Statistics 360/601 Modern Bayesian Theory

Size: px
Start display at page:

Download "Statistics 360/601 Modern Bayesian Theory"

Transcription

1 Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 20something - Nov 27, 2018

2 The Challenger disaster This is an example from Monte Carlo Statistical Methods by Robert and Casella (2004). In 1986, the Challenger space shuttle exploded on take off. Suspected cause of explosion: O-ring failure. By Kapitel, vectorisation by Adam Rdzikowski - Own work, GFDL, curid= Simplified cross section of the joints between rocket segments SRB; outside to left. Legend: A - steel wall 0.5 inches (12.7 mm) thick B - base O-ring gasket, C - backup O-ring gasket, D - Strengthening-Cover band, E - insulation, F - insulation, G - carpeting, H - sealing paste, I - fixed propellant

3 The Challenger disaster O-rings are rigorously tested. Anomaly during the launch: unusually cold temperature (31 degrees F). There is reason to believe that O-ring failure probabilities increase as temperature decreases. We have data on 23 other launches: Flight Failure Temperature Hard to read... Looks like more 1s at lower temperatures.

4 The Challenger disaster 80 temp as.factor(fail) Linear relationship between odds or log odds of failure and temperature seems reasonable. Use logistic regression!

5 4 The Challenger disaster Our model: Pr(failure = 1) = exp(α + β temp) 1 + exp(α + β temp) We have 23 data points that we will assume are conditionally independent. failure 1,..., failure 23 α, β, temp 1,..., temp 23 exp(α + β temp ( i ) 1 + exp(α + β temp i ) )failure i 1 ( 1 + exp(α + β temp i ) )1 failure i

6 5 Dissecting the code Initialize θ (0) Propose θ from proposal J θ (θ θ (0) ) Evaluate the likelihood under the proposal v 1 = p(y i θ ) and under the current θ (0) : v 2 = p(y i θ (0) ) Evaluate the prior under the proposal v 3 = π θ (θ ) and under the current value v 4 = π θ (θ (0) ) Evaluate the proposal probability for the proposed value v 5 = J θ (θ θ (0) ) and for the current value v 6 = J θ (θ (0) θ ) Compute the acceptance ratio: r = min(1, v 1 v 2 v 3 v 4 v 6 v 5 ) Simulate u unif (0, 1) and accept θ if u < r.

7 Dissecting the code Initialize θ (0) = (α (0), β (0 ) Propose θ from proposal π α (α ˆb)φ(β). Evaluate the likelihood under the proposal: v 1 = p(y i α, β, x i ) and under θ (0) : v 2 = p(y i α (0), β (0), x i ) Evaluate the prior under the proposal v 3 = π α (α ˆb)π β (β ) and under the current value v 4 = π α (α (0) ˆb)π β (β (0) ) Evaluate the proposal probability for the proposed value v 5 = π α (α ˆb)φ(β ) and for the current value v 6 = π α (α (0) ˆb)φ(β (0) ) Compute the acceptance ratio: r = min(1, v 1 v 2 v 3 v 4 v 6 v 5 ) Simulate u unif (0, 1) and accept θ if u < r.

8 7 Dissecting the code Initialize θ (0) = (α (0), β (0 ) Propose θ from proposal π α (α ˆb)φ(β). Evaluate the likelihood under the proposal: v 1 = p(y i α, β, x i ) and under θ (0) : v 2 = p(y i α (0), β (0), x i ) Evaluate the prior under the proposal v 3 = π α (α ˆb)π β (β ) and under the current value v 4 = π α (α (0) ˆb)π β (β (0) ) Evaluate the proposal probability for the proposed value v 5 = π α (α ˆb)φ(β ) and for the current value v 6 = π α (α (0) ˆb)φ(β (0) ) Compute the acceptance ratio: r = min(1, v 1 v 2 v 4 Simulate u unif (0, 1) and accept θ if u < r. v 3 v 6 φ(β (0) ) v 5 φ(β ) )

9 Proposal and evaluation > rprop <- function(theta0) { + a <- log(rexp(1, 1 / exp(a.mle ))) + b <- rnorm(1, b.mle, sqrt(0.1^2)) + return(c(a, b)) + } > > dprop <- function(theta, theta0) { + a <- theta[1] + b <- theta[2] + pr1 <- exp(a) * exp(-exp(a) / b.mme) / b.mme + pr2 <- dnorm(b, b.mle, sqrt(var.b.mle)) + return(pr1 * pr2) + }

10 Posterior evaluation > dpost <- function(theta) { + a <- theta[1] + b <- theta[2] + p <- 1-1 / (1 + exp(a + b * x)) + lik <- exp(sum(dbinom(y, size=1, prob=p, log=true))) + dprior <- exp(a) * exp(-exp(a) / b.mme) / b.mme + return(lik * dprior) + }

11 One iteration > theta_star <- rprop(theta[i-1,]) > r <- log(dpost(theta_star)) - + log(dpost(theta[i-1,])) + + log(dprop(theta[i-1,],theta_star)) - + log(dprop(theta_star,theta[i-1,])) > r <- min(exp(r),1) > if(runif(1)<= R){ + theta[i,] <- theta_star; ct <- ct + 1} > else{ theta[i,] <- theta[i-1,] }

Here θ = (α, β) is the unknown parameter. The likelihood function is

Here θ = (α, β) is the unknown parameter. The likelihood function is Stat 591 Notes Logistic regression and Metropolis Hastings example Ryan Martin (rgmartin@uic.edu) November 2, 2013 Introduction (This part taken from Example 1.13 in Robert and Casella, 2004.) In 1986,

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 15-7th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Mixture and composition of kernels. Hybrid algorithms. Examples Overview

More information

Statistics 360/601 Modern Bayesian Theory

Statistics 360/601 Modern Bayesian Theory Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 5 - Sept 12, 2016 How often do we see Poisson data? 1 2 Poisson data example Problem of interest: understand different causes of death

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Jim Albert March 18, 2018 A Selected Data Problem Here is an interesting problem with selected data. Suppose you are measuring the speeds of cars driving on an

More information

Statistics 360/601 Modern Bayesian Theory

Statistics 360/601 Modern Bayesian Theory Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 8 - Sept 25, 2018 Monte Carlo 1 2 Monte Carlo approximation Want to compute Z E[ y] = p( y)d without worrying about actual integration...

More information

Non-Conjugate Models and Grid Approximations. Patrick Lam

Non-Conjugate Models and Grid Approximations. Patrick Lam Non-Conjugate Models and Grid Approximations Patrick Lam Outline The Binomial Model with a Non-Conjugate Prior Bayesian Regression with Grid Approximations Outline The Binomial Model with a Non-Conjugate

More information

W = 2 log U 1 and V = 2πU 2, We need the (absolute) determinant of the partial derivative matrix ye (1/2)(x2 +y 2 ) x x 2 +y 2.

W = 2 log U 1 and V = 2πU 2, We need the (absolute) determinant of the partial derivative matrix ye (1/2)(x2 +y 2 ) x x 2 +y 2. Stat 591 Homework 05 Solutions 1. (a) First, let X be a random variable with distribution function F, and assume that F is strictly increasing and continuous. Define U = F (X); the claim is that U Unif(0,

More information

The Flight of the Space Shuttle Challenger

The Flight of the Space Shuttle Challenger The Flight of the Space Shuttle Challenger On January 28, 1986, the space shuttle Challenger took off on the 25 th flight in NASA s space shuttle program. Less than 2 minutes into the flight, the spacecraft

More information

Bayesian Analysis (Optional)

Bayesian Analysis (Optional) Bayesian Analysis (Optional) 1 2 Big Picture There are two ways to conduct statistical inference 1. Classical method (frequentist), which postulates (a) Probability refers to limiting relative frequencies

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

0.3. Proportion failing Temperature

0.3. Proportion failing Temperature The Flight of the Space Shuttle Challenger On January 28, 1986, the space shuttle Challenger took o on the 25 th ight in NASA's space shuttle program. Less than 2 minutes into the ight, the spacecraft

More information

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS 1. (a) The posterior mean estimate of α is 14.27, and the posterior mean for the standard deviation of

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Linear regression is designed for a quantitative response variable; in the model equation

Linear regression is designed for a quantitative response variable; in the model equation Logistic Regression ST 370 Linear regression is designed for a quantitative response variable; in the model equation Y = β 0 + β 1 x + ɛ, the random noise term ɛ is usually assumed to be at least approximately

More information

Lecture 1 Bayesian inference

Lecture 1 Bayesian inference Lecture 1 Bayesian inference olivier.francois@imag.fr April 2011 Outline of Lecture 1 Principles of Bayesian inference Classical inference problems (frequency, mean, variance) Basic simulation algorithms

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Probability Theory Review

Probability Theory Review Probability Theory Review Brendan O Connor 10-601 Recitation Sept 11 & 12, 2012 1 Mathematical Tools for Machine Learning Probability Theory Linear Algebra Calculus Wikipedia is great reference 2 Probability

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

CHAPTER 5 Probability: What Are the Chances?

CHAPTER 5 Probability: What Are the Chances? CHAPTER 5 Probability: What Are the Chances? 5.3 Conditional Probability and Independence The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Conditional

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Ioannis Ntzoufras 6/28/2002

Ioannis Ntzoufras 6/28/2002 An Introduction to Generalised Linear Models!1 What is Statistics?!2 What is a Statistical Model? Ioannis Ntzoufras E-mail: ntzoufras@aegean.gr Department of Business Administration, University of the

More information

Nested Sampling. Brendon J. Brewer. brewer/ Department of Statistics The University of Auckland

Nested Sampling. Brendon J. Brewer.   brewer/ Department of Statistics The University of Auckland Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ is a Monte Carlo method (not necessarily MCMC) that was introduced by John Skilling in 2004. It is very popular

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

Bayesian Graphical Models

Bayesian Graphical Models Graphical Models and Inference, Lecture 16, Michaelmas Term 2009 December 4, 2009 Parameter θ, data X = x, likelihood L(θ x) p(x θ). Express knowledge about θ through prior distribution π on θ. Inference

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Simulation from a target distribution based on discretization and weighting

Simulation from a target distribution based on discretization and weighting Simulation from a target distribution based on discretization and weighting Sonia Malefaki and George Iliopoulos Abstract Two of the most common problems in computational statistics are sampling from a

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative 1. Fixed basis

More information

Checking the Reliability of Reliability Models.

Checking the Reliability of Reliability Models. Checking the Reliability of Reliability. INFORMS 007 Puerto Rico. July 8-11. Víctor Aguirre Torres Stat Department Instituto Tecnológico Autónomo de México ITAM Credits. Partially Sponsored by Asociación

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Checking the Reliability of Reliability Models.

Checking the Reliability of Reliability Models. Checking the Reliability of Reliability Models. Seminario de Estadística, CIMAT Abril 3, 007. Víctor Aguirre Torres Departmento de Estadística, ITAM Área de Probabilidad y Estadística, CIMAT Credits. Partially

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Gaussian discriminant analysis Naive Bayes

Gaussian discriminant analysis Naive Bayes DM825 Introduction to Machine Learning Lecture 7 Gaussian discriminant analysis Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. is 2. Multi-variate

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Bayesian course - problem set 5 (lecture 6)

Bayesian course - problem set 5 (lecture 6) Bayesian course - problem set 5 (lecture 6) Ben Lambert November 30, 2016 1 Stan entry level: discoveries data The file prob5 discoveries.csv contains data on the numbers of great inventions and scientific

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

What is the most likely year in which the change occurred? Did the rate of disasters increase or decrease after the change-point?

What is the most likely year in which the change occurred? Did the rate of disasters increase or decrease after the change-point? Chapter 11 Markov Chain Monte Carlo Methods 11.1 Introduction In many applications of statistical modeling, the data analyst would like to use a more complex model for a data set, but is forced to resort

More information

x k+1 = x k + α k p k (13.1)

x k+1 = x k + α k p k (13.1) 13 Gradient Descent Methods Lab Objective: Iterative optimization methods choose a search direction and a step size at each iteration One simple choice for the search direction is the negative gradient,

More information

Sequential Bayesian Updating

Sequential Bayesian Updating BS2 Statistical Inference, Lectures 14 and 15, Hilary Term 2009 May 28, 2009 We consider data arriving sequentially X 1,..., X n,... and wish to update inference on an unknown parameter θ online. In a

More information

Tools for Parameter Estimation and Propagation of Uncertainty

Tools for Parameter Estimation and Propagation of Uncertainty Tools for Parameter Estimation and Propagation of Uncertainty Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline Models, parameters, parameter estimation,

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2015 Julien Berestycki (University of Oxford) SB2a MT 2015 1 / 16 Lecture 16 : Bayesian analysis

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Cross-Validation, Information Criteria, Expected Utilities and the Effective Number of Parameters Aki Vehtari and Jouko Lampinen Laboratory of Computational Engineering Introduction Expected utility -

More information

13 Notes on Markov Chain Monte Carlo

13 Notes on Markov Chain Monte Carlo 13 Notes on Markov Chain Monte Carlo Markov Chain Monte Carlo is a big, and currently very rapidly developing, subject in statistical computation. Many complex and multivariate types of random data, useful

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

CS340 Winter 2010: HW3 Out Wed. 2nd February, due Friday 11th February

CS340 Winter 2010: HW3 Out Wed. 2nd February, due Friday 11th February CS340 Winter 2010: HW3 Out Wed. 2nd February, due Friday 11th February 1 PageRank You are given in the file adjency.mat a matrix G of size n n where n = 1000 such that { 1 if outbound link from i to j,

More information

The Logit Model: Estimation, Testing and Interpretation

The Logit Model: Estimation, Testing and Interpretation The Logit Model: Estimation, Testing and Interpretation Herman J. Bierens October 25, 2008 1 Introduction to maximum likelihood estimation 1.1 The likelihood function Consider a random sample Y 1,...,

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics Estimating a proportion using the beta/binomial model A fundamental task in statistics is to estimate a proportion using a series of trials: What is the success probability of a new cancer treatment? What

More information

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Shunsuke Horii Waseda University s.horii@aoni.waseda.jp Abstract In this paper, we present a hierarchical model which

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School Bayesian modelling Hans-Peter Helfrich University of Bonn Theodor-Brinkmann-Graduate School H.-P. Helfrich (University of Bonn) Bayesian modelling Brinkmann School 1 / 22 Overview 1 Bayesian modelling

More information

Stat 451 Lecture Notes Simulating Random Variables

Stat 451 Lecture Notes Simulating Random Variables Stat 451 Lecture Notes 05 12 Simulating Random Variables Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 22 in Lange, and Chapter 2 in Robert & Casella 2 Updated:

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

HW3 Solutions : Applied Bayesian and Computational Statistics

HW3 Solutions : Applied Bayesian and Computational Statistics HW3 Solutions 36-724: Applied Bayesian and Computational Statistics March 2, 2006 Problem 1 a Fatal Accidents Poisson(θ I will set a prior for θ to be Gamma, as it is the conjugate prior. I will allow

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

where F ( ) is the gamma function, y > 0, µ > 0, σ 2 > 0. (a) show that Y has an exponential family distribution of the form

where F ( ) is the gamma function, y > 0, µ > 0, σ 2 > 0. (a) show that Y has an exponential family distribution of the form Stat 579: General Instruction of Homework: All solutions should be rigorously explained. For problems using SAS or R, please attach code as part of your homework Assignment 1: Due Jan 30 Tuesday in class

More information

7.1, 7.3, 7.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1/ 31

7.1, 7.3, 7.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1/ 31 7.1, 7.3, 7.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1/ 31 7.1 Alternative links in binary regression* There are three common links considered

More information

Stat 451 Homework 05 Solutions 1

Stat 451 Homework 05 Solutions 1 Stat 45 Homework 05 Solutions. (a) Suppose we want to simulate X F but F is not available in closedform. We can implement the inverse CDF method by incorporating Newton s method. That is, sample U Unif(0,

More information

STAT2201 Assignment 6

STAT2201 Assignment 6 STAT2201 Assignment 6 Question 1 Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and pavement deflection (y). Summary

More information

Package elhmc. R topics documented: July 4, Type Package

Package elhmc. R topics documented: July 4, Type Package Package elhmc July 4, 2017 Type Package Title Sampling from a Empirical Likelihood Bayesian Posterior of Parameters Using Hamiltonian Monte Carlo Version 1.1.0 Date 2017-07-03 Author Dang Trung Kien ,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

Bayesian tsunami fragility modeling considering input data uncertainty

Bayesian tsunami fragility modeling considering input data uncertainty Bayesian tsunami fragility modeling considering input data uncertainty Raffaele De Risi Research Associate University of Bristol United Kingdom De Risi, R., Goda, K., Mori, N., & Yasuda, T. (2016). Bayesian

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014 Bayesian Prediction of Code Output ASA Albuquerque Chapter Short Course October 2014 Abstract This presentation summarizes Bayesian prediction methodology for the Gaussian process (GP) surrogate representation

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

BAYESIAN ANALYSIS OF BINARY REGRESSION USING SYMMETRIC AND ASYMMETRIC LINKS

BAYESIAN ANALYSIS OF BINARY REGRESSION USING SYMMETRIC AND ASYMMETRIC LINKS Sankhyā : The Indian Journal of Statistics 2000, Volume 62, Series B, Pt. 3, pp. 372 387 BAYESIAN ANALYSIS OF BINARY REGRESSION USING SYMMETRIC AND ASYMMETRIC LINKS By SANJIB BASU Northern Illinis University,

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 6: Prior elicitation; Example, Radiocarbon Dating Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

22s:152 Applied Linear Regression. Chapter 2: Regression Analysis. a class of statistical methods for

22s:152 Applied Linear Regression. Chapter 2: Regression Analysis. a class of statistical methods for 22s:152 Applied Linear Regression Chapter 2: Regression Analysis Regression analysis a class of statistical methods for studying relationships between variables that can be measured e.g. predicting blood

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

STAT5044: Regression and ANOVA, Fall 2011 Final Exam on Dec 14. Your Name:

STAT5044: Regression and ANOVA, Fall 2011 Final Exam on Dec 14. Your Name: STAT5044: Regression and ANOVA, Fall 2011 Final Exam on Dec 14 Your Name: Please make sure to specify all of your notations in each problem GOOD LUCK! 1 Problem# 1. Consider the following model, y i =

More information

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning Professor Erik Sudderth Brown University Computer Science October 4, 2016 Some figures and materials courtesy

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information