EXTRAPOLATION OF THE S-MATRIX FROM THE LEHMANN'S REPRESENTATION

Size: px
Start display at page:

Download "EXTRAPOLATION OF THE S-MATRIX FROM THE LEHMANN'S REPRESENTATION"

Transcription

1 IC/65/9 INTERNATIONAL ATOMIC ENERGY AGENCY V *' INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS EXTRAPOLATION OF THE S-MATRIX FROM THE LEHMANN'S REPRESENTATION N. LIMIC v,,x * t - \; 1965 PIAZZA OBERDAN TRIESTE

2 10/65/9 ATOMIC EIJBRGY AGEUCY INTERNATIONAL CENTEE FOE TESOEETICAL PHYSICS EXTRAPOLATION OP THS S-MATBIX FROM THE LEHMAOPS ESPEESBNTATIOU U. Limi6 TEIESTE February On leave of absence from the Institute "Eudjer Boskovic", Zagret.

3 ABE The extrapolation of the S-matrix to the complex angular momenta is obtained using the Lehmann's representation of the amplitude for the elastic scattering and the uni^nrity condition. In the half plane R&2- > Q "the S- ~ctrix is analytic rojular and satisfies the extended unitarity condition.

4 OP THE S-MATRIX PROM THE LEHMAEKT' S REPRESENTATION 1_. Xntr oduc t lor. In recent tin:es there have been extended investigations concerning the amplitude o_" L.ia -tn partial wave for elastic scattering and concerning the possioi...ity of the extrapolation of the complex,^-plane from its physical valu^ for integer Jc, The reasonable extrapolation was found using Kandela'jc;:. ; i proposition at out the analytic i *y of the amplitude for elastic scattering in the variables s,t and u. On the other hand, the amplitude of the st,~la partial wave is the magnitude which exists without regard to the possession or nonpossession of the mentioned analytic properties of the whole amplitude. That is, the analyticity of the amplitude in the Lehmann's ellipse guarantees the existence of the partial wave amplitudes. How the question appears ; is not the analyticity of the amplitude in the Lehmann's ellipse sufficient to discover a reasonable extrapolation of the S-matrix to the complex values > 1 Our intention is to show here that really the extrapolation of the partial wave amplitude follows from the existence of the analyticity of the whole amplitude for the elastic scattering in the Lehraann's ellipse if we keep to the usual supposition on the polynomial increase of the amplitude for large complex energies. The uniqueness of the extrapolation can be shown also if unitarity is required - It seems that the unitarity condition is not any rough supplementary condition as it is built in the Lehmann's representation in a certain iray. For ;;inolicity we shall treat the case of two l) 2) scalar fields. Irenes we shall use '' A & - co/mcosot)

5 The ur.itarity condition will be used for the partial wave amplitudes. The expansion of the whole amplitude in the Legendre series is: ~. X. (& if The function pp"/ has to be {_($ ~j^' J/Sj in the case of the scattering 3) of two equal particles and. its value must be positive on the upper side of the cut S > -4^ The generalisation of the function for the scattering of the particles with nonequal masses can be found in reference. The unitarity condition for the partial wave ampli tude reads; ct(^s).= f(s) jclf^s)! 2 ; d-5) The equality (1.5) enables us to write the amplitude in the form 2_; Extrapolation of the S-matrix '",:: vrant to decompose the fractions under the integral sign in (l.l) and (1.2) into the sum - "*' -4- L^. where C± and J?± are the functions of og and al only. The range of the functions db will be outside the Lehmann's ellipse and so the Heine's formula for the denominators ir-.zj.cari be used in order to obtain the expansion of the fraction in the Legendre's series. We prefer to use a new variable X instead of the variable OJ where the new one is defined by O =s co&hx,, X>0 r After transforming the amplitudes (l.l) and (1.2) in the suggested way they can be rewritten in the form:

6 fa-it*), L y S( 2.2 where? ~ Our intention i^ to consider the partial wave amplitude defined ~oy (l.4) and to prov-~ zhzx, it can be represented in the form:. If the weight function! p in this expression were a bounded function the equality (2.3) would be the consequence of the analyticity in the Lehmann's ellipse. As generally f> is distribution, we must prove that (2.3) follows from (2.1). Let C (R)\>Q the linear space of the infinitely differentiable functions from 8. = (-*-> i <1 ) to the complex values. Let B(M.f) be the linear sp;=.ce of the continuous uniformly bounded functions fro-t; &i - (Xi / <* &) o <x y -< X o, "to the complex values. We define the linear space which is induced by zhe seminorms <0 = C**(R)X B(ft*) and introduce the topology ^ % l, s (2.4} < x P where j^feji is the collection of the continuous functions with compact support and which vanish for large enough i?. "We can define the dual space,0 of the space oo and introduce the usual topology in j >*; p*(a) - la( A 0~ A ~. In this way our representations (2.1) and (2.3) become -she elements AO^/ S f Z) and (Z/j^SJ of the space c0 if we suppose their linearity on the space 0. To prove that (l.4j implies (2,3) it is sufficient to proclaim our functionals to be continuous on the space J&. That is we can find the sequence of the elements -3-

7 which tends to the element ^fif/x/x?) which is represented in the brackets of the expression (2.l) in the topology defined by the seminorms (2.4). This can be verified using the second Christoffel's formula (3.8 (21) of the reference^). Hence A C^t,, S, Z) -^ A {/, s, On the other hand Aft, >*,*)- Z.^e (Mf f)%(z] ct(s ei S ) where j >(*t,x} are the elements which are represented by the brackets in the expression (2.3). This proves our assertion. Before the analytic extrapolation of the amplitude defined by (2.3) let us make some comments about the existence of the representations (2.l) - (2.3). It was pointed out by JOST and L'SKViAXN ' that the integrals of the form (l.l) to (2.3) may not exist if the weight functions do not decrease strongly enough for large (O or coshx But if Lehmann's representation exists, then an integer^ can be found such that the quotient 9 } f s t c oso<[ / c^)/ccoi-m) possesses all desired properties. ' In this case we have for the scattering amplitude ' } Wow it is not difficult to calculate the partial wave amplitude defined by (1.4). Particularly if * "^.Zti-ithe corresponding amplitude Ct(^5) has the same form as if the additional difficulties were absent. That is, the amplitudeflf/vvconsists ^ ^^e integrals over the functions i P{s,e6Se( 1 io) 0 e f<ast](xt>i*c)) which decrease strongly enough if ^Zn-i and the limiting value M~> 00 can be performed in order to obtain the expression (2.3). Therefore we shall consider the amplitude (2.3) for ^ larger than some number < o in- the following. How the form of the amplitude df^s)appears to us to be the extra polation of this amplitude to the complex ^-plane. Using linearity and continuity of the functional Ct(*iSj and the fact that the derivative jkq^fcoij}(k±jec)) is again an element of the space }, we can prove the analyticity in Jir of our functional. Hence the amplitude represented by (2.3) is analytic regular function in the half plane In the same way for &e# > o it holds : Ah*)' Z ~ (i- -4-

8 (2.5) Let us now establish extended unitarity condition for the S-raatrix S(#,s) a j+ a.(p f s). Because of the analyticity and unitarity for the integers j h of the S-matrix, there must exist domain for any^)/^,>^, such that the function af^sj^ -4--&n<S({' l 5\ is regular and analytic in ocl. Even more there exists an interval I on the real - n axis in the domain oc+,, such that the function 6 is.real in : the interval I. That is, cos2s=?-2sjn 2 is real for real y ^± J^. Then the continuity of the function cosza the existence of the mentioned interval I. unitarity condition *&,$)- (?*$) or S/%s)S*/S*s)~ and reality of d/^, / sy ensure Therefore we have the / at least in Jt^. The unitarity condition for the S-matrix can be easily extended to the whole half plane X > <?^'>^ because of the analyticity of the function there.,5 /e, As the phase shift is a-regular function in the half plane Ke >-e a we conclude from the relation (2.6) that there is no pole or zero of the 5-matrix in the half plane / # > o > The representations (2.3) and (2«5) seem to have appropriate forms for the investigation of their asymptotic "behaviour for large variable & with fiz&> Je o. Really if the weight functions were continuous functions in the range (o f Jt ) the asymptotic forms can be easily guessed. In any case ne can establish an upper bound on the S-matrix in the variable using the uniform asymptotic expansions and the corresponding bounds of the Legendre's functions of the second kind. As we required the functional Afys) to be the linear continuous functional on the space au there must be a seminorm of type (2 4J such that the functional is bounded in the way I*Afys)\< Cp{i/J'. Hence we have the estimate

9 z The D-$ derivative of the function ak&yis equal to the function Q( W )^Q asymptotic form of the function Q^(w)fOT large This asymptotic form is uniform with respect to IV outside the ellipse with foci at i-/. We have to be careful only when w approaches the cut (\N -d. +*/) as w has different arguments coming from different sides of the cut. Hence a rough ("but for us sufficient) estimate is : (2. 7) Essentially the same bound is obtained for the increase of the function Sin^ (ff-f t s) along the straight lines in the plane & #>/ o which are parallel with the imaginary axis. In order to prove this the integral representation 3.7(5) of the reference of the function Q# fw) can be used. After rough estimation the following bound appears: In both inequalities (2.7) and (2.8) (& is a non-negative constant which can be arbitrarily small. can be represented in the form If we suppose that our functionals where Mp are measures on the set PocR, then the constant & appearing in estimates (2.7), (2.8) will be equal to zero. At the end of this section we shall prove that there exists only one analytic S-matrix which is regular for $j? ^ -e^olf; 1; it is bounded by the exponential function of * in Mee^ e c / 2) if the extended unitarity condition holds;and 3} if S-matrix tends to unity along the real axis. That is v because of the regularity and the unitarity, the S-matrix has no oole and no zero in Re#^ &. Hence the function S" f, S ) is o

10 uniquely defined if we prescribe that it tends to unity along a real axis. How if there are two extrapolated S-matrices, say S^ and $ 2 ({, s), then fl can be found such that -^ Ytfs) and -^ ^ffa) are hounded by <?*/>(cwl) t C<7 in & > c. As the difference 5f"(O)~^ * *, has zeros for integers, -c> $ this difference must vanish identically by the Carlson theorem. Hence our extrapolated amplitude CLf^s) is unique in its class. Acknowledgement The author is grateful to Professor Ahdus Salam and the IAEA for the hospitality extended to him at the International Centre for Theoretical Physics, Trieste. The author also wishes to thank Professor A.Martin, Professor K. Proissart and Dr. R. Raczka for helpful discussions.

11 H3PEREKTC3S 1) H. LEHMNU : Nuovo Cimento, K>» 579 (1958). 2) H. LEHMAOT : ffuovo Cimento, Supply L4_, 153 (1959). 3) R. G. MOORHOUSE : Huovo Cimento, 23., 233 (1962). 4) R. OEHME : Phys. Rev., 121, 1840 (l96l). 5) Bateman Manuscript Project : Higher Transcendental Functions, Vol. I, McGraw-Hill, New York (1953). 6) R. JOST and H. L3HMAMT : Huovo Cimento, 1, 1598 (1957) -8-

NOETHER'S THEOREM AND GAUGE GROUPS

NOETHER'S THEOREM AND GAUGE GROUPS MAR 1965 % ncrc.nc.inuq IC/65/20 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NOETHER'S THEOREM AND GAUGE GROUPS C. A. LOPEZ 1965 PIAZZA OBERDAN TRIESTE IC/65/2O INTERNATIONAL

More information

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS IC/68/54 0^ 19. JUL1B6b) 5^1 2 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS N. F. NASRALLAH 1968 MIRAMARE - TRIESTE

More information

ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM

ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM IC/67/14 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM M. E. GRYPEOS 1967 PIAZZA OBERDAN TRIESTE Ic/67/14

More information

arxiv: v1 [math-ph] 16 Dec 2008

arxiv: v1 [math-ph] 16 Dec 2008 Some Remarks on Effective Range Formula in Potential Scattering arxiv:812.347v1 [math-ph] 16 Dec 28 Khosrow Chadan Laboratoire de Physique Théorique Université de Paris XI, Bâtiment 21, 9145 Orsay Cedex,

More information

C#) BOUND STATE EQUATION FOR QUARK-ANTIQUARK SYSTEM IC/66/60 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS TRIESTE INTERNATIONAL ATOMIC ENERGY AGENCY

C#) BOUND STATE EQUATION FOR QUARK-ANTIQUARK SYSTEM IC/66/60 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS TRIESTE INTERNATIONAL ATOMIC ENERGY AGENCY R C#) IC/66/60 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS BOUND STATE EQUATION FOR QUARK-ANTIQUARK SYSTEM R. DELBOURGO ABDUS SALAM AND J. STRATHDEE 1966 PIAZZA OBERDAN

More information

Bernstein s analytic continuation of complex powers

Bernstein s analytic continuation of complex powers (April 3, 20) Bernstein s analytic continuation of complex powers Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/. Analytic continuation of distributions 2. Statement of the theorems

More information

P1 (cos 0) by Jo([ ] sin 0/2). While these approximations are very good. closed set that is not closed.

P1 (cos 0) by Jo([ ] sin 0/2). While these approximations are very good. closed set that is not closed. 62 PHYSICS: R. SERBER PROC. N. A. S. the collection { aj + E an }. Then every set is compact, but not every set is closed n =,m (e.g.! X - a is not closed). Thus X has Property a but contains a compactly

More information

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan, What is on today Professor Jennifer Balakrishnan, jbala@bu.edu 1 Techniques for computing limits 1 1.1 Limit laws..................................... 1 1.2 One-sided limits..................................

More information

A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES. D. Shay

A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES. D. Shay IC/68/13 INTERNAL REPORT (Limited distribution) A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES D. Shay ABSTRACT The Lorentz covariant, spin-s, Joos-Weinberg equations

More information

Bessel s and legendre s equations

Bessel s and legendre s equations Chapter 12 Bessel s and legendre s equations 12.1 Introduction Many linear differential equations having variable coefficients cannot be solved by usual methods and we need to employ series solution method

More information

Pade Approximations and the Transcendence

Pade Approximations and the Transcendence Pade Approximations and the Transcendence of π Ernie Croot March 9, 27 1 Introduction Lindemann proved the following theorem, which implies that π is transcendental: Theorem 1 Suppose that α 1,..., α k

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

MCPS Algebra 2 and Precalculus Standards, Categories, and Indicators*

MCPS Algebra 2 and Precalculus Standards, Categories, and Indicators* Content Standard 1.0 (HS) Patterns, Algebra and Functions Students will algebraically represent, model, analyze, and solve mathematical and real-world problems involving functional patterns and relationships.

More information

D. Amati, S. Fubini, and A. Stanghellini

D. Amati, S. Fubini, and A. Stanghellini 560 Session H 1 LIST OF REFERENCES 1. T. Regge, Nuovo Cim. 14, 951 (1959). 2. V.N. Gribov, JETP, 41, 1962 (1961); 41, 667 (1961). 3. M. Jacob, G. C. Wick, Ann. of Phys, 7, 404 (1959). 4. M. E. Rose "Elementary

More information

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000 CPHT S758.0100 When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/000630v1 7 Jun 000 Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F9118 Palaiseau, France

More information

THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY

THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor University of Cambridge, Cambridge, England (presented by J. C. Polkinghorne) 1. METHODS The aim

More information

1.1 A Scattering Experiment

1.1 A Scattering Experiment 1 Transfer Matrix In this chapter we introduce and discuss a mathematical method for the analysis of the wave propagation in one-dimensional systems. The method uses the transfer matrix and is commonly

More information

Tennessee s State Mathematics Standards Precalculus

Tennessee s State Mathematics Standards Precalculus Tennessee s State Mathematics Standards Precalculus Domain Cluster Standard Number Expressions (N-NE) Represent, interpret, compare, and simplify number expressions 1. Use the laws of exponents and logarithms

More information

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f 1 Bernstein's analytic continuation of complex powers c1995, Paul Garrett, garrettmath.umn.edu version January 27, 1998 Analytic continuation of distributions Statement of the theorems on analytic continuation

More information

ON SPECTRAL FUNCTIONS SUM RULES

ON SPECTRAL FUNCTIONS SUM RULES IC/68/61 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON SPECTRAL FUNCTIONS SUM RULES C. G. BOLLINI AND J. J. GIAMBIAGI 1968 MIRAMARE - TRIESTE IC/68/01 INTERNATIONAL

More information

CONSEQUENCES OF POWER SERIES REPRESENTATION

CONSEQUENCES OF POWER SERIES REPRESENTATION CONSEQUENCES OF POWER SERIES REPRESENTATION 1. The Uniqueness Theorem Theorem 1.1 (Uniqueness). Let Ω C be a region, and consider two analytic functions f, g : Ω C. Suppose that S is a subset of Ω that

More information

Hations Educational Scientific and Cultural Organization INTERNATIONAL CEHTRE FOR THEORETICAL PHYSICS

Hations Educational Scientific and Cultural Organization INTERNATIONAL CEHTRE FOR THEORETICAL PHYSICS r ^ IC/7V6T / y REFERENCE (Limited INTERNAL distribution) REPORT t-~ : i t,.ul i-j' "! -,., \ct- \,- International Atomic Energy Agency and Hations Educational Scientific and Cultural Organization INTERNATIONAL

More information

How to recover an L-series from its values at almost all positive integers. Some remarks on a formula of Ramanujan

How to recover an L-series from its values at almost all positive integers. Some remarks on a formula of Ramanujan Proc. Indian Acad. Sci. (Math. Sci.), Vol., No. 2, May 2, pp. 2±32. # Printed in India How to recover an L-series from its values at almost all positive integers. Some remarks on a formula of Ramanujan

More information

460 [Nov. u»=^tjf> v = <*"+?", (3)

460 [Nov. u»=^tjf> v = <*+?, (3) Minora Yatouta Nichiyodogawa High School, Osaka, 555-0031, Japan (Submitted September 2000-Final Revision August 2001) 1. INTRODUCTION We consider two sequences defined by the recursion relations «o =

More information

HIGHER MESON RESONANCES AND THE

HIGHER MESON RESONANCES AND THE it/65/23 ;.; INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS HIGHER MESON RESONANCES AND THE 4212 + MULTIPLET OF SUC12) R. DELBOURGO 1965 PIAZZA OBERDAN TRIESTE lc/65/23

More information

A frequency method for H 00 operators

A frequency method for H 00 operators A frequency method for H 00 operators Richard Datko Georgetown University Washington, D.C. 20057, U.S.A. 8 Abstract We present numerical methods for determining the stability or instability of autonomous

More information

20. The pole diagram and the Laplace transform

20. The pole diagram and the Laplace transform 95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

REGGE POLES IN NUCLEON-NUCLEON AND NUCLEON-ANTINUCLEON SCATTERING AMPLITUDES

REGGE POLES IN NUCLEON-NUCLEON AND NUCLEON-ANTINUCLEON SCATTERING AMPLITUDES SOVIET PHYSICS JETP VOLUME 17, NUMBER 3 SEPTEMBER, 1963 REGGE POLES IN NUCLEON-NUCLEON AND NUCLEON-ANTINUCLEON SCATTERING AMPLITUDES D. V. VOLKOV and V. N. GRIBOV Physico-technical Institute, Academy of

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/69/63 INTEENAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS A RIGOROUS LOWER BOUND ' ON THE KSFR RELATION FROM FIELD THEORY: THE STATUS

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

III. Consequences of Cauchy s Theorem

III. Consequences of Cauchy s Theorem MTH6 Complex Analysis 2009-0 Lecture Notes c Shaun Bullett 2009 III. Consequences of Cauchy s Theorem. Cauchy s formulae. Cauchy s Integral Formula Let f be holomorphic on and everywhere inside a simple

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 1. Please write your 1- or 2-digit exam number on

More information

Section 3.2 The Growth of Functions. We quantify the concept that g grows at least as fast as f.

Section 3.2 The Growth of Functions. We quantify the concept that g grows at least as fast as f. Section 3.2 The Growth of Functions We quantify the concept that g grows at least as fast as f. What really matters in comparing the complexity of algorithms? We only care about the behavior for large

More information

QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY

QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY IC/66/92 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY A. A. GALEEV 1966 PIAZZA OBERDAN TRIESTE IC/66/92 International

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

Sufficiency Conditions for Finite Escape Times in Systems of Quadratic Differential Equations

Sufficiency Conditions for Finite Escape Times in Systems of Quadratic Differential Equations /. Inst. Maths Applies (1977) 19, 377-383 Sufficiency Conditions for Finite Escape Times in Systems of Quadratic Differential Equations W. M. GETZ AND D. H. JACOBSON National Research Institute for Mathematical

More information

A UNIQUENESS THEOREM FOR MONOGENIC FUNCTIONS

A UNIQUENESS THEOREM FOR MONOGENIC FUNCTIONS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 8, 993, 05 6 A UNIQUENESS THEOREM FOR MONOGENIC FUNCTIONS Jörg Winkler Technische Universität Berlin, Fachbereich 3, Mathematik Straße

More information

Polynomial expansions in the Borel region

Polynomial expansions in the Borel region Polynomial expansions in the Borel region By J. T. HURT and L. R. FORD, Rice Institute, Houston, Texas. (Received 22nd August, 1936. Read 6th November, 1936.) This paper deals with certain expansions of

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

, Precalculus, Quarter 1

, Precalculus, Quarter 1 2017.18, Precalculus, Quarter 1 The following Practice Standards and Literacy Skills will be used throughout the course: Standards for Mathematical Practice Literacy Skills for Mathematical Proficiency

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS By J. B. McLEOD (Oxford)

ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS By J. B. McLEOD (Oxford) ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS By J. B. McLEOD (Oxford) [Received 25 October 1961] 1. IT is of some interest in the study of collision processes to consider the solution of the

More information

27. The pole diagram and the Laplace transform

27. The pole diagram and the Laplace transform 124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

CHAPTER XVI The search for consistency for intricate exponential algebras.

CHAPTER XVI The search for consistency for intricate exponential algebras. 16.1. Introduction. CHAPTER XVI The Dw hyperintricate exponential algebras We use the hyperintricate representation of matrices and explore exponentiation for these objects. Proofs by contradiction are

More information

A RAPID INTRODUCTION TO COMPLEX ANALYSIS

A RAPID INTRODUCTION TO COMPLEX ANALYSIS A RAPID INTRODUCTION TO COMPLEX ANALYSIS AKHIL MATHEW ABSTRACT. These notes give a rapid introduction to some of the basic results in complex analysis, assuming familiarity from the reader with Stokes

More information

ON THE ENERGY DECAY OF TWO COUPLED STRINGS THROUGH A JOINT DAMPER

ON THE ENERGY DECAY OF TWO COUPLED STRINGS THROUGH A JOINT DAMPER Journal of Sound and Vibration (997) 203(3), 447 455 ON THE ENERGY DECAY OF TWO COUPLED STRINGS THROUGH A JOINT DAMPER Department of Mechanical and Automation Engineering, The Chinese University of Hong

More information

We continue our study of the Pythagorean Theorem begun in ref. 1. The numbering of results and remarks in ref. 1 will

We continue our study of the Pythagorean Theorem begun in ref. 1. The numbering of results and remarks in ref. 1 will The Pythagorean Theorem: II. The infinite discrete case Richard V. Kadison Mathematics Department, University of Pennsylvania, Philadelphia, PA 19104-6395 Contributed by Richard V. Kadison, December 17,

More information

Asymptotic Error Estimates for the Gauss Quadrature Formula

Asymptotic Error Estimates for the Gauss Quadrature Formula Asymptotic Error Estimates for the Gauss Quadrature Formula By M. M. Chawla and M. K. Jain 1. Introduction. Classical error estimates for the Gauss quadrature formula using derivatives can be used, but

More information

Some anomalies of the curved bar problem in classical elasticity

Some anomalies of the curved bar problem in classical elasticity Journal of Elasticity 26: 75-86, 1991. 1991 Kluwer Academic Publishers. Printed in the Netherlands. Some anomalies of the curved bar problem in classical elasticity J.R. BARBER Department of Mechanical

More information

CURRICULUM PACING GUIDE ALG. II WITH TRIG (GRADES 10-12) 1st Nine Weeks 1

CURRICULUM PACING GUIDE ALG. II WITH TRIG (GRADES 10-12) 1st Nine Weeks 1 b. Use a variety of strategies to set up and solve increasingly complex problems c. Represent data, real-world situations and solutions in increasingly complex contexts (e.g., expressions, formulas, tables,

More information

INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS

INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS IC/66/100 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS A. A. GALEEV

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational expressions Solve polynomial equations and equations involving rational expressions Review Chapter 1 and their

More information

Putzer s Algorithm. Norman Lebovitz. September 8, 2016

Putzer s Algorithm. Norman Lebovitz. September 8, 2016 Putzer s Algorithm Norman Lebovitz September 8, 2016 1 Putzer s algorithm The differential equation dx = Ax, (1) dt where A is an n n matrix of constants, possesses the fundamental matrix solution exp(at),

More information

Algebraic Varieties. Chapter Algebraic Varieties

Algebraic Varieties. Chapter Algebraic Varieties Chapter 12 Algebraic Varieties 12.1 Algebraic Varieties Let K be a field, n 1 a natural number, and let f 1,..., f m K[X 1,..., X n ] be polynomials with coefficients in K. Then V = {(a 1,..., a n ) :

More information

Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment

Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment Algebra 2 Chapter (McGraw-Hill Algebra 2) Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment Chapter 0 (9 Days Suggested Pacing) Algebra 1 Content (Utilize as needed throughout Trimester

More information

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS Cezar Avramescu Abstract The problem of existence of the solutions for ordinary differential equations vanishing at ± is considered. AMS

More information

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions mathematics of computation volume 39, number 159 july 1982, pages 201-206 A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions By John P. Boyd Abstract. The theorem proved here extends

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

ax 2 + bx + c = 0 where

ax 2 + bx + c = 0 where Chapter P Prerequisites Section P.1 Real Numbers Real numbers The set of numbers formed by joining the set of rational numbers and the set of irrational numbers. Real number line A line used to graphically

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

THE G-FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS. II

THE G-FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS. II 18 ROOP NARAIN [February applying Theorem 1, that 0i(i)-"0»(O =x(0 for t^r where x(0 is the maximal solution of z'=co(i, z)+e through (r, 8). Further the first few examples of page 37 of [4] can all be

More information

Functions of a Complex Variable

Functions of a Complex Variable Functions of a Complex Variable In this chapter, we will study functions of a complex variables. The most interesting functions on the complex plane are those that are holomorphic. The most important holomorphic

More information

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations CPHT S758.0100 Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F91128 Palaiseau,

More information

PRIME NUMBER THEOREM

PRIME NUMBER THEOREM PRIME NUMBER THEOREM RYAN LIU Abstract. Prime numbers have always been seen as the building blocks of all integers, but their behavior and distribution are often puzzling. The prime number theorem gives

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Section 7.4: Inverse Laplace Transform

Section 7.4: Inverse Laplace Transform Section 74: Inverse Laplace Transform A natural question to ask about any function is whether it has an inverse function We now ask this question about the Laplace transform: given a function F (s), will

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

Math Analysis Curriculum Map Kennett High School

Math Analysis Curriculum Map Kennett High School Section Topic Specific Concept Standard Assessment mp assignments 1.1 Coordinate geometry distance formula, midpoint fomrula G-GPE.7 Use coordinates to compute perimeters of polygons and areas of triangles

More information

Proof. We indicate by α, β (finite or not) the end-points of I and call

Proof. We indicate by α, β (finite or not) the end-points of I and call C.6 Continuous functions Pag. 111 Proof of Corollary 4.25 Corollary 4.25 Let f be continuous on the interval I and suppose it admits non-zero its (finite or infinite) that are different in sign for x tending

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U )

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U ) 3 Riemann surfaces 3.1 Definitions and examples From the definition of a surface, each point has a neighbourhood U and a homeomorphism ϕ U from U to an open set V in R 2. If two such neighbourhoods U,

More information

Some topics in analysis related to Banach algebras, 2

Some topics in analysis related to Banach algebras, 2 Some topics in analysis related to Banach algebras, 2 Stephen Semmes Rice University... Abstract Contents I Preliminaries 3 1 A few basic inequalities 3 2 q-semimetrics 4 3 q-absolute value functions 7

More information

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Algebra II (Grades 9-12)

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Algebra II (Grades 9-12) California Mathematics Content Standards for Algebra II (Grades 9-12) This discipline complements and expands the mathematical content and concepts of algebra I and geometry. Students who master algebra

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

P-adic Functions - Part 1

P-adic Functions - Part 1 P-adic Functions - Part 1 Nicolae Ciocan 22.11.2011 1 Locally constant functions Motivation: Another big difference between p-adic analysis and real analysis is the existence of nontrivial locally constant

More information

Lambert's Problem: given r 0, r 1, t; solve for the conic parameters.

Lambert's Problem: given r 0, r 1, t; solve for the conic parameters. Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts Space Guidance Analysis Memo #3-64, (Revision 1) TO: SGA Distribution FROM: William Marscher DATE: August 4, 1964

More information

UNIVERSITY OF CAMBRIDGE

UNIVERSITY OF CAMBRIDGE UNIVERSITY OF CAMBRIDGE DOWNING COLLEGE MATHEMATICS FOR ECONOMISTS WORKBOOK This workbook is intended for students coming to Downing College Cambridge to study Economics 2018/ 19 1 Introduction Mathematics

More information

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS Abstract This letter discusses the differences in-between positive realness

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

CCSS covered Key Vocabulary Vertical Alignment. Chapter (McGraw-Hill Algebra 2)

CCSS covered Key Vocabulary Vertical Alignment. Chapter (McGraw-Hill Algebra 2) Algebra 2 Chapter (McGraw-Hill Algebra 2) 1 st Quad Expectations CCSS covered Key Vocabulary Vertical Alignment Chapter 0 (9 Days Suggested Pacing) Algebra 1 Content (Prerequisites Review)(Not assessed

More information

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Govindan Rangarajan a) Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012,

More information

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DESY 77/7 May 1977 p Recurrences in J/~ + 3~ by II. Z. z., Aydin. Abstract:.. We study the recurre~~~~ decay of the J/~ and show that for this decay gives the following

More information

A NOTE ON FUNCTIONS OF EXPONENTIAL TYPE 1. An entire function ƒ(z) is said to be of exponential type at most T if

A NOTE ON FUNCTIONS OF EXPONENTIAL TYPE 1. An entire function ƒ(z) is said to be of exponential type at most T if A NOTE ON FUNCTIONS OF EXPONENTIAL TYPE 1 R. P. BOAS, JR. An entire function ƒ(z) is said to be of exponential type at most T if (1) limsup ƒ(*) 1/n ^ T n

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Math 370 Semester Review Name

Math 370 Semester Review Name Math 370 Semester Review Name 1) State the following theorems: (a) Remainder Theorem (b) Factor Theorem (c) Rational Root Theorem (d) Fundamental Theorem of Algebra (a) If a polynomial f(x) is divided

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

Infinite susceptibility at high temperatures in the Migdal-Kadanoff scheme

Infinite susceptibility at high temperatures in the Migdal-Kadanoff scheme Cleveland State University From the SelectedWorks of Miron Kaufman 1982 Infinite susceptibility at high temperatures in the Migdal-Kadanoff scheme Miron Kaufman Robert B Griffiths, Carnegie Mellon University

More information

Complex Analysis Slide 9: Power Series

Complex Analysis Slide 9: Power Series Complex Analysis Slide 9: Power Series MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Slide 9: Power Series 1 / 37 Learning Outcome of this Lecture We learn Sequence

More information

A Model That Realizes Veneziano Duality

A Model That Realizes Veneziano Duality A Model That Realizes Veneziano Duality L. Jenkovszky, V. Magas, J.T. Londergan and A. Szczepaniak, Int l Journ of Mod Physics A27, 1250517 (2012) Review, Veneziano dual model resonance-regge Limitations

More information

Lecture 22 Highlights Phys 402

Lecture 22 Highlights Phys 402 Lecture 22 Highlights Phys 402 Scattering experiments are one of the most important ways to gain an understanding of the microscopic world that is described by quantum mechanics. The idea is to take a

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California. July 1966 ABSTRACT

EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California. July 1966 ABSTRACT SIAC-PUB-202 EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California Center July 1966 ABSTRACT An example is given of a bound state which occurs in a channel

More information

Introduction - Algebra II

Introduction - Algebra II Introduction - The following released test questions are taken from the Standards Test. This test is one of the California Standards Tests administered as part of the Standardized Testing and Reporting

More information