Advances in Implementing Non-Parametric Dose-Response Models in Adaptive Designs

Size: px
Start display at page:

Download "Advances in Implementing Non-Parametric Dose-Response Models in Adaptive Designs"

Transcription

1 Advances n Implemenng Non-Paramerc Dose-Response Models n Adapve Desgns Professor Andy Greve Deparmen of Publc Healh Scences Kng s College London Thanks o : Peer Müller and Don Berry (MD Anderson), Mke K Smh (Pfzer) Chrs Wer (U. Glasgow), Davd Spegelhaler (U Cambrdge)

2 Movaon - ASTIN Sudy Revsed Two Implemenaon Issues Oulne Fng smoohng models sae-space models, mxed models and splnes Reducng compuaonal nensy of deermnng he Opmal Dose for he nex paen Conclusons

3 Movaon for ASTIN Sudy Approached by a clncal colleague (Dr Mchael Krams) on a sroke program (neuroproecon) Beleved ha many sroke programs had faled because he dose had no esablshed before phase III poor desgns Can we develop a beer desgn for choosng he dose? More effcen, more ehcal? 3

4 Improvemens o Sandard Dose-Response Desgn Increase number of doses placebo + large number - 5 Learn abou dose-response and adap Preven allocang paens o neffecve doses (ETHICAL) Model dose response nor parwse comparson Fuly analyss / early decson makng 4

5 Response Issues n Dose Selecon Increase Number of Doses & Adap Dose 5

6 ASTIN Sudy - Desgn Process Greve and Krams, Cln. Trals 005; : Randomzer Randomze o placebo or opmal dose New Paen Dose o val ranslaon Daa Inerface...Ongong... Updae paen daa Fnd opmal dose for learnng abou ED95 Dose Allocaor Connue Model predcs fnal oucomes Esmae doseresponse curve Decson rule Termnaor Predcve Model Surrogae/ Early Response Sop Bayesan Analyss 6

7 Issues How do we do he updang? How do we predc? How do we choose a dose? How do we sop? How do we model response? 7

8 Mean Change from Baselne SSS The Dose-Response Model: j = f( z j, ) Requremens Mean Response Dose Parameers To model f (z, ) we needed :. a flexble model, allowng nonmonoone curves.. analycal poseror updang (smulaon requred for ermnaor and allocaor) 3. effcen (analyc) compuaon of expeced ules Dose (mg/kg) 8

9 nd Order Polynomal Normal Dynamc Lnear Model Locally around z = Z j a sragh lne wh level j and slope j Parameers of he sragh lnes j j ( z Z j ) change beween doses by addng j a (small) evoluon nose. j j j j j j j j j j j Evoluon Varance = Smooher Z j Z j Z j 9

10 Fng NDLM n ASTIN Sudy Orgnal code wren by Peer Müller (Duke Unv and MD Anderson) Wren n C++ (000s of lnes) Re-engneered o FDA valdaon sandards by a compung company: Tessella A black box makng algorhmc changes dffcul. 0

11 #NDLM usng ASTIN fnal daa model{ # acual responses nobservaon equaon for ( n :I){ y[] ~ dnorm(mu[], sgmanv) # samplng model () mu[] <- hea[d[]] + bea*base[] # jus baselne covaraes () } # 'Dose-response curve, Normal evoluon for (k n :K){ hea[k] ~ dnorm(mu.hea[k], prec.hea); # level dsrbuon (3) mu.hea[k]<-hea[k-] + dela[k-] # nd order NDLM dela[k] ~ dnorm(dela[k-], prec.dela) # random walk onslope } hea[] ~ dnorm(mu.hea0,prec.hea0) # pror onplacebo level (vague) dela[] ~ dnorm(mu.dela0,prec.dela0) # pror onplacebo slope (vague) # Pror dsrbuons sgmanv ~ dgamma(0.00, 0.00) # vague pror onsamplng precson sgma <- / sqr(sgmanv) # samplng sd prec.hea ~ dgamma(0.00, 0.00) # vague pror onlevel precson sgma.hea <- / sqr(prec.hea) prec.dela ~ dgamma(0.00, 0.00) # vague pror onslope precson sgma.dela <- / sqr(prec.dela) bea ~ dunf(-00,00) #unform pror on regresson coeffcen Fng NDLM Usng WnBUGS Code by Davd Spegelhaler # read and conver daa - unused daa needs dummys for ( n : I) { base[] <- BASE[] - mean(base[]) # sandardse covaraes y[] <- CHANGE[] d[]<-dose[] # placebo=, ec up o d = 6 } }

12 Response Comparson of Implemenaons Fnal ASTIN Dose-Response Peer Müller Dose WnBUGS

13 General Lnear Sae Space Model Sandard form : Observaon equaon y h, ~ N( 0, ) (,..,T) and srucural equaons F u, u (u,...,up) ~ MVN( 0, u ) Transon Marx (p x p ) Desgn vecor (px) Sae vecor a me (p x p) dag(,..., delee hese gudes from slde maser before prnng uor gvng o he uclen up ) 3

14 4 Srucural Expanson Hans-Peer Pepho and Joseph O Oguu Smple Sae-Space Models n a Mxed Model Framework, Amer Sa, 6, 4-3 j j u u F F... u ) u F (F u F 0 Subsuon n he observaon equaon gves ) ( z, h z ), ( F h z u z x u u F h F h y p j j T j j General Mxed Model : y=x +Z +

15 SAS Code o Local Lnear Trend Model wh Baselne (ASTIN Model) proc mxed lognoe mehod=reml; model SSS=Dose base_sss/oup=pred ddfm=kr alphap=0.; random z_-z_6 z_-z_6/sub=nercep ype=oep(); In heory hs code could be used o f he model used for ASTIN. Proc Mxed now performs Bayesan Analyses usng he Pror Saemen Quesonable prors Jeffreys, fla 5

16 6 nd Order Random Walk Model If he fed model s no smooh enough mpose he resrcon whch s equvalen o 0 ), ~ N(, ), ~ N(, ), ~ N(, y 0 0 0

17 7 nd Order Log-lkelhood The log-lkelhood of n s Leng hen Objecve funcon of a splne n n y n n y

18 Splnes and Sae Space Model I follows ha: Cubc splnes are a specal case of he general sae space model Splnes can be fed by sae space model echnques n parcular as a mxed model The smooher can be esmaed as he rao of he varances of he observaon and srucural equaons Lnk: Mke Kenward s work on splnes & mxed models. Also relevan: 8

19 ASTIN Approach o Deermnng Dose (Ignorng he longudnal Aspec ) For each dose z smulae fuure observaons y zm (m=,,m) Add y zm o curren daa and repea MCMC analyss o ge p(g( D,y zm ) (g( ) s he arge parameer) Esmae Uly: U zm =-V(g( D,yz m ) Esmaed expeced uly U z by akng he smulaon average (over m) ALLOCATOR: U(z) Choose Z o maxmse uly THIS IS COMPUTATIONALLY INTENSIVE PARTICULARLY WHEN SIMULATING CLINICAL TRIALS DOSE 9

20 Smulaon Problem Sngle Scenaro Sudy Sudy k Sudy S Pa Pa Pa j Pa n MCMC Updae D/R model (T poseror smulaons) For each dose (d=,..,d) predc M paen response y zm (m=,..,m) For each y zm updae D/R model (Q poseror smulaons) THIS IS COMPUTATIONALLY INTENSIVE 0

21 Termnaon Rule Decson heorec Poseror Probables Pror Dsrbuon Unnformave (fla) pror Informave pror Facors of he Smulaon Expermen Varance of Pror Consan Less varable a low end of he dose range Level of Smoohng Hgh smoohng Low Smoohng Allocaon Crera Var(ED95) x Var(f(z*)) Var(f(z*)) Var(ED95) Deermnan of Covar ((ED95) and Var(f(z*)) Randomsaon Mehod Probably of allocaon proporonal o expeced uly Allocae o maxmum uly Probably unform over doses s 0.9f(z 0 ) < E[f(z) Y] <.0f(z 0 ) Probably unform over doses s 0.9f(z 0 ) < E[f(z) Y] 4 x 4 expermen /4 replcae Alasng Srucure

22 Change from baselne Smulaed Dose-Response Curves Hegh : or 4 ps delee hese gudes from slde maser before Doseprnng or gvng o he clen

23 Compuaonal Effcency 3

24 Generang random varables Suppose ha you can easly generae a random sample from densy g( ) or s already generaed BUT we wan o generae a sample from h( ) where h( ) f( )/ f( ) d Can we form a sample from h( ) gven only a sample from g( ) and he funconal form of f( )? The answer s yes - f here s M > 0 such ha f( )/g( ) M, 4

25 Accepance/Rejecon (Von Neumann) f(x) Y M. Smulae ~g( ). Smulae Y~U(0,M) 3. Accep f Y < f(x), else Rejec 5

26 The Weghed Boosrap If M s no readly avalable s sll possble o approxmaely resample from h( ) f( )/ f( ) follows. d as Gven (=,..., n) a sample from g( ), calculae w = f( )/g( ) and hen Draw * from he dscree dsrbuon over... n placng mass q on q w / n w Then * s approxmaely dsrbued accordng o h wh he approxmaon "mprovng as n ncreases. 6

27 Pror o Poseror Transformaon How does Bayes's Theorem generae a poseror sample from a pror sample? For fxed x, defne f x ( ) =l( ; x)p( ). ˆ;x If ˆ maxmzes l( ; x), le M = ( ) Then wh g( ) = p( ), apply he rejecon mehod o oban samples from he densy correspondng o he sandardzed f x he poseror densy p( lx). 7

28 Pror o Poseror Transformaon So Bayes Theorem, as a mechansm for generang a poseror sample from a pror sample, akes he form: For each n he pror sample accep no he poseror sample wh probably f x ( Mp( ) ) ( ( ;x) ˆ;x) oherwse rejec. 8

29 Pror o Poseror Transformaon The lkelhood acs as a resamplng probably; hose n he pror sample havng hgh lkelhood are more lkely o be reaned n he poseror sample. Snce p( x) = l( ; x)p( ), we can also sraghforwardly resample from he pror usng he weghed boosrap wh q n ( ;x)/ ( ;x) 9

30 Pared Comparson wh Tes Exenson of Bradley-Terry Model : Davdson JASA(970) Background more han reamen / paen preference for a reamen reamen preferences can be descrbed n erms of an underlyng connuum value of an ndvdual reamen s >0, = Probably Model (Bradley-Terry) Probably reamen preferred o j (>j) s P( j) delee hese gudes from slde maser before j prnng or gvng o he clen 30

31 Pared Comparson wh Tes Exenson of Bradley-Terry Model : Davdson JASA(970) Davdson(970) generalzed model o accoun for no preference (=j) Probably Model (Davdson) P( j) P( j ) P( j) j j j j j j j j s an ndex of dscrmnaon 3

32 Pared Comparson wh Tes Exenson of Bradley-Terry Model : Davdson JASA(970) Probably Model - Treamens P(A B) ( ) P(B A) ( ) P(A B) ( ( ) ) Lkelhood n paens : r prefer A s prefer B ( n r s)/ ( n r s)/ n r s ( ) ( ) n Preference Number of Paens A>B 9 B>A 3 delee hese gudes A=B from slde maser before 6 prnng or gvng o he clen 3

33 Poseror from Pror Resamplng For purposes of llusraon assume he jon pror dsrbuon for and, s unform over he recangle 0<

34 Poseror from Pror Resamplng Poseror generaed by weghed boosrap Skewness of he margnal poserors one posve, one negave Parameers posvely correlaed

35 Wer e al J Boph Sas 007;7: Ineresed n E(g( D,y m )) E[g( ) D,y m ] g( g( )p( )p(y D,y zm zm )p( )d D)d p(y zm )p( D)d From a MCMC sample (=,,T) can be approxmaed by g( )p(y zm ) p(y zm ) g( )w Where he weghs w p(y zm ) p(y zm ) are proporonal o he lkelhood of he predced observaon Wha abou M and T? 35

36 Wer e al J Boph Sas 007;7: Smulaons Invesgaed: M=,5,0,500 T=000, 000, 5000 or 0000 For M = wo approaches a sngle fuure observaon a each dose, or seng he observaon exacly a s expeced value usng he curren value n he MCMC run. Smulaons sugges ha he laer approach wh T=0000 provdes relable denfcaon of he opmal dose for learnng 36

37 Smh e al Pharmaceu. Sas. 006; 5: Fng he NDLM Usng WnBUGS #NDLM usng ASTIN fnal daa model{ # acual responses n observaon equaon for ( n :I){ y[] ~ dnorm(mu[],sgmanv) # samplng model () mu[] <- hea[d[]] + bea*base[] # jus baselne covaraes () } # 'Dose-response curve, Normal evoluon for (k n :K){ hea[k] ~ dnorm(mu.hea[k],prec.hea); # level dsrbuon (3) mu.hea[k]<-hea[k-]+ dela[k-] # nd order NDLM dela[k] ~ dnorm(dela[k-], prec.dela) # random walk on slope } hea[] ~ dnorm(mu.hea0,prec.hea0) # pror on placebo level (vague) dela[] ~ dnorm(mu.dela0,prec.dela0) # pror on placebo slope (vague) # Pror dsrbuons sgmanv ~ dgamma(0.00, 0.00) # vague pror on samplng precson sgma <- / sqr(sgmanv) # samplng sd prec.hea ~ dgamma(0.00, 0.00) # vague pror on level precson sgma.hea <- / sqr(prec.hea) prec.dela ~ dgamma(0.00, 0.00) # vague pror on slope precson sgma.dela <- / sqr(prec.dela) bea ~ dunf(-00,00) #unform pror on regresson coeffcen # read and conver daa - unused daa needs dummys for ( n : I) { base[] <- BASE[] - mean(base[]) # sandardse covaraes y[] <- CHANGE[] d[]<-dose[] # placebo=, ec up o d = 6 } } The WnBUGS code for fng he NDLM s smple BUT no necessarly effcen as he number of paens grows he processng of more daa slows WnBUGS ASTIN ended wh over 900 paens The process can be speeded by rewrng he model n erms of suffcen sascs Ousde WnBUGS suffcen sascs are deermned (usng SAS, S+, R ec) and passed o WnBUGS 37

38 Conclusons Desgn-focused adapve approaches wll be of connung neres Adapve desgns requre consderable smulaons Roune mplemenaon requres hough on how Whch models are approprae How models can be fed How doses can be chosen 38

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5h Inernaonal onference on Advanced Desgn and Manufacurng Engneerng (IADME 5 The Falure Rae Expermenal Sudy of Specal N Machne Tool hunshan He, a, *, La Pan,b and Bng Hu 3,c,,3 ollege of Mechancal and

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction ECOOMICS 35* -- OTE 9 ECO 35* -- OTE 9 F-Tess and Analyss of Varance (AOVA n he Smple Lnear Regresson Model Inroducon The smple lnear regresson model s gven by he followng populaon regresson equaon, or

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

CHAPTER 2: Supervised Learning

CHAPTER 2: Supervised Learning HATER 2: Supervsed Learnng Learnng a lass from Eamples lass of a famly car redcon: Is car a famly car? Knowledge eracon: Wha do people epec from a famly car? Oupu: osve (+) and negave ( ) eamples Inpu

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

We are estimating the density of long distant migrant (LDM) birds in wetlands along Lake Michigan.

We are estimating the density of long distant migrant (LDM) birds in wetlands along Lake Michigan. Ch 17 Random ffecs and Mxed Models 17. Random ffecs Models We are esmang he densy of long dsan mgran (LDM) brds n welands along Lake Mchgan. μ + = LDM per hecaren h weland ~ N(0, ) The varably of expeced

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Time-interval analysis of β decay. V. Horvat and J. C. Hardy Tme-nerval analyss of β decay V. Horva and J. C. Hardy Work on he even analyss of β decay [1] connued and resuled n he developmen of a novel mehod of bea-decay me-nerval analyss ha produces hghly accurae

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations Chaper 6: Ordnary Leas Squares Esmaon Procedure he Properes Chaper 6 Oulne Cln s Assgnmen: Assess he Effec of Sudyng on Quz Scores Revew o Regresson Model o Ordnary Leas Squares () Esmaon Procedure o he

More information

Kernel-Based Bayesian Filtering for Object Tracking

Kernel-Based Bayesian Filtering for Object Tracking Kernel-Based Bayesan Flerng for Objec Trackng Bohyung Han Yng Zhu Dorn Comancu Larry Davs Dep. of Compuer Scence Real-Tme Vson and Modelng Inegraed Daa and Sysems Unversy of Maryland Semens Corporae Research

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Lecture 2 L n i e n a e r a M od o e d l e s

Lecture 2 L n i e n a e r a M od o e d l e s Lecure Lnear Models Las lecure You have learned abou ha s machne learnng Supervsed learnng Unsupervsed learnng Renforcemen learnng You have seen an eample learnng problem and he general process ha one

More information

CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING

CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING 4. Inroducon The repeaed measures sudy s a very commonly used expermenal desgn n oxcy esng because no only allows one o nvesgae he effecs of he oxcans,

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

Fall 2009 Social Sciences 7418 University of Wisconsin-Madison. Problem Set 2 Answers (4) (6) di = D (10)

Fall 2009 Social Sciences 7418 University of Wisconsin-Madison. Problem Set 2 Answers (4) (6) di = D (10) Publc Affars 974 Menze D. Chnn Fall 2009 Socal Scences 7418 Unversy of Wsconsn-Madson Problem Se 2 Answers Due n lecure on Thursday, November 12. " Box n" your answers o he algebrac quesons. 1. Consder

More information

Childhood Cancer Survivor Study Analysis Concept Proposal

Childhood Cancer Survivor Study Analysis Concept Proposal Chldhood Cancer Survvor Sudy Analyss Concep Proposal 1. Tle: Inverse probably censored weghng (IPCW) o adjus for selecon bas and drop ou n he conex of CCSS analyses 2. Workng group and nvesgaors: Epdemology/Bosascs

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes Journal of Modern Appled Sascal Mehods Volume Issue Arcle 8 5--3 Robusness of D versus Conrol Chars o Non- Processes Saad Saeed Alkahan Performance Measuremen Cener of Governmen Agences, Insue of Publc

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University Hdden Markov Models Followng a lecure by Andrew W. Moore Carnege Mellon Unversy www.cs.cmu.edu/~awm/uorals A Markov Sysem Has N saes, called s, s 2.. s N s 2 There are dscree meseps, 0,, s s 3 N 3 0 Hdden

More information

Algorithmic models of human decision making in Gaussian multi-armed bandit problems

Algorithmic models of human decision making in Gaussian multi-armed bandit problems Algorhmc models of human decson makng n Gaussan mul-armed band problems Paul Reverdy, Vabhav Srvasava and Naom E. Leonard Absrac We consder a heursc Bayesan algorhm as a model of human decson makng n mul-armed

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer d Model Cvl and Surveyng Soware Dranage Analyss Module Deenon/Reenon Basns Owen Thornon BE (Mech), d Model Programmer owen.hornon@d.com 4 January 007 Revsed: 04 Aprl 007 9 February 008 (8Cp) Ths documen

More information

Geographically weighted regression (GWR)

Geographically weighted regression (GWR) Ths s he auhor s fnal verson of he manuscrp of Nakaya, T. (007): Geographcally weghed regresson. In Kemp, K. ed., Encyclopaeda of Geographcal Informaon Scence, Sage Publcaons: Los Angeles, 179-184. Geographcally

More information

Modélisation de la détérioration basée sur les données de surveillance conditionnelle et estimation de la durée de vie résiduelle

Modélisation de la détérioration basée sur les données de surveillance conditionnelle et estimation de la durée de vie résiduelle Modélsaon de la dééroraon basée sur les données de survellance condonnelle e esmaon de la durée de ve résduelle T. T. Le, C. Bérenguer, F. Chaelan Unv. Grenoble Alpes, GIPSA-lab, F-38000 Grenoble, France

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA

RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA Mchaela Chocholaá Unversy of Economcs Braslava, Slovaka Inroducon (1) one of he characersc feaures of sock reurns

More information

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez

Filtrage particulaire et suivi multi-pistes Carine Hue Jean-Pierre Le Cadre and Patrick Pérez Chaînes de Markov cachées e flrage parculare 2-22 anver 2002 Flrage parculare e suv mul-pses Carne Hue Jean-Perre Le Cadre and Parck Pérez Conex Applcaons: Sgnal processng: arge rackng bearngs-onl rackng

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems Genec Algorhm n Parameer Esmaon of Nonlnear Dynamc Sysems E. Paeraks manos@egnaa.ee.auh.gr V. Perds perds@vergna.eng.auh.gr Ah. ehagas kehagas@egnaa.ee.auh.gr hp://skron.conrol.ee.auh.gr/kehagas/ndex.hm

More information

Bayesian Inference of the GARCH model with Rational Errors

Bayesian Inference of the GARCH model with Rational Errors 0 Inernaonal Conference on Economcs, Busness and Markeng Managemen IPEDR vol.9 (0) (0) IACSIT Press, Sngapore Bayesan Inference of he GARCH model wh Raonal Errors Tesuya Takash + and Tng Tng Chen Hroshma

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

Endogeneity. Is the term given to the situation when one or more of the regressors in the model are correlated with the error term such that

Endogeneity. Is the term given to the situation when one or more of the regressors in the model are correlated with the error term such that s row Endogeney Is he erm gven o he suaon when one or more of he regressors n he model are correlaed wh he error erm such ha E( u 0 The 3 man causes of endogeney are: Measuremen error n he rgh hand sde

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

Tools for Analysis of Accelerated Life and Degradation Test Data

Tools for Analysis of Accelerated Life and Degradation Test Data Acceleraed Sress Tesng and Relably Tools for Analyss of Acceleraed Lfe and Degradaon Tes Daa Presened by: Reuel Smh Unversy of Maryland College Park smhrc@umd.edu Sepember-5-6 Sepember 28-30 206, Pensacola

More information

Digital Speech Processing Lecture 20. The Hidden Markov Model (HMM)

Digital Speech Processing Lecture 20. The Hidden Markov Model (HMM) Dgal Speech Processng Lecure 20 The Hdden Markov Model (HMM) Lecure Oulne Theory of Markov Models dscree Markov processes hdden Markov processes Soluons o he Three Basc Problems of HMM s compuaon of observaon

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION

ELASTIC MODULUS ESTIMATION OF CHOPPED CARBON FIBER TAPE REINFORCED THERMOPLASTICS USING THE MONTE CARLO SIMULATION THE 19 TH INTERNATIONAL ONFERENE ON OMPOSITE MATERIALS ELASTI MODULUS ESTIMATION OF HOPPED ARBON FIBER TAPE REINFORED THERMOPLASTIS USING THE MONTE ARLO SIMULATION Y. Sao 1*, J. Takahash 1, T. Masuo 1,

More information

Operational Risk Modeling and Quantification

Operational Risk Modeling and Quantification herry Bud Workshop 5, Keo Unversy Operaonal Rsk Modelng and Quanfcaon Pavel V. Shevchenko SIRO Mahemacal and Informaon Scences, Sydney, Ausrala E-mal: Pavel.Shevchenko@csro.au Agenda Loss Dsrbuon Approach

More information

PARTICLE METHODS FOR MULTIMODAL FILTERING

PARTICLE METHODS FOR MULTIMODAL FILTERING PARTICLE METHODS FOR MULTIMODAL FILTERIG Chrsan Musso ada Oudjane OERA DTIM. BP 72 92322 France. {mussooudjane}@onera.fr Absrac : We presen a quck mehod of parcle fler (or boosrap fler) wh local rejecon

More information

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective Forecasng cusomer behavour n a mul-servce fnancal organsaon: a profably perspecve A. Audzeyeva, Unversy of Leeds & Naonal Ausrala Group Europe, UK B. Summers, Unversy of Leeds, UK K.R. Schenk-Hoppé, Unversy

More information

Bernoulli process with 282 ky periodicity is detected in the R-N reversals of the earth s magnetic field

Bernoulli process with 282 ky periodicity is detected in the R-N reversals of the earth s magnetic field Submed o: Suden Essay Awards n Magnecs Bernoull process wh 8 ky perodcy s deeced n he R-N reversals of he earh s magnec feld Jozsef Gara Deparmen of Earh Scences Florda Inernaonal Unversy Unversy Park,

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Appendix to Online Clustering with Experts

Appendix to Online Clustering with Experts A Appendx o Onlne Cluserng wh Expers Furher dscusson of expermens. Here we furher dscuss expermenal resuls repored n he paper. Ineresngly, we observe ha OCE (and n parcular Learn- ) racks he bes exper

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data Apply Sascs and Economercs n Fnancal Research Obj. of Sudy & Hypoheses Tesng From framework objecves of sudy are needed o clarfy, hen, n research mehodology he hypoheses esng are saed, ncludng esng mehods.

More information

Advanced Macroeconomics II: Exchange economy

Advanced Macroeconomics II: Exchange economy Advanced Macroeconomcs II: Exchange economy Krzyszof Makarsk 1 Smple deermnsc dynamc model. 1.1 Inroducon Inroducon Smple deermnsc dynamc model. Defnons of equlbrum: Arrow-Debreu Sequenal Recursve Equvalence

More information

Fitting a Conditional Linear Gaussian Distribution

Fitting a Conditional Linear Gaussian Distribution Fng a Condonal Lnear Gaussan Dsrbuon Kevn P. Murphy 28 Ocober 1998 Revsed 29 January 2003 1 Inroducon We consder he problem of fndng he maxmum lkelhood ML esmaes of he parameers of a condonal Gaussan varable

More information

2. SPATIALLY LAGGED DEPENDENT VARIABLES

2. SPATIALLY LAGGED DEPENDENT VARIABLES 2. SPATIALLY LAGGED DEPENDENT VARIABLES In hs chaper, we descrbe a sascal model ha ncorporaes spaal dependence explcly by addng a spaally lagged dependen varable y on he rgh-hand sde of he regresson equaon.

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information