Welcome back to PHY 3305

Size: px
Start display at page:

Download "Welcome back to PHY 3305"

Transcription

1 Welcome back to PHY 335 Today s Lecture: Hydrogen Atom Pt 1 Sad, quantum surfer, Alone, forlorn on the beach, His wave form collapsed. ThinkGeek.com via Ben Wise

2 AnNouncements Reading Assignment for Nov 6th: Krane Problem set 11 is due Tuesday, Nov 7th at 1:3 pm. Regrade for problem set 1 is due Tuesday, Nov 7th at 1:3 pm. Second draft slides of presentation are due next week, Tuesday, Nov. 7th at 1:3 pm. your slides to Dr. Cooley (cooley@physics.smu.edu). Dr. Cooley will be out of town Nov. 5-9th. Mr. Thomas will conduct class in her place. Dr. Cooley s office hours are cancelled Nov. 6 and 7. Thursday, Nov. 4pm will be the Nobel Prize discussion Panel. RSVP at

3 Assigned Presentation Dates Black Paper Clip - Tuesday, Nov 1st Andrew, Gabriel, Connor Purple Paper Clip - Tuesday, Nov 8th Rebecca, Chris, Luke White Paper Clip - Thursday, Nov 3th Ali, Hope, Robert

4 Particles of energy E are incident from the left, where U(x) =, and at the origin encounter an abrupt drop in potential energy, whose depth is -3E. a) From a classical perspective, describe the motion of the particles and what happens to their kinetic energy as they propagate? The particles would continue to the right and the kinetic energy abruptly changes from E to 4E. E

5 Particles of energy E are incident from the left, where U(x) =, and at the origin encounter an abrupt drop in potential energy, whose depth is -3E. b) Now let s consider quantum mechanics. Assume the incident wave is of the form inc(x) =1e ikx Write the general form of the wave function in all regions. x<() = inc (x)+ ref (x) =1e ikx + Ae ikx k = r me ~ x>(x) = trans (x) = Be ik x k = r m(e U) ~

6 Particles of energy E are incident from the left, where U(x) =, and at the origin encounter an abrupt drop in potential energy, whose depth is -3E. c) Solve for the constants A and B and write the wave functions for each region using all numeric values. Apply Boundary Conditions: x<() = x> () 1e ik + Ae ik = Be ik 1+A = B (1)

7 d x< () dx = d x>() dx ike ik Aike ik = Bik e ik k(1 A) =k B () Substitute (1) into () k(1 A) =k (1 + A) k ka = k + k A (k + k )A =(k k ) A = k k k + k (3)

8 Now examine k. k = r m(e U) ~ k = r me ~ k = r m(e +3E) ~ = r me ~ Substitute into (3). A = p p me me p p = 1 me + me 1+ = 1 3 (4) Substitute into (4) into (1). 1 B =1 3 = 3 x< =1e ikx 1 3 e ikx x> = 3 eik x

9 Particles of energy E are incident from the left, where U(x) =, and at the origin encounter an abrupt drop in potential energy, whose depth is -3E. c) What is the probability the incident particles would be reflected? R = A A 1 1 R = 1 9

10 SWE Summary Bound States (chapter 5) - Particle in a box infinite walls, Particle in a box finite walls, harmonic oscillator - Energy was quantized. Unbound States (chapter 6) - potential steps, barriers and tunneling - Energy is NOT quantized.

11 Video Lecture: Angular Momentum in Quantum Mechanics The angular momentum properties of a 3-D wave function are described by two quantum numbers. Angular Momentum Quantum Number: l determines the length of the angular momentum vector L = l(l +1) h (l =, 1,,...) Magnetic Quantum Number: m L z = m l h (m l =, ±1, ±,...± l) Note: for each value of l, there are l +1possible values of m l

12 Video Lecture: Examine angular momentum for case l = The angle between L and the polar axis is given by This demonstrates an aspect of quantum mechanics known as spatial quantization. Only certain orientations of angular momentum vectors are allowed.

13 An electron is in an angular momentum state with l = 3. a) What is the length of the electron s angular momentum vector? L = l(l +1) h = p 3(3 + 1)~ ~ L = p 3~

14 An electron is in an angular momentum state with l = 3. b) How many different possible z-components can the angular momentum vector have? List all possible z- components. The angular momentum vector can have 7 values. m` =, ±1, ±, ±3

15 An electron is in an angular momentum state with l = 3. c) What are the values of the angle that the L vector makes with the z-axis? = m` p 3 m m m m m m m l l l l l l l 3 1 cos 3/ cos / cos 1/ cos cos ( 1/ 1) 17 1 cos ( / 1) cos ( 3/ 1) 15

16 Video Lecture: 3D Schroedinger equation in spherical coordinates. Since we can define the Coulomb potential in terms of only r, the solution is separable. R(r) = radial function Θ(θ) = polar function Φ(φ) = azimuthal function

17 Video Lecture: If you were to solve this equation, three quantum numbers emerge from the solution. n principle quantum number 1,, 3... ` m` angular momentum quantum number magnetic quantum number, 1,,... (n-1), ±1, ±, ±(n-1) The principle quantum number determines the quantized energy levels. E = h b m = me 4 1 E (4πϵ ) h n

18 Video Lecture: The solutions of the 3D SWE, complete quantum numbers, can be written as ψ n,l,ml (r, θ, φ) =R n,ml (r)θ l,ml (θ)φ ml (φ) Ground state (n=1; l = ; ml = ) (n=; l =, 1; ml =, ±1) (n=3; l =, 1, ; ml =, ±1, ±)

19 Group 1: Show by direct substitution that the n =, l =, ml = wave functions are solutions to the 3D Schrodinger equation corresponding to the energy of the first excited state. Group : Show by direct substitution that the n =, l = 1, ml = wave functions are solutions to the 3D Schrodinger equation corresponding to the energy of the first excited state.

20 Group 1: r/a h,, 1 1 (, r, ) 4 8a 3 r a e Step 1: Calculate derivatives. and r e r a a a r/ a r/a 3 3a e 1 3a a 3 r a e r/a r e e e 3 r 3a a a 4a a 1 3 r 3a a 4a 3 r/ a r/ a r/a 3 e r/a

21 Step : Substitute LHS U(r) 1 3 r 1 r e 1 r 3 3e 3 e m 3 3a a 4a r 3a a a 4r 3a a r/ a r/ a r/a e r a r e e 3 m a 4a ra a r 4 a e 3 a / 3 1 r a e 5 r 1 3 a 4 4a 8a r r a / e 3 1 r a e 1 r e 3 a 4 4a 8a / 3 e 1 4 8a,,(, r, ) E (, r, ),,

22 Step 3: Calculate E e 1 E 4 8a ed in Equation 7.1 e me me 4 3 E

23 Group : 1 r/a,1,(, r, ) re cos 3 a Step 1: Calculate derivatives. 1 e 5 r/ a r/a 5 r 3 a a r e cos r e e e cos r a a a r/ a r/ a r/a 5 3 a a 5 re r/a 1 3 a ( sin ) r/a sin (sin cos ) 5 re

24 Step : Substitute LHS r/a r r e 1 m a 4a r a r 4 cos 1 e 5 3 a e ,1,(, r, ) 4 r 8a r r e 1 4 8a,1,(, r, ) E,1, (, r, ) e 1 Recall we calculated: E 4 8a ed in Equation 7.1 Thus, both solutions correspond to the first excited state!

25 The end (for today)

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Hydrogen Atom Part I John von Neumann 1903-1957 One-Dimensional Atom To analyze the hydrogen atom, we must solve the Schrodinger equation for the Coulomb potential

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Schrödinger Equation Erwin Rudolf Josef Alexander Schrödinger 1887-1961 AnNouncements Reading Assignment for Thursday, October 12th: Chapter 5.5. Problem set 7

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

Physics 220. Exam #2. May 23 May 30, 2014

Physics 220. Exam #2. May 23 May 30, 2014 Physics 0 Exam # May 3 May 30, 014 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. Your work must be legible, with clear organization,

More information

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle.

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle. Worked out examples (Quantum mechanics). A microscope, using photons, is employed to locate an electron in an atom within a distance of. Å. What is the uncertainty in the momentum of the electron located

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 8: Quantum Theory: Techniques and Applications TRANSLATIONAL MOTION wavefunction of free particle, ψ k = Ae ikx + Be ikx,

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Fun With Carbon Monoxide. p. 1/2

Fun With Carbon Monoxide. p. 1/2 Fun With Carbon Monoxide p. 1/2 p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results C V (J/K-mole) 35 30 25

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Welcome back to PHYS 3305

Welcome back to PHYS 3305 Welcome back to PHYS 3305 Otto Stern 1888-1969 Walther Gerlach 1889-1979 Today s Lecture: Angular Momentum Quantization Stern-Gerlach Experiment AnNouncements Reading Assignment for Nov 14th: Harris 8.2-8.5.

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 AnNouncements Reading Assignment for Thursday, Sept 28th: Chapter

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

ECE606: Solid State Devices Lecture 3

ECE606: Solid State Devices Lecture 3 ECE66: Solid State Devices Lecture 3 Gerhard Klimeck gekco@purdue.edu Motivation Periodic Structure E Time-independent Schrodinger Equation ħ d Ψ dψ + U ( x) Ψ = iħ m dx dt Assume Ψ( x, t) = ψ( x) e iet/

More information

Electric Fields of Charge Distributions

Electric Fields of Charge Distributions Welcome to Physics 308 Electric Fields of Charge Distributions Charles-Augustin de Coulomb 736-806 Physics 308: General Physics II - Professor Jodi Cooley Announcements Assignments for Tuesday, September

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

quantization condition.

quantization condition. /8/016 PHYS 34 Modern Physics Atom II: Hydrogen Atom Roadmap for Exploring Hydrogen Atom Today Contents: a) Schrodinger Equation for Hydrogen Atom b) Angular Momentum in Quantum Mechanics c) Quantum Number

More information

Lecture 14: Superposition & Time-Dependent Quantum States

Lecture 14: Superposition & Time-Dependent Quantum States Lecture 14: Superposition & Time-Dependent Quantum States U= y(x,t=0) 2 U= U= y(x,t 0 ) 2 U= x 0 x L 0 x L Lecture 14, p 1 Last Week Time-independent Schrodinger s Equation (SEQ): 2 2m d y ( x) U ( x)

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley Welcome Back to Physics 1308 Electric Fields Micheal Faraday 1791-1867 Announcements Assignments for Thursday, August 30th: - Reading: Chapter 22.3-22.5 - Watch Video: https://youtu.be/wc79wv5klx4 Lecture

More information

More On Carbon Monoxide

More On Carbon Monoxide More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations of CO 1 / 26 More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations

More information

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1 Simple Harmonic Motion 8.01 Week 1D1 Today s Reading Assignment MIT 8.01 Course Notes Chapter 3 Simple Harmonic Motion Sections 3.1-3.4 1 Announcements Sunday Tutoring in 6-15 from 1-5 pm Problem Set 9

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Even More Schoedinger Equation! Schrödinger s Cat Alive or Dead? AnNouncements Reading Assignment for Thursday, Oct 26: Chapter 5.8. Problem set 10 is due Tuesday,

More information

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom Announcements! HW7 : Chap.7 18, 20, 23, 32, 37, 38, 45, 47, 53, 57, 60! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz 2 (average: 9), Quiz 3: 4/19 *** Course

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

Physics 401: Quantum Mechanics I Chapter 4

Physics 401: Quantum Mechanics I Chapter 4 Physics 401: Quantum Mechanics I Chapter 4 Are you here today? A. Yes B. No C. After than midterm? 3-D Schroedinger Equation The ground state energy of the particle in a 3D box is ( 1 2 +1 2 +1 2 ) π2

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 13, 2016 3:10PM to 5:10PM Modern Physics Section 4. Relativity and Applied Quantum Mechanics Two hours are permitted

More information

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ψ(x,t=0) 2 U(x) 0 x ψ(x,t 0 ) 2 x U 0 0 E x 0 x ecture 15, p.1 Special (Optional) ecture Quantum Information One of the most

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Applications of Energy and Momentum Conservation; Albert Einstein 1879-1955 AnNouncements -Reading Assignment for Thursday, September 7th: chapter 2, section 2.8-2.9.

More information

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger Quantum Mechanics The Schrödinger equation Erwin Schrödinger The Nobel Prize in Physics 1933 "for the discovery of new productive forms of atomic theory" The Schrödinger Equation in One Dimension Time-Independent

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

Angular momentum & spin

Angular momentum & spin Angular momentum & spin January 8, 2002 1 Angular momentum Angular momentum appears as a very important aspect of almost any quantum mechanical system, so we need to briefly review some basic properties

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

Chapter 6: Quantum Theory of the Hydrogen Atom

Chapter 6: Quantum Theory of the Hydrogen Atom Chapter 6: Quantum Theory of the Hydrogen Atom The first problem that Schrödinger tackled with his new wave equation was that of the hydrogen atom. The discovery of how naturally quantization occurs in

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

PHYS 3313 Section 001 Lecture #20

PHYS 3313 Section 001 Lecture #20 PHYS 3313 Section 001 ecture #0 Monday, April 10, 017 Dr. Amir Farbin Infinite Square-well Potential Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator 1 Announcements

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each):

Indicate if the statement is True (T) or False (F) by circling the letter (1 pt each): Indicate if the statement is (T) or False (F) by circling the letter (1 pt each): False 1. In order to ensure that all observables are real valued, the eigenfunctions for an operator must also be real

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Lecture 2: simple QM problems

Lecture 2: simple QM problems Reminder: http://www.star.le.ac.uk/nrt3/qm/ Lecture : simple QM problems Quantum mechanics describes physical particles as waves of probability. We shall see how this works in some simple applications,

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

Particle in a Box and Tunneling. A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework

Particle in a Box and Tunneling. A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework Particle in a Box and Tunneling A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework A Particle in a Box Consider a particle of mass m and velocity

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma 4E : The Quantum Universe Lecture 19, May 3 Vivek Sharma modphys@hepmail.ucsd.edu Ceparated in Coppertino Oxide layer Wire #1 Wire # Q: Cu wires are seperated by insulating Oxide layer. Modeling the Oxide

More information

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ MODEL SYSTEM: PARTICLE IN A BOX Important because: It illustrates quantum mechanical principals It illustrates the use of differential eqns. & boundary conditions to solve for ψ It shows how discrete energy

More information

ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.21, 2014, FNY B124, PM CLOSED BOOK. = H nm. Actual Exam will have five questions.

ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.21, 2014, FNY B124, PM CLOSED BOOK. = H nm. Actual Exam will have five questions. 1 ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.1, 014, FNY B14, 330-40PM CLOSED BOOK Useful relation h( k ) = H nm [ ] e +i k.( r m r n ) Actual Exam will have five questions. The following questions

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Circuits Gustav Robert Kirchhoff 12 March October 1887

Circuits Gustav Robert Kirchhoff 12 March October 1887 Welcome Back to Physics 1308 Circuits Gustav Robert Kirchhoff 12 March 1824 17 October 1887 Announcements Assignments for Thursday, October 4th: - Reading: Chapter 27.3-4 - Watch Video: https://youtu.be/ytoe-rwi8us

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk Eksamen TFY450 18. desember 003 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 18. desember 003 TFY450 Atom- og molekylfysikk og FY045 Innføring i kvantemekanikk a. With Ĥ = ˆK + V = h + V (x),

More information

Lecture 13: Barrier Penetration and Tunneling

Lecture 13: Barrier Penetration and Tunneling Lecture 13: Barrier Penetration and Tunneling nucleus x U(x) U(x) U 0 E A B C B A 0 L x 0 x Lecture 13, p 1 Today Tunneling of quantum particles Scanning Tunneling Microscope (STM) Nuclear Decay Solar

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no way to make water, a vital ingredient in beer. -Dave Barry David J. Starling Penn State Hazleton

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle Announcements! HW8 : Chap.8 30, 31, 35, 41, 49! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz3: 4/19 (Chap. 6,7,8) *** Course Web Page ** http://highenergy.phys.ttu.edu/~slee/2402/

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate.

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate. CHEM 5314: Advanced Physical Chemistry Overall Goals: Use quantum mechanics to understand that molecules have quantized translational, rotational, vibrational, and electronic energy levels. In a large

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

Introduction to Molecular Electronics. Lecture 1: Basic concepts

Introduction to Molecular Electronics. Lecture 1: Basic concepts Introduction to Molecular Electronics Lecture 1: Basic concepts Conductive organic molecules Plastic can indeed, under certain circumstances, be made to behave very like a metal - a discovery for which

More information

PHY331 Magnetism. Lecture 4

PHY331 Magnetism. Lecture 4 PHY331 Magnetism Lecture 4 Last week Discussed Langevin s theory of diamagnetism. Use angular momentum of precessing electron in magnetic field to derive the magnetization of a sample and thus diamagnetic

More information

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t Quantum Mechanics Wave functions and the Schrodinger equation Particles behave like waves, so they can be described with a wave function (x,y,z,t) A stationary state has a definite energy, and can be written

More information

Atoms 2012 update -- start with single electron: H-atom

Atoms 2012 update -- start with single electron: H-atom Atoms 2012 update -- start with single electron: H-atom x z φ θ e -1 y 3-D problem - free move in x, y, z - easier if change coord. systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason: V(r)

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

Section 4: Harmonic Oscillator and Free Particles Solutions

Section 4: Harmonic Oscillator and Free Particles Solutions Physics 143a: Quantum Mechanics I Section 4: Harmonic Oscillator and Free Particles Solutions Spring 015, Harvard Here is a summary of the most important points from the recent lectures, relevant for either

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

Physics 2D Lecture Slides Lecture 1: Jan

Physics 2D Lecture Slides Lecture 1: Jan Physics 2D Lecture Slides Lecture 1: Jan 5 2004 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer. D Chemistry 350/450 Exam I Key September 19, 003 1) This is a multiple choice exam. Circle the correct answer. ) There is one correct answer to every problem. There is no partial credit. 3) A table of

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems. D Chemistry 3502/4502 Exam I February 6, 2006 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 PHY 7 Classical Mechanics and Mathematical Methods 0-0:50 AM MWF Olin 03 Plan for Lecture :. Brief comment on quiz. Particle interactions 3. Notion of center of mass reference fame 4. Introduction to scattering

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture-XXVI. Time-Independent Schrodinger Equation Lecture-XXVI Time-Independent Schrodinger Equation Time Independent Schrodinger Equation: The time-dependent Schrodinger equation: Assume that V is independent of time t. In that case the Schrodinger equation

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sep 26. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sep 26 Vivek Sharma UCSD Physics Modern Physics (PHYS 2D) Exploration of physical ideas and phenomena related to High velocities and acceleration ( Einstein s Theory of Relativity)

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Michelson-Morley Experiment Simultaneity Albert A. Michelson 1852-1931 -Dr. Cooley s Office hours will be Mondays 10-11 am and Tuesdays 6-7 pm in FOSC 151 or by

More information