INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS

Size: px
Start display at page:

Download "INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS"

Transcription

1 IC/66/100 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS O N TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS A. A. GALEEV R. Z. SAGDEEV AND H. V. WONG 1966 PIAZZA OBERDAN TRIESTE

2

3 IC/66/100 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS ON TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS A.A. GALEEV* R.Z. SAGDEEV* and H.V. WONG TRIESTE August 1966 "*To be submitted to "Physics of Fluids" * Permanent address: Institute for Nuclear Physics, Novosibirsk, USSR. 7

4

5 ABSTRACT The drift motion of trapped particl&s in toroidal systems leads to a new branch of the gravitational instability. This is stabilized by radial eleotric fields. However, a new unstable mode then appearb, which is similar to that due to ion impurity density gradients

6 INFLUENCE OF STATIC, RADIAL ELECTRIC FIELDS ON TRAPPED PARTICLE INSTABILITIES IN TOROIDAL SYSTEMS I. INTRODUCTION 1) Recently B.B. KADOMTSEV and 0, POGUTSE JmJ derived a new branch of the gravitational instability which is immune to Bhear stabilization. The instability arises in toroidal confining systems and is due essentially to the drift motion of the "trapped" particles. In this paper we show that this instability can be stabilized by 2) radial electric fields arising in the plasma» in other words by plasma rotation. The effect of the electrio field is to push the "trapped" ions to the tail of the Ion distribution function so that the contribution of the trapped ions to the dispersion relation becomes small. A new unstable mode then becomes possible. This mode is analogous to that due to ion impurity density gradients, the trapped electrons taking the role of the impurity ions. II. PARTICLE ORBITS Fig. 1. We consider a symmetrio toroidal system with dimensions as shown in Fig. 1 Toroidal co-ordinates - 2 -

7 R is the major radius, a is the minor radius, and a/r <&l* We choose co-ordinates (r,^^) to describe the geometry of the system. The (r, f ) plane contains the major axis, and the position of this plane is defined by the angle. The main magnetic field is due to a current flowing along the major axis and is given by Bn = B Q (l - (r/r Q ) oosv). A rotational transform i about the minor axis is produced by the field By, = -i(r/r ) B «, B. «T o o o The equations of motion of the partiole-guiding oentre in zero order approximation' aret and we have We denote by v ti and v t the components of particle velocity parallel and perpendicular to the minor axis. We assume the presence of a static. radial electric field - H. The particles experience drifts due to curvature and gradients in the magnetic field. It is convenient to introduce a new quantity <p t which desoribes the variation from the zero-order motion of the p coordinate. For particles with charge e. and mass m., the equations of motion of the guiding oentre, including drifts, can be written dlt -flu;, -r i - ^. c^<r {&) where v, = (v^ + v.,,) /il. H the magnitude of the curvature and gradient drifts, v~, =s (e,/#.&.) (335^/dr) the drift due to a static, radial & j J J / 3 - T

8 electric field and q 1 = dq/dr = (d/dr) (l/i). - ( O ^ /dt) t Q. = (e,b /m.o) the cyclotron frequency, The particle trajectories corresponding to Eqs. (4) - (6) have "been discussed by BERK et al. ' Two types of orbits exist: the untrapped particles which circulate around the minor axis, and the trapped par- 2) tides which do not. The particles are trapped when ' Thus the trapped particles have velocity v,, = v -n/& an( * *" or! ar S e V E or small 0 they could lie in the tail of the distribution function. In the absence of electric fields, v,, < /r/r V and they are in the main part of the distribution function. We can estimate the period of oscillation of the trapped particles by using the zero order equation 1 +" + \T. The term Q0B <P is of order S ^ «- smaller than Q\T j "f is the Larmor radius. We have! where r = r o when tf>= 0, ^ = %, the magnetic moment a. ~ \Jj*- Zx»-. and we have neglected terms containing Z and ^ lt The trapped particles are reflected at *f= J (lc) given by cos ^f f = 1 = 2% 2) p We require )C < 1. The period of osoiallation Tie where K is a complete elliptic function of the first kind, and ol is 2 ' given by oosoc 1-21C. -4-

9 III. DISPERSION RELATION We shall now derive the dispersion relation. We assume that 0- (8xnT) / B <<; 1, where n is the density and T the temperature of the plasma, and we consider only electrostatic perturbations. The equilibrium distribution function f f (r, v t j,/x) is taken to be a local Maxwellian, where vf, is the velocity along the line of force. We neglect the dependence on V 5» since it does not make an essential contribution to the dispersion relation. The linearized equation for the perturbed distribution function in the drift approximation is T, is the velocity of the guiding centre. is the potential of the perturbed electric field -loot where i is an integer. In the usual way we obtain for f.' where n* JL II j L ^^fo) and we have replaced 0 by Y QQP~ X-j from Eq. (3) The time integration must be taken over the guiding centre trajeotory. We have two groups of particles which we must consider separately: 12 The trapped particles have a periodic oscillatory motion in restricted regions of (r,*p)-spaoe. We can expand $(r',f) in a sura over the harmonics of this periodic motion. The integration over time becomes trivial. We obtain a contribution to the dispersion, relation which is similar to that obtained when we consider the effect of Larmor orbiting in the magnetic field. The frequency of the periodio motion plays the same role as the Larmor frequency, except that here it would be a function of the velocity of the particles. We shall be interested only in the zero harmonic. It is sufficient therefore to average the periodio variation of the integrand over one period of oscillation. v

10 The co-ordinate C makes small fluctuations about an average value which increases monotonically in time. For times longer than the period of one oscillation, the fluctuations are small compared with its average value and can be neglected. We can therefore approximate t (t') by set-) < : ^ where < > imply averaging over one period of oscillation. The contribution of the trapped partioles to the integral in Eq. (11) "beoomes 2) The untrapped particles circulate completely around the minor axis and are characterized by larg«angular velooities r(df/dt). Neglecting the drift contributions, we can approximate ^(t') by (11) The contribution of the untrapped partioles to the integral in Eq. Assuming quasi-neutrality, we have for the dispersion relation -6-

11 This is an integral-differential equation which we must solve to obtain the eigenfrequencies. This is a difficult problem, and we shall oontent ourselves here "by estimating the simplest eigenvalue of the dispersion equation. He assume that * 2? e where m is an integer. We shall neglect the radial motion of the wave packet (for further discussion of this point see ref. 3)). We obtain the dispersion relation similar to that first obtained by KADOMTSEV and POGUTSE 't -i/ «"» where * '; T>; / ~Q)f, i * ' (17) IV. STABILITY ANALYSIS l) Zero static electric field So far the value of (m Xq) has not been specified. We consider the oase where -7-

12 1* V We assume the ion and electron temperatures to be equal T = T., and static eleotrio fields to be zero* He neglect the contri'bution of the untrapped particles. The dispersion relation becomes (19) where e (20) and -r L E is a complete elliptic function of the second kind with argument sinflf/2. -8-

13 The trapped electrons and ions are in the main part of the distribution function, and we may assume their densities to be equal. The large terms containing- coo* in Eq. (19) cancel- and we obtain have approximated since v L «* v for the trapped particles. Now we can write Eq. (22) in the form where N 2rr to r A 6O* (24) ^\^ = p 0 - function. ^ Sq. (23) must now be solved to obtain a value for A, KADOMTSEV and POGFUTSB ' derived this equation and solved it numerically. They in fact considered the limit where (m - Jtq.) << 1» and also neglected the contribution of the untrapped particles.they found an aperiodic instability with growth rate Y- Im co given by ^) *) Kadomtsev has shown, using numerical analyses, that P^^, decreases rapidly with I m-m' I. Therefore it is reasonable to derive the approximate dispersion relation taking simply A, =^mm, >Ie ^ri- 11 use tlle Kadomtsevtype approximation later on. -9-

14 y yc T (2Y) 2) Won-zero static electric field e wish to point out, however, that Eq. (22) was obtained on the assumption of equal densities of trapped ions and electrons. If radial electric fields develop in the plasma (see ref. 2)), the plasma rotates aoout the minor axis of the toroid. The effect of this is not only to produce a frequency shift. At the same time the trapped particles are pushed out to the tail of the distribution function, since their parallel velocity -v u ~v^/& (see Eq. (?)) For equal ion and electron temperatures, the density of trapped ions decrease more rapidly than that of the electrons, and exact cancellation of the large terms in Eq. (19) do not occur. The instability will therefore be eventually quenched*)and we shall be left with a purely periodic mode with frequency to ^ e- 6J^ -X (28) *) The stability condition can be written in a form On the other hand, when the density of trapped ions has become small, a new instability arises. The untrapped ions now play a significant role. Assuming 1 that Eq. (IS) is satisfied, we neglect in Eq. (16) the untrapped electrons, and retain the imaginary contribution of the untrapped ions coming from the half-residue in the velocity integration. The dispersion relation is -10-

15 where we again & consider T. = T. i e If we neglect the effect of the radial electric fields on the trapped electrons, we can -write Eq." (2ft) in the form where F 777 (29) and F We must solve Eq. (29) to obtain a value for relation represented by Eq. (30) can "be written E J (31) The dispersion (32) This equation is similar to that derived for the ion impurity density gradient instability ', the trapped electrons playing the part of the ion impurities. The worst case results when the second term in the denominator of Eq. (3 ) is of order unity, and we have _.. ^j To satisfy Eq. (l8) we require ^ tl (34) ACKNOWLEDGMENTS The authors are grateful to Professor Abdiis Salam and the IAEA for their hospitality at the International Centre for Theoretical Physics, Trieste. H.V. Wong was supported by a CIBA fellowship. f- -11-

16 REFERENCES 1. 3.B. KADOP-iTSEV and 0. POGUTSE, International Sympositun on Experimental and Theoretical Aspects of Toroidal Confinement, Princeton, ILL. BERK and A.A. GALEEV, ICTP, Trieste, preprint IC/66/ B. COPPI, H.P. PUHTH, M.JT. ROS2Jn3LUTH and R.Z. SAGDEEV, Phys. Rev. Letters 17., 377 (1966) ") 9

17

18 Available from the Office of the Scientific Information and Documentation Officer, International Centre for Theoretical Physics, Piazza Oberdan 6, TRIESTE, Italy

QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY

QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY IC/66/92 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS QUASI-LINEAR THEORY OF THE LOSS-CONE INSTABILITY A. A. GALEEV 1966 PIAZZA OBERDAN TRIESTE IC/66/92 International

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM

ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM IC/67/14 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON THE RE-ARRANGEMENT ENERGY OF THE NUCLEAR MANY-BODY PROBLEM M. E. GRYPEOS 1967 PIAZZA OBERDAN TRIESTE Ic/67/14

More information

Charged particle motion in external fields

Charged particle motion in external fields Chapter 2 Charged particle motion in external fields A (fully ionized) plasma contains a very large number of particles. In general, their motion can only be studied statistically, taking appropriate averages.

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Sawtooth mixing of alphas, knock on D, T ions and its influence on NPA spectra in ITER plasma

Sawtooth mixing of alphas, knock on D, T ions and its influence on NPA spectra in ITER plasma Sawtooth mixing of alphas, knock on D, T ions and its influence on NPA spectra in ITER plasma F.S. Zaitsev 1, 4, N.N. Gorelenkov 2, M.P. Petrov 3, V.I. Afanasyev 3, M.I. Mironov 3 1 Scientific Research

More information

RELATION BETWEEN PROTON-NUCLEUS AND PROTON-NUCLEON INTERACTION AT 20 GeV

RELATION BETWEEN PROTON-NUCLEUS AND PROTON-NUCLEON INTERACTION AT 20 GeV IC/66/120 ATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS RELATION BETWEEN PROTON-NUCLEUS AND PROTON-NUCLEON INTERACTION AT 20 GeV W. E. FRAHN 1966 PIAZZA OBERDAN TRIESTE IC/66/120

More information

Theory and Simulation of Neoclassical Transport Processes, with Local Trapping

Theory and Simulation of Neoclassical Transport Processes, with Local Trapping Theory and Simulation of Neoclassical Transport Processes, with Local Trapping Daniel H. E. Dubin Department of Physics, University of California at San Diego, La Jolla, CA USA 92093-0319 Abstract. Neoclassical

More information

Stabilization of sawteeth in tokamaks with toroidal flows

Stabilization of sawteeth in tokamaks with toroidal flows PHYSICS OF PLASMAS VOLUME 9, NUMBER 7 JULY 2002 Stabilization of sawteeth in tokamaks with toroidal flows Robert G. Kleva and Parvez N. Guzdar Institute for Plasma Research, University of Maryland, College

More information

ON SPECTRAL FUNCTIONS SUM RULES

ON SPECTRAL FUNCTIONS SUM RULES IC/68/61 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON SPECTRAL FUNCTIONS SUM RULES C. G. BOLLINI AND J. J. GIAMBIAGI 1968 MIRAMARE - TRIESTE IC/68/01 INTERNATIONAL

More information

EVEN AND ODD PARITY STATES IN y Be

EVEN AND ODD PARITY STATES IN y Be . t-j) IC/68/27 c INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS EVEN AND ODD PARITY STATES IN y Be M. BOUTEN M.C. BOUTEN H. DEPUYDT AND L. SCHOTSMANS 1968 PIAZZA OBERDAN

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

September Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

September Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA PFC/JA-95-19 RF WAVE EFFECTS ON THE NEOCLASSICAL ELECTRON DISTRIBUTION FUNCTION IN TOKAMAKS S. D. Schultz, A. Bers, and A. K. Ram September 1995 Plasma Fusion Center Massachusetts Institute of Technology

More information

Stability of a plasma confined in a dipole field

Stability of a plasma confined in a dipole field PHYSICS OF PLASMAS VOLUME 5, NUMBER 10 OCTOBER 1998 Stability of a plasma confined in a dipole field Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37 Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the Grad-Shafranov equation Collisional

More information

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

A Study of Directly Launched Ion Bernstein Waves in a Tokamak PFC-/JA-86-6 A Study of Directly Launched Ion Bernstein Waves in a Tokamak Y. Takase, J. D. Moody, C. L. Fiore, F. S. McDermott, M. Porkolab, and J. Squire Plasma Fusion Center Massachusetts Institute

More information

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD 1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS IC/68/54 0^ 19. JUL1B6b) 5^1 2 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS N. F. NASRALLAH 1968 MIRAMARE - TRIESTE

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA 10

Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA 10 EXC/P8-2 Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA M. Yoshikawa ), Y. Miyata ), M. Mizuguchi ), Y. Oono ), F. Yaguchi ), M. Ichimura ), T. Imai ), T.

More information

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE GA A6 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE by R. PRATER, C.C. PETTY, R. HARVEY, Y.R. LIN-LIU, J.M. LOHR, and T.C. LUCE JULY DISCLAIMER This report was prepared as an account of work sponsored

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

down distribution. The present study is dedicated to the transport of fast particles produced by usual core plasma microinstabilities, like ion temper

down distribution. The present study is dedicated to the transport of fast particles produced by usual core plasma microinstabilities, like ion temper Gyrokinetic calculations of diffusive and convective transport of ff particles with a slowing down distribution function C. Angioni and A.G. Peeters y Max-Planck-Institut für Plasmaphysik, IPP-EURATOM

More information

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program University of Washington IEEE International Conference

More information

L Aquila, Maggio 2002

L Aquila, Maggio 2002 Nonlinear saturation of Shear Alfvén Modes and energetic ion transports in Tokamak equilibria with hollow-q profiles G. Vlad, S. Briguglio, F. Zonca, G. Fogaccia Associazione Euratom-ENEA sulla Fusione,

More information

INTERMEDIATE RESONANCES OF NEUTRONS SCATTERED BY DEFORMED NUCLEI

INTERMEDIATE RESONANCES OF NEUTRONS SCATTERED BY DEFORMED NUCLEI IC/66/109 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS INTERMEDIATE RESONANCES OF NEUTRONS SCATTERED BY DEFORMED NUCLEI G. PISENT AND F. ZARDI 1966 PIAZZA OBERDAN TRIESTE

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

Particle Pinch Model of Passing/Trapped High-Z Impurity with Centrifugal Force Effect )

Particle Pinch Model of Passing/Trapped High-Z Impurity with Centrifugal Force Effect ) Particle Pinch Model of Passing/Trapped High-Z Impurity with Centrifugal Force Effect ) Yusuke SHIMIZU, Takaaki FUJITA, Atsushi OKAMOTO, Hideki ARIMOTO, Nobuhiko HAYASHI 1), Kazuo HOSHINO 2), Tomohide

More information

Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas

Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas PHYSICAL REVIEW E VOLUME 55, NUMBER FEBRUARY 1997 Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas A. A. Mamun Department of Physics, Jahangirnagar University, Savar,

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/90/124.-- INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS CENTRIFUGAL FORCE IN ERNST SPACETIME A.R.Prasanna INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

More information

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA PFC/JA-88-38 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD 21st IAEA Fusion Energy Conference Chengdu, China, 16-21 October, 2006 IAEA-CN-149/ Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD K. Saito et al. NIFS-851 Oct.

More information

Introduction. Chapter Plasma: definitions

Introduction. Chapter Plasma: definitions Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a

More information

Toroidal confinement devices

Toroidal confinement devices Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power

More information

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH Dedicated to Professor Oliviu Gherman s 80 th Anniversary POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH N. POMETESCU Association EURATOM-MECTS Romania, University of Craiova, Faculty of

More information

MHD WAVES AND GLOBAL ALFVÉN EIGENMODES

MHD WAVES AND GLOBAL ALFVÉN EIGENMODES MHD WVES ND GLOBL LFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion ssociation, Culham Science Centre, bingdon, Oxfordshire OX14 3DB, UK S.E.Sharapov, Lecture 3, ustralian National University, Canberra,

More information

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

More information

Academic and Research Staff. Prof. T. H. Dupree Prof. L. M. Lidsky Prof. N. L. Oleson. Graduate Students

Academic and Research Staff. Prof. T. H. Dupree Prof. L. M. Lidsky Prof. N. L. Oleson. Graduate Students XV. INTERACTION OF LASER RADIATION WITH PLASMAS AND NONADIABATIC MOTION OF PARTICLES IN MAGNETIC FIELDS Academic and Research Staff Prof. T. H. Dupree Prof. L. M. Lidsy Prof. N. L. Oleson Graduate Students

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

VELOCITY SPACE DIFFUSION FROM WEAK PLASMA TURBULENCE IN A STRONG MAGNETIC FIELD

VELOCITY SPACE DIFFUSION FROM WEAK PLASMA TURBULENCE IN A STRONG MAGNETIC FIELD REFERENCE IC/66/17 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS VELOCITY SPACE DIFFUSION FROM WEAK PLASMA TURBULENCE IN A STRONG MAGNETIC FIELD C. F. KENNEL 1966 PIAZZA

More information

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies R. F. Post, T. K. Fowler*, R. Bulmer, J. Byers, D. Hua, L. Tung Lawrence Livermore National Laboratory *Consultant, Presenter This talk

More information

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions R. Farengo, H. E. Ferrari,2, M.-C. Firpo 3, P. L. Garcia-Martinez 2,3, A. F. Lifschitz

More information

Exponential Growth of Nonlinear Ballooning Instability. Abstract

Exponential Growth of Nonlinear Ballooning Instability. Abstract Exponential Growth of Nonlinear Ballooning Instability P. Zhu, C. C. Hegna, and C. R. Sovinec Center for Plasma Theory and Computation University of Wisconsin-Madison Madison, WI 53706, USA Abstract Recent

More information

Plasmoid Motion in Helical Plasmas

Plasmoid Motion in Helical Plasmas Plasmoid Motion in Helical Plasmas Ryuichi ISHIZAKI and Noriyoshi NAKAJIMA National Institute for Fusion Science, Toki 509-5292, Japan (Received 12 December 2009 / Accepted 18 May 2010) In order to explain

More information

Dynamics of Drift and Flute Modes in Linear Cylindrical ECR Plasma

Dynamics of Drift and Flute Modes in Linear Cylindrical ECR Plasma J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Dynamics of Drift and Flute Modes in Linear Cylindrical ECR Plasma Kunihiro KAMATAKI 1), Sanae I. ITOH 2), Yoshihiko NAGASHIMA 3), Shigeru INAGAKI 2), Shunjiro

More information

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission )

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Mieko TOIDA 1),KenjiSAITO 1), Hiroe IGAMI 1), Tsuyoshi AKIYAMA 1,2), Shuji KAMIO

More information

MAGNETOHYDRODYNAMICS

MAGNETOHYDRODYNAMICS Chapter 6 MAGNETOHYDRODYNAMICS 6.1 Introduction Magnetohydrodynamics is a branch of plasma physics dealing with dc or low frequency effects in fully ionized magnetized plasma. In this chapter we will study

More information

Non-Linear Plasma Wave Decay to Longer Wavelength

Non-Linear Plasma Wave Decay to Longer Wavelength Non-Linear Plasma Wave Decay to Longer Wavelength F. Anderegg 1, a), M. Affolter 1, A. Ashourvan 1, D.H.E. Dubin 1, F. Valentini 2 and C.F. Driscoll 1 1 University of California San Diego Physics Department

More information

Influence of Plasma Opacity on Current Decay after Disruptions in Tokamaks

Influence of Plasma Opacity on Current Decay after Disruptions in Tokamaks 1 Influence of Plasma Opacity on Current Decay after Disruptions in Tokamaks V.E Lukash 1), A.B. Mineev 2), and D.Kh. Morozov 1) 1) Institute of Nuclear Fusion, RRC Kurchatov Institute, Moscow, Russia

More information

Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria

Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria Robert G. Kleva Institute for Plasma Research, University of Maryland, College Park, Maryland

More information

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma F.J. Casson, A.G. Peeters, Y. Camenen, W.A. Hornsby, A.P. Snodin, D. Strintzi, G.Szepesi CCFE Turbsim, July

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Nonlinear hydrid simulations of precessional Fishbone instability

Nonlinear hydrid simulations of precessional Fishbone instability Nonlinear hydrid simulations of precessional Fishbone instability M. Faganello 1, M. Idouakass 1, H. L. Berk 2, X. Garbet 3, S. Benkadda 1 1 Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 22 Adiabatic Invariance of Magnetic Moment and Mirror Confinement Today, we

More information

arxiv: v2 [physics.plasm-ph] 22 Mar 2017

arxiv: v2 [physics.plasm-ph] 22 Mar 2017 Generalized lower-hybrid mode with, density gradient, equilibrium ExB drift, collisions and finite electron Larmor radius: Numerical studies with MATLAB solver. Ivan Romadanov, Andrei Smolyakov, Winston

More information

Issues in Neoclassical Tearing Mode Theory

Issues in Neoclassical Tearing Mode Theory Issues in Neoclassical Tearing Mode Theory Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX Tearing Mode Stability in Tokamaks According to standard (single-fluid)

More information

PFC/JA-93-5 ANOMALOUS ELECTRON STREAMING DUE TO WAVES IN TOKAMAK PLASMAS. April S. D. Schultz, A. Bers, and A. K. Ram

PFC/JA-93-5 ANOMALOUS ELECTRON STREAMING DUE TO WAVES IN TOKAMAK PLASMAS. April S. D. Schultz, A. Bers, and A. K. Ram PFC/JA-93-5 ANOMALOUS ELECTRON STREAMING DUE TO WAVES IN TOKAMAK PLASMAS S. D. Schultz, A. Bers, and A. K. Ram April 1993 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts

More information

Single particle motion

Single particle motion Single particle motion Plasma is a collection of a very large number of charged particles moving in, and giving rise to, electromagnetic fields. Before going to the statistical descriptions, let us learn

More information

Drift Waves in General Toroidal Geometry. Abstract

Drift Waves in General Toroidal Geometry. Abstract Drift Waves in General Toroidal Geometry J.L.V. Lewandowski Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton NJ 08543 January 31, 2000 Abstract A model, based on gyro-kinetic

More information

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics

More information

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report

More information

Landau damping in space plasmas with generalized r, q distribution function

Landau damping in space plasmas with generalized r, q distribution function PHYSICS OF PLASMAS 12, 122902 2005 Landau damping in space plasmas with generalized r, q distribution function M. N. S. Qureshi Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing

More information

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh SOLITARY AND SHOCK WAVES IN DUSTY PLASMAS Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh OUTLINE Introduction Static Dust: DIA Waves DIA Solitary Waves DIA Shock Waves Mobile

More information

1 Supplementary Figure

1 Supplementary Figure Supplementary Figure Tunneling conductance ns.5..5..5 a n =... B = T B = T. - -5 - -5 5 Sample bias mv E n mev 5-5 - -5 5-5 - -5 4 n 8 4 8 nb / T / b T T 9T 8T 7T 6T 5T 4T Figure S: Landau-level spectra

More information

Single Particle Motion

Single Particle Motion Single Particle Motion Overview Electromagnetic fields, Lorentz-force, gyration and guiding center, drifts, adiabatic invariants. Pre-requisites: Energy density of the particle population smaller than

More information

Y. Y. LAU Ronald C. Davidson Bertram Hui. PFC/JA September, 1979

Y. Y. LAU Ronald C. Davidson Bertram Hui. PFC/JA September, 1979 TRANSIENT AMPLIFICATION OF SHEAR ALFVEN WAVES AND CONCOMITANT DEVELOPMENT OF THE BALLOONING INSTABILITY Y. Y. LAU Ronald C. Davidson Bertram Hui PFC/JA-79-11 September, 1979 TRANSIENT AMPLIFICATION OF

More information

Highlights from (3D) Modeling of Tokamak Disruptions

Highlights from (3D) Modeling of Tokamak Disruptions Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly

More information

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow Home Search Collections Journals About Contact us My IOPscience Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation This article has been downloaded from IOPscience.

More information

Extraction from cyclotrons. P. Heikkinen

Extraction from cyclotrons. P. Heikkinen Extraction from cyclotrons P. Heikkinen Classification of extraction schemes Linear accelerators Circular accelerators No extraction problem Constant orbit radius (sychrotrons, betatrons) Increasing orbit

More information

Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap PHYSICS OF PLASMAS 1, 01101 (005) Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap S. G. Kumin and T. M. O Neil Department of Physics, University of California

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract

PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET. Abstract PHYSICS BASIS FOR THE GASDYNAMIC MIRROR (GDM) FUSION ROCKET T. Kammash Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 (313) 764-0205 W. Emrich Jr.

More information

Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field

Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field PHYSICAL REVIEW A 72, 033405 2005 Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field M. W. Horbatsch, E. A. Hessels, and M. Horbatsch Department of Physics

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations PHYSICS OF PLASMAS 12, 072513 2005 Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations J. N. Talmadge and S. P. Gerhardt a HSX Plasma Laboratory, University

More information

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University

More information

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping. Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle

More information

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker, J.J. Kohut, Y. Chen, Z. Lin, F.L. Hinton and W.W. Lee Center for Integrated Plasma Studies, University of Colorado,

More information

ION THERMAL CONDUCTIVITY IN TORSATRONS. R. E. Potok, P. A. Politzer, and L. M. Lidsky. April 1980 PFC/JA-80-10

ION THERMAL CONDUCTIVITY IN TORSATRONS. R. E. Potok, P. A. Politzer, and L. M. Lidsky. April 1980 PFC/JA-80-10 ION THERMAL CONDUCTIVITY IN TORSATRONS R. E. Potok, P. A. Politzer, and L. M. Lidsky April 1980 PFC/JA-80-10 ION THERMAL CONDUCTIVITY IN TORSATRONS R.E. Potok, P.A. Politzer, and L.M. Lidsky Plasma Fusion

More information

Collisional damping of plasma waves on a pure electron plasma column

Collisional damping of plasma waves on a pure electron plasma column PHYSICS OF PLASMAS 14, 112110 2007 Collisional damping of plasma waves on a pure electron plasma column M. W. Anderson and T. M. O Neil Department of Physics, University of California at San Diego, La

More information

HILL S EQUATION WITH RANDOM FORCING TERMS. Fred C. Adams and Anthony M. Bloch Also: Suzie Butler, Jeff Druce and Jake Ketchum

HILL S EQUATION WITH RANDOM FORCING TERMS. Fred C. Adams and Anthony M. Bloch Also: Suzie Butler, Jeff Druce and Jake Ketchum 1 HILL S EQUATION WITH RANDOM FORCING TERMS Fred C. Adams and Anthony M. Bloch Also: Suzie Butler, Jeff Druce and Jake Ketchum 2 Orbit problems in astrophysics Solutions to Hill s equation with forcing

More information

Toroidal flow stablization of disruptive high tokamaks

Toroidal flow stablization of disruptive high tokamaks PHYSICS OF PLASMAS VOLUME 9, NUMBER 6 JUNE 2002 Robert G. Kleva and Parvez N. Guzdar Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 Received 4 February 2002; accepted

More information

Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows

Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows Johan Anderson 1 and Eun-jin Kim University of Sheffield Department of Applied Mathematics Hicks Building,

More information

Theory of Off Resonance Heat:ing. August 1970

Theory of Off Resonance Heat:ing. August 1970 Theory of Off Resonance Heat:ing by J.C. SPROTI August 1970 PLP 373 These PLP Reports are informal and preliminary and as such may contain errors not yet eliminated. They are for private circulation only

More information

The effect of the radial electric field on neoclassical flows in a tokamak pedestal

The effect of the radial electric field on neoclassical flows in a tokamak pedestal PSFC/JA-1-4 The effect of the radial electric field on neoclassical flows in a tokamak pedestal Grigory Kagan 1, Kenneth D. Marr, Peter J. Catto, Matt Landreman, Bruce Lipschultz and Rachael McDermott

More information

RFP PROF ILE REPRESENTATIONS. J.C. Sprott

RFP PROF ILE REPRESENTATIONS. J.C. Sprott RFP PROF LE REPRESENTATONS J.C. Sprott PLP 1008 August 1987 Plasma Studies University of Wisconsin These PLP Reports are informal and preliminary and as such may contain errors not yet eliminated. They

More information

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009 QUALIFYING EXAMINATION, Part 1 2:00 PM 5:00 PM, Thursday September 3, 2009 Attempt all parts of all four problems. Please begin your answer to each problem on a separate sheet, write your 3 digit code

More information

Lecture # 3. Introduction to Kink Modes the Kruskal- Shafranov Limit.

Lecture # 3. Introduction to Kink Modes the Kruskal- Shafranov Limit. Lecture # 3. Introduction to Kink Modes the Kruskal- Shafranov Limit. Steve Cowley UCLA. This lecture is meant to introduce the simplest ideas about kink modes. It would take many lectures to develop the

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information