simulation, mechanical properties of deployment of parabolic membrane was confirmed.

2 . Missions of WASEDA-SAT The missions of the satellite are shown in table. Our satellite use amatuor radio band 40MHz as uplink and 40MHz as downlink. I the satellite station, a dipole antenna is provided as downlink, a monopole as uplink shown in figure. This situation is normal situation then we will describe missions from No.. Figure shows (a) the assembly drawing and (b) inside view without outer panels. Table Mission of WASEDA-SAT No description Establish a radio counication Extension of dynamic hingeless mast Expansion of the structure with the folded membrane Investigation of the shape of the membrane Confirmation of the temperature control effect of 4 LCD Investigation of the deformation of the unfolded 5 membrane 6 De-orbit system using the membrane as drag chute in figure. This membrane is folded into cylinder shape to adopt storage are arranged in the satellite. To fold the membrane, the folding line was calculated considering following features. () Thickness of membrane () Thickness of pasted parts on membrane () Large area without folding lines To satisfy requirements () and (), the spiral folding method is applied. The folding lines are calculated by following equations considering thickness effect. Rd tan () dr Compatibility condition between neighbor folding lines. ds db tand S Scos db sin dr cos () () Compatibility condition of Area before and after folding: rdr t kr NR tan dr S cos Compatibility condition of Length before and after folding: (4) Ssin t r kr NR tan S (5) Folding lines S are derived by following equations considering thickness distribution of membrane and installed object on membrane with D shape decided by (R) that means a slit position for plane. It is not easy to obtain curved membrane. Then, we suppose to make from plane. (a) Assembly drawing Figure Definition of variables (b) Inside view Figure Assembly drawing and inside view. Membrane Mission This satellite equips a parabolic membrane with diameter 700 and facial length 00. The illustration is shown Figure 4 shows the flight model of membrane.

3 The folded membrane is extended by hingeles mast shown in figure 5. Normal hingeless mast equips a control wire for extend and stored. Due to only extension and simplicity of mechanism, we just expand using an elasticity of longeron and batten. The material of longeron is Ni-Ti hyper elastic material. And the batten is polymide. It is not easy to connect batten and longeron. To connect them firmly, silicon tube covers the longerons and is used to put battens from both sides. The stored shape is shown in figure 4.. Membrane shape measurement on orbit This is an another main mission of this satellite. To measure the shape of the membrane. We used method then the projector and camera are on board as shown in figure a. For the sake of confirmation of the performance of the system, the below surface with parabolic curve and the striped pattern is projected and the result was captured by camera. Due to downlink performance (00 bps) and simple download procedure during one window, size of image compressed on orbit is about 500 k. The limit of downlink performance comes from the limitation of electric power used in transmitter. The upper limit of performance of transmitter is 9600 bps. Figure 5 Membrane shape measurement on ground. Temperature control effect of LCD The satellite is cubic shape and there are 6 planes on surface. On one of surfaces, the LCD panel was installed. This LCD panel is controlled only ON-OFF state. The state ON means that 5V voltage is inputted to the LCD panel and the surface of LCD panel has the radiation shape factor ON. The state OFF means that no voltage is inputted to the LCD panel and the surface has the radiation shape factor OFF. The difference between ON and OFF is shown in figure 6. The measurement of the radiation shape factor is done in the laboratory. On orbit, we will measure the temperature and confirm the effect of the difference. The difference is estimated as the difference of o C for 90 min from the thermal effect simulation considering the radiation input according to the measured shape factor and the other radiation shape factor according to solar array and aluminum surface..4 De-orbit system using the membrane as drag chute The de-orbit system is recoended to be implemented as the fundamental function of the satellite. In our satellite, the expanded membrane becomes the drag chute to decrease the speed of the satellite. We estimate about one month to reentry if the drag chute expands on orbit from 400 km high from the ground. Figure 7 Dynamic hingeless mast and deployed shape. Discussions From the result of experiment on ground and simulations, we will discuss some aspect of this satellite below... Dynamics of Membrane Expansion The membrane is assisted to expand by Ni-Ti wire installed along folding lines. Then, it is important to understand the mechanism of the expansion. We have already obtained the relation between applied force on edge and rate of deployment in figure 8. The results shows that planar membrane is easiest to deploy because largest rate of deployment is obtained against with same load. Dimension Table Dimensions of membranes Nn r 0 Height r end t* Planar Curved A Curved B a Figure 6 Absorption spectrum measured by U-400 Figure 8 Applied load vs deployment rate [7]

4 Curved B seems to have a property to be most difficult to deploy due to lowest rate of deployment. To confirm this situation, we performed a deployment analysis using a mass-spring system shown in figure 9 and calculated a length of several elements shown in figure 9 in membrane. We could obtain the result that average maximum strain during deployment of plane membrane is smaller than that of curved membrane. Then, the deformation on plane is necessary in the case of deployment of parabolic membrane. surface Table Incidence calculation Angle of sun light incidence X+ cos γ = sin θ sin σ cos α cos β cos σ cos α sin β + sin σ cos θ sin α X- cos γ = sin θ sin σ cos α cos β + cos σ cos α sin β sin σ cos θ sin α Y+ cos γ = cos θ cos α cos β + sin θ sin α Y- cos γ = cos θ cos α cos β sin θ sin α We confirmed that the thermal effect of LCD panel is not so large. Only 0.7 K will be different for 45 min. The power consumption of while state affected this result. This means that the radiation was reduced by LCD effect but generated heat was canceled this reduction. Then the difference is no large... Membrane as a de-orbit system Our developed membrane has a larger stiffness normal to membrane due to dimensional shape. At altitude 00 km, the drag force F is estimated as follows. F d = ρac dv (6) Figure 9 Finite Elements Model of Membrane and model Table length difference ration before and after deployment pos Planar Parabolic folded deployed ratio folded deployed ratio Avg Effect of LCD Panel on orbit To confirm the effect of LCD panel on orbit based on the result of material property. We perform the thermal analysis using FEM model shown in figure 0. Material shown gray area is AL7075-T6 and solar cells are located all sides except Y surface. On Y surface, LCD panel with measured radiation shape factor was defined. The orbit supposed to be same with ISS. We estimate drag force about 7.0 x 0-4 N. This force could be supported by the Ni-Ti actuator used for deployment. The lager membrane and longer actuator have smaller bending stiffness. We expect that our proposed parabolic membrane will contribute for the larger area of membrane..4. Membrane Shape Accuracy For the confirmation of the shape of membrane calculated by our proposed method. We arranged three membrane shown in table 4. In this table, parameter for spiral folding is shown and we made folded shape for each membrane and measured the folded radius and deployed using Ni-Ti wire. We measure the radius of deployed membrane and the results were shown in table 5. Table 4 Arranged membrane for experiments No. Matrial Nn Paper t 9μm Polyimid film t 5μm Polyimid film t 7.5μm Core radius Height of Folding Radius Facial Table 5 Measured diameter for folded and deployed shape Figure 0 Satellite structure for thermal analysis No. Folded Shape Deployed Shape Ni-Ti Diameter Error Diameter Expand Measured Ideal % Measured Ideal % None Exist None Exist None Exist

5 We confirmed that the spiral folding lines worked well because error in folded shape is enough small except No. (wire exists). It is clear that this result comes from the effect of wire. The expand rate becomes better according to become thinner film and in the case of existence of wire. We confirmed the friction between side wall in storage area of satellite and selected the No. wire exist case as a membrane of flight model. 4. Conclusion We have proposed the small satellite WASEDA-SAT that equips small membrane for de-orbit function. The shape of membrane is parabolic so as to show an effectiveness of our proposed folding lines. On this parabolic membrane, soft solar cells are pasted so as to confirm the ability of consideration of thickness effect. LCD panel is installed on one side to control the radiation. The followings are conclusions. () The accuracy of diameter of folded shape by proposed folding lines are under 5.0 % error in the case of no actuator allocation case and under 4 % in the case of actuator allocation case. () The accuracy of diameter of deployed shape is largely improved by wire allocation on membrane. () The plane stiffness affect the deployment rate under same loading condition. (4) LCD panel can control radiation. In our case, we confirmed the 0.7 K for one circulation on orbit. Acknowledgments We express our gratitude to members of Light Weight Space Structure Research Group in Waseda University. This work was supported by JSPS KAKENHI Grant Number 6K4507. References ) S.D. Guest, S. Pellegrino, Inextensional Wrapping of Flat Membranes, First International Conference on Structural Morphology, Sept. 99, pp ) T. Nojima, Modeling of Facilely Deployable Folding/Wrapping Method of Circular Flat Membranes by using Origami (Foldings in Radial Direction and Wrapping by Archimedean Spiral Design), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.67, No.65, 00, pp ) M.C. Natori, H. Watanabe, N. Kishimoto, and K. Higuchi, Folding Patterns of Deployable Membrane Space Structures Considering Their Thickness Effects, 8th International Conference on Adaptive Structures and Technologies,ICAST ) T. Nojima, Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.45, No., 00, pp ) K. Samura, N. Kokawa, T. Miyashita, Victor Parque, M.C. Natori, Comparison of Mechanical Properties between Planar and Curved Surface with Spiral Folding Patterns 0 th ISTS, 05. 6) S.D. Guest, S. Pellegrino, A NEW CONCEPT FOR SOLID SURFACE DEPLOYABLE ANTENNAS, Transactions of the Acta Astronautica, vol.8, No., 996, pp.0-. 7) T.Miyashita, H.Yamakawa, N.Katsumata, M.Natori.: Expantion and Measurement of Spiral Folded Membrane by Small Satellite, AIAA, SciTech 07 (accepted). 8) Chishiki, Y., Mori, O., Sawada, H., and Shirasawa, Y., Shape Estimation of Membrane of IKAROS by Shape from Shading Method of Images Taken with Separation Camera, the 8th International Symposium on Space Technology and Science, Vol 60, No. 4, 0, pp ) S. Roose, Y.Stockman, P.Rochus, T.Kuhn, M.Lang, H.Baier, S.Langlois,G. Casaros, Optical methodsfornon-contactmeasurementsofmembranes, Acta Astronautica65(009)7 9 0) Mark Schenk, Andrew D. Viquerat, Keith A. Seffen, and Simon D. Guest, Review of Inflatable Booms for Deployable Space Structures:Packing and Rigidization, JOURNAL OF SPACECRAFT AND ROCKETS, Vol. 5, No., May June 04 5

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Hiroshi Furuya furuya@enveng.titech.ac.jp Tokyo Institute of Technology, ORIGAMI Project (ORganizatIon

More information

Experimental Research on Roll-up Storage Method for a Large Solar Sail

Experimental Research on Roll-up Storage Method for a Large Solar Sail Experimental esearch on oll-up Storage Method for a Large Solar Sail By Kazuya SAITO 1), Nobukatsu OKUIZUMI 2), Hiraku SAKAMOTO 3), Junji KIKUCHI 2), Jun MATSUMOTO 2), Hiroshi FUUYA 3), Osamu MOI 2) 1)

More information

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_43-Pk_50, 2014 Original Paper Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail By Jun MATSUMOTO 1), Ryu FUNASE

More information

Kibo Exposure Experiments (ExHAM: Exposed Experiment Handrail Attachment Mechanism)

Kibo Exposure Experiments (ExHAM: Exposed Experiment Handrail Attachment Mechanism) Kibo Exposure Experiments (ExHAM: Exposed Experiment Handrail Attachment Mechanism) APRSAF 22 nd Kibo ABC Dec. 2015 Hideyuki Watanabe JEM Mission Operation and Integration Center Human Spaceflight Technology

More information

Analysis of Autonomous Rendezvous Docking and Sample Transfer Technology for a Space Probe in the Jupiter Trojan Region

Analysis of Autonomous Rendezvous Docking and Sample Transfer Technology for a Space Probe in the Jupiter Trojan Region Analysis of Autonomous Rendezvous Docking and Sample Transfer Technology for a Space Probe in the Jupiter Trojan Region Yuki TAKAO 1), Shigeo KAWASAKI 2), Thoshihiro CHUJO 1), Shota KIKUCHI 1), Kazuaki

More information

Development of Deployment System for Small Size Solar Sail Mission

Development of Deployment System for Small Size Solar Sail Mission Trans. JSASS Space Tech. Japan Vol. 7, No. ists6, pp. Pd_87-Pd_9, 9 Development of Deployment System for Small Size Solar Sail Mission By Osamu MORI, ) Hirotaka SAWADA, ) Fuminori HANAOKA, ) Junichiro

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Triangles and Quadrangles in Space

Triangles and Quadrangles in Space 28 September 2 October 2009, Universidad Politecnica de Valencia, Spain Alberto DOMINGO and Carlos LAZARO (eds.) Triangles and Quadrangles in Space Koryo MIURA* *Institute of Space and Astronautical Science,

More information

HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Tec

HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Tec HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka, Japan

More information

Technical Verification Satellite STARS for Tethered Space Robot

Technical Verification Satellite STARS for Tethered Space Robot Technical Verification Satellite STARS for Tethered Space Robot Masahiro Nohmi, Takeshi Yamamoto, and Akira Andatsu Kagawa University nohmi@eng.kagawa-u.ac.jp, s05g528@stmail.eng.kagawa-u.ac.jp, s06g452@stmail.eng.kagawa-u.ac.jp

More information

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan The 3 rd Nano-Satellite Symposium Micro/Nano Satellite & Debris Issues December

More information

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan ,

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan , TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL Takanao Saiki (), Yoji Shirasawa (), Osamu Mori () and Jun ichiro Kawaguchi (4) ()()()(4) Japan Aerospace Exploration Agency,

More information

Introduction of Small Solar Power Sail Demonstrator IKAROS

Introduction of Small Solar Power Sail Demonstrator IKAROS Introduction of Small Solar Power Sail Demonstrator IKAROS IKAROS Demonstration Team JAXA Space Exploration Center (JSPEC) Japan Aerospace Exploration Agency (JAXA) Overview of IKAROS IKAROS is a space

More information

Inflatable Space Structures

Inflatable Space Structures Inflatable Space Structures Matthew Allgeier Erin Kelly ASEN 5519 Final Presentation Inflatable Space Structures 1 Presentation Overview Introduction Background Technical issues Applications Environmental

More information

An Investigation of Tape Spring Fold Curvature

An Investigation of Tape Spring Fold Curvature Abstract An Investigation of Tape Spring Fold Curvature Scott J.I. Walker, Guglielmo S. Aglietti School of Engineering Sciences, University of Southampton, UK Tape springs are being used with increasing

More information

Characterizing the Mechanics of Fold-lines in Thin Kapton Membranes

Characterizing the Mechanics of Fold-lines in Thin Kapton Membranes AIAA SciTech Forum 8 12 January 2018, Kissimmee, Florida 2018 AIAA Spacecraft Structures Conference 10.2514/6.2018-0450 Characterizing the Mechanics of Fold-lines in Thin Kapton Membranes Buwaneth Yasara

More information

FOLDING AND DEPLOYMENT OF ULTRA-THIN COMPOSITE STRUCTURES

FOLDING AND DEPLOYMENT OF ULTRA-THIN COMPOSITE STRUCTURES FOLDING AND DEPLOYMENT OF ULTRA-THIN COMPOSITE STRUCTURES H.M.Y.C. Mallikarachchi (1), S. Pellegrino (2) (1) University of Cambridge Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, U.K.

More information

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Tb_31-Tb_35, 2014 Topics Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster By Yuto SUGITA 1), Hiroyuki

More information

High Cost-Effectiveness Debris Removal Platform with Self-Assembly Modular Solar Sail Units

High Cost-Effectiveness Debris Removal Platform with Self-Assembly Modular Solar Sail Units High Cost-Effectiveness Debris Removal Platform with Modular Solar Sail Units By Cheng Zhengai 1), Huang Xiaoqi 1), Liu Yufei 1) 2), Zhang Xinghua 1) 1) Qian Xuesen Laboratory of Space Technology, China

More information

Communication. Provides the interface between ground and the spacecraft Functions:

Communication. Provides the interface between ground and the spacecraft Functions: Telecomm Communication Provides the interface between ground and the spacecraft Functions: Lock onto the ground station signal (carrier tracking) Receive uplink and process it (command reception and detection)

More information

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost)

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Jim White, Walter Holemans, Planetary Systems Inc. Dr. Adam Huang, University of Arkansas RAMPART Summary Main Components The Promise of

More information

Thrust Measurement of Magneto Plasma Sail with Magnetic Nozzle by Using Thermal Plasma Injection

Thrust Measurement of Magneto Plasma Sail with Magnetic Nozzle by Using Thermal Plasma Injection Thrust Measurement of Magneto Plasma Sail with Magnetic Nozzle by Using Thermal Plasma Injection IEPC-2015-461/ISTS-2015-b-461 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT

EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT Proc. of International Symposium on SM/MPAC&SEED ExperimentTsukuba, Japan, - March, 28 49 EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT Eiji MIYAZAKI, Junichiro ISHIZAWA and Hiroyuki SHIMAMURA

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Electrodynamic Tether Lunar charging Future issues Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp

More information

Mechanical Engineering Research Journal

Mechanical Engineering Research Journal Dept of Mech Eng CUET Published Online March 215 (http://wwwcuetacbd/merj/indexhtml) Mechanical Engineering Research Journal Vol 9, pp 79 85, 213 M E R J ISSN: 199-5491 THERMAL ANALYSES OF NANO- AND MICRO-

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

US 9,214,722 B2 Dec. 15, 2015

US 9,214,722 B2 Dec. 15, 2015 I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111 US009214 722B2 c12) United States Patent Georgakopoulos et al. (IO) Patent No.: (45) Date of Patent: US 9,214,722 B2

More information

mission status & ISRU related activity in Japan

mission status & ISRU related activity in Japan SELENE mission status & ISRU related activity in Japan JAXA SELENE project Oct. 2, 2007 SELENE Kaguya overview Plasma Energy Angle and Composition Experiment (PACE) Upper Atmosphere and Plasma Imager (UPI)

More information

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team A very small satellite for space astrometry: Nano-JASMINE Yoichi Hatsutori(NAOJ) Naoteru Gouda(NAOJ) Yukiyasu Kobayashi(NAOJ) Taihei Yano (NAOJ) Yoshiyuki Yamada (Kyoto Univ.) Nano-JASMINE project team

More information

Sun Shield. Solar Paddle

Sun Shield. Solar Paddle The Institute of Space and Astronautical Science Report SP No.14, December 2000 Current Status of ASTRO-F By Hiroshi Murakami Λ (November 1, 2000) Abstract: The ASTRO-F is the second infrared astronomy

More information

The Challenge is to Define: System Engineering. System Engineering Components. Functional Requirements

The Challenge is to Define: System Engineering. System Engineering Components. Functional Requirements The Challenge is to Define: System Engineering What it is supposed to do How well it must do it It s constituant parts and how they play together We are not prepared for detail design, assembly and test

More information

Passive Orbital Debris Removal Using Special Density Materials

Passive Orbital Debris Removal Using Special Density Materials Passive Orbital Debris Removal Using Special Density Materials Hiroshi Hirayama( 平山寛 ) Toshiya Hanada( 花田俊也 ) Yuya Ariyoshi( 有吉雄哉 ) Kyushu University, Fukuoka, Japan Supported by IHI Corporation, Tokyo,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Buckling force for deployable pantographic columns I. Raskin, J. Roorda Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L SGI Abstract The method of calculating the

More information

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes David W. Miller Director, Professor, MIT Dept. of Aeronautics and Astronautics Javier de

More information

The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM

The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM EMC13-13th European Mars Conference Kai Gehreth Jürgen Herholz Mars Society Deutschland www.marssociety.de

More information

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15 cheops cheops Assemble your own planet watcher Paper Model Scale 1:15 About CHEOPS The CHaracterising ExOPlanet Satellite, or CHEOPS, is a space science mission dedicated to the study of known exoplanets

More information

INTRODUCTION. Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket. Designing the Launch Complex

INTRODUCTION. Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket. Designing the Launch Complex R E S E A R C H INTRODUCTION Smooth Passage for an Artificial Satellite - Combustion Test Title - Necessity of Next Term Solid Rocket In September 2006, the "M-V (Mu (µ)-five)," a rocket developed by the

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

Thrust Evaluation of Magneto Plasma Sail Injecting Thermal Plasma by using 3D Hybrid PIC Code

Thrust Evaluation of Magneto Plasma Sail Injecting Thermal Plasma by using 3D Hybrid PIC Code Thrust Evaluation of Magneto Plasma Sail Injecting Thermal Plasma by using 3D Hybrid PIC Code IEPC-2015-462p /ISTS-2015-b-462p Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Challenges in Realizing Large Structures in Space

Challenges in Realizing Large Structures in Space Challenges in Realizing Large Structures in Space Gunnar Tibert KTH Space Center Space Rendezvous, 13 Oct 2016 Large Structures in Space My experience on large space structures: Centrifugally deployed

More information

Nonlinear Behavior of Stretchable Membrane and Its Application to Space Structure Systems

Nonlinear Behavior of Stretchable Membrane and Its Application to Space Structure Systems Nonlinear Behavior of Stretchable Membrane and Its Application to Space Structure Systems Naoko Kishimoto 1 Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510 Japan Takashi Iwasa 2 Japan

More information

Near Vertical Incidence Skywave (NVIS)

Near Vertical Incidence Skywave (NVIS) Near Vertical Incidence Skywave (NVIS) Larry Randall WA5BEN WA5BEN@ARRL.NET Revision: 1.4.5 Issue Date: 17 October 2007 Topics Terminology Why do we need NVIS Defining NVIS Relationship between Path Length

More information

FORMOSAT-3 Satellite Thermal Control Design and Analysis *

FORMOSAT-3 Satellite Thermal Control Design and Analysis * Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.39, No.4, pp.287-292 (27) 287 Technical Note FORMOSAT-3 Satellite Thermal Control Design and Analysis * Ming-Shong Chang **, Chia-Ray Chen,

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Spacecraft Structures

Spacecraft Structures Tom Sarafin Instar Engineering and Consulting, Inc. 6901 S. Pierce St., Suite 384, Littleton, CO 80128 303-973-2316 tom.sarafin@instarengineering.com Functions Being Compatible with the Launch Vehicle

More information

AstroMast Continuous Longeron Mast History

AstroMast Continuous Longeron Mast History AstroMast Programs AstroMasts Astro has flown deployable AstroMasts on many Major Space Programs These have included major NASA and DOD programs such as GOES, DMSP and Milstar All flights have been successful

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

arxiv:gr-qc/ v2 16 Feb 2006

arxiv:gr-qc/ v2 16 Feb 2006 Acceleration disturbances due to local gravity gradients in ASTROD I arxiv:gr-qc/0510045v2 16 Feb 2006 Sachie Shiomi Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 R.O.C. E-mail:

More information

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT Chikako Hirose (), Nobuaki Ishii (), Yasuhiro Kawakatsu (), Chiaki Ukai (), and Hiroshi Terada () () JAXA, 3-- Yoshinodai

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

Copyright , Larry Randall, d/b/a The NRE Group All Rights Reserved

Copyright , Larry Randall, d/b/a The NRE Group All Rights Reserved NEAR VERTICAL INCIDENCE SKYWAVE (NVIS) Larry Randall -WA5BEN The NRE Group larry@nregroup.net Revision: 1.6 Issue Date: 06 Nov 2014 Copyright 2007 2015, Larry Randall, d/b/a The NRE Group All Rights Reserved

More information

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the

More information

The Simplest Tether Control Law in a Small Satellite

The Simplest Tether Control Law in a Small Satellite The Simplest Tether Control Law in a Small Satellite Yosuke Nakamura (Kyushu University) Designing of a small satellite based on the Satellite Design Contest is progressing in Kyushu University. This is

More information

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters

Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Development of a Two-axis Dual Pendulum Thrust Stand for Thrust Vector Measurement of Hall Thrusters Naoki Nagao, Shigeru Yokota, Kimiya Komurasaki, and Yoshihiro Arakawa The University of Tokyo, Tokyo,

More information

CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN

CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN Haruhisa Fujii Mitsubishi Electric Corporation, Advanced Technology R&D Center 8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo, 661-8661

More information

CHAPTER 4 HOW TO FOLD A MEMBRANE 1

CHAPTER 4 HOW TO FOLD A MEMBRANE 1 CHAPTER 4 HOW TO FOLD A MEMBRANE 1 Sergio Pellegrino University of Cambridge, Cambridge, UK and Julian F.V. Vincent Centre for Biomimetics, The University of Reading, U.K. 4.1 Folding Rules Due to their

More information

Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites

Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites IEPC--39 Presented at the 3nd International Electric Propulsion Conference, Wiesbaden Germany Tomoyuki Ikeda, Kazuya

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

CIRCULAR MOTION AND SHM : Higher Level Long Questions.

CIRCULAR MOTION AND SHM : Higher Level Long Questions. CIRCULAR MOTION AND SHM : Higher Level Long Questions. ***ALL QUESTIONS ARE HIGHER LEVEL**** Circular Motion 2012 Question 12 (a) (Higher Level ) An Olympic hammer thrower swings a mass of 7.26 kg at the

More information

Spacecraft reflectors thermomechanical analysis

Spacecraft reflectors thermomechanical analysis EPJ Web of Conferences 82, 01005 (2015) DOI: 10.1051/epjconf/20158201005 C Owned by the authors, published by EDP Sciences, 2015 Spacecraft reflectors thermomechanical analysis Viktor S. Ponomarev 1,2,a,

More information

Thermal Analysis of Thin-walled Deployable Composite Boom in

Thermal Analysis of Thin-walled Deployable Composite Boom in Thermal Analysis of Thin-walled Deployable Composite Boom in Simulated Space Environment J B Bai 1, R A Shenoi 2, J J Xiong 1, * 1 School of Transportation Science and Engineering, Beihang University,

More information

SPACE DEBRIS MITIGATION TECHNOLOGIES

SPACE DEBRIS MITIGATION TECHNOLOGIES SPACE DEBRIS MITIGATION TECHNOLOGIES Rob Hoyt Tethers Unlimited, Inc. The orbital debris population and its potential for continued rapid growth presents a significant threat to DoD, NASA, commercial,

More information

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT First Pan American Congress on Computational Mechanics PANACM 2015 April 27-29, 2015, Buenos Aires, Argentina STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT Santiago

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications

Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications Edited by Christopher H. M. Jenkins South Dakota School of Mines Volume 191 PROGRESS IN ASTRONAUTICS AND AERONAUTICS

More information

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference - April, Austin, Texas AIAA - AIAA - Bi-stable Cylindrical Space Frames H Ye and S Pellegrino University of Cambridge, Cambridge,

More information

arxiv:gr-qc/ v1 15 Nov 2004

arxiv:gr-qc/ v1 15 Nov 2004 Mission design for LISA Pathfinder arxiv:gr-qc/0411071v1 15 Nov 2004 M Landgraf, M Hechler, and S Kemble ESA/ESOC, Robert-Bosch-Straße 5, D-64293 Darmstadt, Germany E-mail: Markus.Landgraf@esa.int EADS

More information

INTRODUCTION. Simple electron emitters for space. Simple mechanism of electron emission. Demand for electron sources in space

INTRODUCTION. Simple electron emitters for space. Simple mechanism of electron emission. Demand for electron sources in space R E S E A R C H INTRODUCTION Simple electron emitters for space Demand for electron sources in space Asteroid explorer "Hayabusa" returned to Earth on June 13, 2010 after a seven-year space flight using

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

Design of "KIBO" structure and verification

Design of KIBO structure and verification 40th International Conference on Environmental Systems AIAA 2010-6144 Design of "KIBO" structure and verification Takayuki Shimoda 1 and Masaru Wada 2 Japan Aerospace Exploration Agency, Tsukuba, Ibaraki,3058505

More information

Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine

Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine IEPC-205-46p Presented at Joint Conference of 0th International Symposium on Space Technology and Science 4th

More information

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration Dr. Michael Holmes, AFRL/PRSS Solar Thermal Propulsion Concept Parabolic Mirror Sun Create thrust by collecting and focusing sunlight to

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine

Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine IEPC-2011-294 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany Yasuyoshi Hisamoto 1 Graduate

More information

THERMAL CONTROL SUBSYSTEM

THERMAL CONTROL SUBSYSTEM THERMAL CONTROL SUBSYSTEM Thermal Mission PDR Jeff Asher Los Angeles, California February 12, 2015 Thermal-1 MPDR, 2/12/2015 SUBSYSTEM TEAM Name Jeff Asher Ken Shrivastava Renee Krieger Chris Knapp Responsibility

More information

SpW Application from JAXA

SpW Application from JAXA SpW Application from JAXA 18/May/2006 SpaceWire Working Group Meeting 6 Tetsuo YOSHIMITSU (ISAS/JAXA) The MINERVA rover primary investigator & A man involved in SpaceWire Masaharu NOMACHI (Osaka University)

More information

ANALYSIS OF TOUCH-DOWN DYNAMICS AND SAMPLING SEQUENCE OF MUSES-C

ANALYSIS OF TOUCH-DOWN DYNAMICS AND SAMPLING SEQUENCE OF MUSES-C ANALYSIS OF TOUCH-DOWN DYNAMICS AND SAMPLING SEQUENCE OF MUSES-C Kazuya Yoshida 1 Yoichi Nishimaki 1 Hiroshi Kawabe 1 Takashi Kubota 2 1 Dept. of Aeronautics and Space Engineering, Tohoku University, Aoba

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Archimedes Solar Energy Laboratory (ASEL) Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Soteris A. Kalogirou Department of Mechanical Engineering

More information

Tokyo Tech Small Satellite Development Projects - Cute-1.7 and TSUBAME -

Tokyo Tech Small Satellite Development Projects - Cute-1.7 and TSUBAME - Tokyo Tech Small Satellite Development Projects - Cute-1.7 and TSUBAME - Katsutoshi Imai, Naoki Miyashita, Masafumi Iai, Kuniyuki Omagari, Masashi Asami, Wataru Miyazawa, Hideyuki Yabe, Kei Miyamoto, Takeshi

More information

THE VOYAGER-2 NEPTUNE ENCOUNTER

THE VOYAGER-2 NEPTUNE ENCOUNTER THE VOYAGER-2 NEPTUNE ENCOUNTER William J. Kosmann The Astronautics Company The Jet Propulsion Laboratory, The California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91109 ABSTRACT

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft.

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft. ASE 379L Group #2: Homework #4 James Carlson Due: Feb. 15, 2008 Henri Kjellberg Leah Olson Emily Svrcek Requirements The spacecraft shall be launched to Earth orbit using a launch vehicle selected by the

More information

Sail-Assisted End-of-Life Disposal of High-LEO Satellites

Sail-Assisted End-of-Life Disposal of High-LEO Satellites 4th International Symposium on Solar Sailing Kyoto, Japan, January 17-20, 2017 Sail-Assisted End-of-Life Disposal of High-LEO Satellites Sergey Trofimov Keldysh Institute of Applied Mathematics Russian

More information

UV LED charge control of an electrically isolated proof mass at 255 nm

UV LED charge control of an electrically isolated proof mass at 255 nm UV LED charge control of an electrically isolated proof mass at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu

More information

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation Advances in Science and Technology Vol. 54 (28) pp 366-371 online at http://www.scientific.net (28) Trans Tech Publications, Switzerland Online available since 28/Sep/2 Friction Drive Simulation of a SAW

More information

INITIAL STUDY ON SMALL DEBRIS IMPACT RISK ASSESSMENT DURING ORBIT TRANSFER TO GEO FOR ALL-ELECTRIC SATELLITE

INITIAL STUDY ON SMALL DEBRIS IMPACT RISK ASSESSMENT DURING ORBIT TRANSFER TO GEO FOR ALL-ELECTRIC SATELLITE INITIAL STUDY ON SMALL DEBRIS IMPACT RISK ASSESSMENT DURING ORBIT TRANSFER TO GEO FOR ALL-ELECTRIC SATELLITE Masumi Higashide (1,2), Martin Schimmerohn (2), Frank Schäfer (2) (1) Japan Aerospace Exploration

More information

A Study into the Dynamics of Three Dimensional Tape Spring Folds

A Study into the Dynamics of Three Dimensional Tape Spring Folds A Study into the Dynamics of Three Dimensional Tape Spring Folds Scott J.I. Walker and Guglielmo Aglietti School of Engineering Sciences, University of Southampton, UK One of the most significant drivers

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

HARP CubeSat An innovative Hyperangular Imaging Polarimeter for Earth Science Applications

HARP CubeSat An innovative Hyperangular Imaging Polarimeter for Earth Science Applications HARP CubeSat An innovative Hyperangular Imaging Polarimeter for Earth Science Applications J. Vanderlei Martins, Tim Nielsen, Chad Fish, Leroy Sparr, Roberto Fernandez-Borda, Mark Schoeberl, Lorraine Remer

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information