BSDEs with polynomial growth generators Philippe Briand IRMAR, Universite Rennes 1, Rennes Cedex, FRANCE Rene Carmona Statistics & Operations R

Size: px
Start display at page:

Download "BSDEs with polynomial growth generators Philippe Briand IRMAR, Universite Rennes 1, Rennes Cedex, FRANCE Rene Carmona Statistics & Operations R"

Transcription

1 BSDEs wh olyomal growh geeraors Phle Brad IRMAR, Uverse Rees 1, Rees Cedex, FRANCE Ree Carmoa Sascs & Oeraos Research, Prceo Uversy, Prceo NJ 8544, USA July 22, 1998 revsed December 15, 1998 Absrac I hs aer, we gve exsece ad uqueess resuls for backward sochasc dereal equaos whe he geeraor has olyomal growh he sae varable. We deal wh he case of xed ermal me as well as he case of radom ermal me. The eed for hs ye of exeso of he classcal exsece ad uqueess resuls comes from he desre o rovde a robablsc rereseao of he soluos of semlear aral dereal equaos he sr of a olear Feyma-Kac formula. Ideed may alcaos of eres, he oleary s olyomal, see e.g. he Alle-Cah equao or he sadard olear hea ad Schrodger equaos. 1 Iroduco I s by ow well-kow ha here exss a uque, adaed ad square egrable, soluo o a backward sochasc dereal equao (BSDE for shor) of ye Y = + f(s Y s s )ds ; s dw s T rovded ha he geeraor s Lschz boh he varables y ad z. We refer o he orgal work of E. Pardoux ad S. Peg [13, 14] for he geeral heory ad o N. El Karou, S. Peg ad M.-C. Queez [6] for a survey of he alcaos of hs heory ace. Sce he rs exsece ad uqueess resul esablshed by E. Pardoux ad S. Peg 199, a lo of works, cludg R. W. R. Darlg, E. Pardoux [5], S. Hamadee [8], M. Kobylask [9], J.- P. Leeler, J. Sa Mar [1, 11], see also he refereces here, have red o weake he Lschz assumo o he geeraor. Mos of hese works deal oly wh real-valued BSDEs [8, 9, 1, 11] because of her deedece o he use of he comarso heorem for BSDEs (see e.g. N. El Karou, S. Peg, M.-C. Queez [6, Theorem 2.2]). Furhermore, exce [11], he geeraor s always assumed o be a mos lear he sae varable. Le us meo everheless a exceo: [11], J.-P. Leeler ad J. Sa Mar accomodae a growh of he geeraor of he followg ye: C ; 1+jxj log jxj, C ; 1+jxj log log jxj... O he oher had, oe of he mos romsg eld of alcao for he heory of BSDEs s he aalyss of ellc ad arabolc aral dereal equaos (PDEs for shor) ad we refer o E. Pardoux [12] forasurvey of her relaoshs. Ideed, as was revealed by S. Peg [17] ad by E. Pardoux, S. Peg [14] (see also he corbuos of G. Barles, R. Buckdah, 1

2 2 Phle Brad ad Ree Carmoa E. Pardoux [1], Ph. Brad [3], E. Pardoux, F. Pradelles,. Rao [15], E. Pardoux, S. hag [16] amog ohers), BSDEs rovde a robablsc rereseao of soluos (vscosy soluos he mos geeral case) of semlear PDEs. Ths rovdes a geeralzao o he olear case of he well kow Feyma-Kac formula. I may examles of semlear PDEs, he oleary soof lear growh (as mled by a global Lschz codo) bu sead, s of olyomal growh, see e.g. he olear hea equao aalyzed by M. Escobedo, O. Kava ad H. Maao [7]) or he Alle-Cah equao (G. Barles, H. M. Soer, P. E. Sougads [2]). If oe aems o sudy hese semlear PDEs by meas of he olear verso of he Feyma-Kac formula, alluded o above, oe has o deal wh BSDEs whose geeraors wh olear (hough olyomal) growh. Uforuaely, exsece ad uqueess resuls for he soluos of BSDE's of hs ye were o avalable whe we rs sared hs vesgao, ad llg hs ga he leraure was a he org of hs aer. I order o overcome he dcules roduced by he olyomal growh of he geeraor, we assume ha he geeraor sases a kd of mooocy codo he sae varable. Ths codo s very useful he sudy of BSDEs wh radom ermal me. See he works of S. Peg [17], R. W. R. Darlg, E. Pardoux [5], Ph. Brad, Y. Hu [4] for aems he sr of our vesgao. Eve hough looks raher echcal a rs, s esecally aural our coex: deed, s la o check ha s sased all he examles of semlear PDEs quoed above. The res of he aer s orgazed as follows. I he ex seco, we x some oao, we sae our ma assumos ad we rove a echcal rooso whch wll be eeded he sequel. I seco 3, we deal wh he case of BSDEs wh xed ermal me: we rove a exsece ad uqueess resul ad we esablsh some a ror esmaes for he soluos of BSDEs hs coex. I seco 4, we cosder he case of BSDEs wh radom ermal mes. BSDEs wh radom ermal mes lay a crucal role he aalyss of he soluos of ellc semlear PDEs. They were rs roduced by S. Peg [17] ad he suded a more geeral framework by R. W. R. Darlg, E. Pardoux [5]. These equaos are also cosdered [12]. Ackowledgmes. We are graeful o Professeur Eee Pardoux for several fruful dscussos durg he rearao of hs mauscr. Also, he rs amed auhor would lke o hak he Sascs & Oeraos Research Program of Prceo Uversy for s warm hosaly. 2 Prelmares 2.1 Noao ad Assumos Le ; ( F IP) be a robably sace carryg a d-dmesoal Browa moo (W ), ad F be he lrao geeraed by (W ). As usual we assume ha each -eld F has bee augmeed wh he IP-ull ses o make sure ha ; F s rgh couous ad comlee. For y 2 IR k,we deoe by jyj s Eucldea orm ad f z belogs o IR kd, jz j deoes r(zz ) 1=2. For q>1, we dee he followg saces of rocesses: S q = H q = ( ( ) rogressvely measurable 2 IR k j j q S q := j j q < 1, T ) q=2 rogressvely measurable 2 IR kd j j q q := j j 2 d < 1,

3 BSDEs wh olyomal geeraors 3 ad we cosder he Baach sace B q = S q H q edowed wh he orm: q=2 j(y )j q q = jy j q + j j 2 d : T We ow roduce he geeraor of our BSDEs. We assume ha f s a fuco deed o [ T] IR k IR kd, wh values IR k such a way ha he rocess ; f( y z) 2[ T ] s rogressvely measurable for each (y z) IR k IR kd. Furhermore we make he followg assumo. (A 1). There exs cosas, 2 IR, C ad>1suchhaip ; a:s:, wehave: y 8(z z ) f( y z) ; f( y z ) jz ; z j z 8(y y ) (y ; y ) ; f( y z) ; f( y z) ;jy ; y j y 8z f( y z) f( z) + C ; 1+jyj ) z y 7;! f( y z) scouous. We refer o he codo (A 1).2 as a mooocy codo. Our goal s o sudy he BSDE Y = + f(s Y s s )ds ; s dw s T (1) whe he geeraor f sases he above assumo. I he classcal case = 1, he ermal codo ad he rocess ; f( ) are assumed o be square egrable. I he olear 2[ T ] case >1, we eed sroger egrably codos o boh ad ; f( ).We ose 2[ T ] ha: (A 2). s a F T -measurable radom varable wh values IR k such ha h jj 2 + f(s ) 2 ds < 1: Remark. We cosder here oly he case > 1 sce he case = 1 s reaed he works of R. W. R. Darlg, E. Pardoux [5] ade. Pardoux [12]. 2.2 A Frs a ror Esmae We ed hese relmares by esablshg a a ror esmae for BSDEs he case where ad f( ) are bouded. The followg rooso s a mere geeralzao of a resul of S. Peg [18, Theorem 2.2] who roved he same resul uder a sroger assumo o f amely, 8 y z f( y z) + jyj + jz j: Our corbuo s merely o remark ha hs roof requres oly a esmae of y f( y z) ad hus ha he resul should sll rue our coex. We clude a roof for he sake of comleeess. Prooso 2.1 Le ; (Y ) 2[ T ] 2 B 2 be a soluo of he BSDE (1). Le us assume moreover ha for each, y, z, y f( y z) jyj + jyj 2 + jyjjz j ad, j j 1 : The, for each ">, wehave,seg = " , T jy j 2 2 e T + 2 ; e T ; 1 : "

4 4 Phle Brad ad Ree Carmoa Proof. Le us x 2 [ T], wll be chose laer he roof. Alyg I^o's formula o e (s;) jy s j 2 bewee ad T,we oba: jy j 2 + e (s;); jy s j 2 + j s j 2 ds = jj 2 e (T ;) +2 e (s;) Y s f(s Y s s )ds ; M rovded we wre M for 2 e (s;) Y s s dw s. Usg he assumo o ( f) follows ha: jy j 2 + e (s;); jy s j 2 + j s j 2 ds 2 e T +2 e (s;) jy s j + jy s j 2 + jy s jj s j ds ; M : Usg he equaly 2ab a2 + b2,we oba, for ay ">, jy j 2 + e (s;); jy s j 2 + j s j 2 ds 2 e T + e (s;) 2 " +(" )jy s j 2 ds + e (s;) j s j 2 ds ; 2 e (s;) Y s s dw s ad choosg = " yelds he equaly jy j 2 2 e T + 2 ; e T ; 1 ; 2 e (s;) Y s s dw s : " Takg he codoal execao wh resec o F of boh sdes, we ge mmedaely ha: whch comlees he roof [ T] jy j 2 2 e T + 2 ; e T ; 1 " 3 BSDEs wh Fxed Termal Tmes The goal of hs seco s o sudy he BSDE (1) for xed (deermsc) ermal me T uder he assumo (A 1) ad (A 2). We rs rove uqueess, he we rove a a ror esmae ad ally we ur o exsece. 3.1 Uqueess ad a ror Esmaes Ths subseco s devoed o he roof of uqueess ad o he sudy of he egrably roeres of he soluos of he BSDE (1). Theorem 3.1 If (A 1).1{2 hold, he BSDE (1) has a mos oe soluo he sace B 2. Proof. Suose ha we have wo soluos he sace B 2,say(Y 1 1 )ad(y 2 2 ). Seg Y Y 1 ; Y 2 ad 1 ; 2 for oaoal coveece, for each real umber ad for each 2 [ T], akg execaos I^o's formula gves: h e jy j 2 + e s T j s j 2 ds = e s 2Y s ; f(s Ys 1 1 s ) ; f(s Ys 2 2 s ) ; jy s j 2 ds :

5 BSDEs wh olyomal geeraors 5 The vashg of he execao of he sochasc egral s easly jused vew of Burkholder's equaly. Usg he mooocy of f ad he Lschz assumo, we ge: h h e jy j 2 + e s j s j 2 ds 2 e s jy s jj s jds ; ( +2) e s jy s j 2 ds : Hece, we see ha h e jy j 2 + e s T j s j 2 ds (2 2 ; 2 ; ) e s jy s j 2 ds + 1 h 2 e s j s j 2 ds : We coclude he roof of uqueess by choosg =2 2 ; We close hs seco wh he dervao of some a ror esmaes he sace B 2. These esmaes gve shor roofs of exsece ad uqueess he Lschz coex. They were roduced a \ L framework " by N. El Karou, S. Peg, M.-C. Queez [6] o rea he case of Lschz geeraors. Prooso 3.2 For =1 2 we le (Y ) 2 B 2 be a soluo of he BSDE Y = + f (s Ys s)ds ; sdw s T where ( f ) sases he assumos (A 1) ad (A 2) wh cosas, ad C. Le " such ha <"<1 ad ( 1 ) 2 =" ; 2 1. The here exssacosa K " whch deeds oly o ad o " such ha: T e jy j 2 T + e j j 2 d K " e T jj 2 T + e 2 2 s jf s jds where = 1 ; 2, Y Y 1 ;Y 2, 1 ; 2 ad f f 1 ( Y 2 2 );f 2 ( Y 2 2 ). Moreover, f >( 1 ) 2 =" ; 2 1, we have also, seg = ; ( 1 ) 2 =" +2 1, e jy j 2 d K" e T jj 2 T + e 2 2 s jf s jds : Proof. As usual we sar wh I^o's formula o see ha: e jy j 2 + e s j s j 2 ds = e T jj 2 +2 where we sem =2 ; e s jy s j 2 ds ; M e s Y s ; f 1 (s Y 1 s 1 s ) ; f 2 (s Y 2 s 2 s ) ds e s Y s s dw s for each 2 [ T]. I order o use he mooocy of f 1 ad he Lschz assumo o f 1,we sl oe erm o hree ars, recsely we wre: Y s ; f 1 (s Ys 1 1 s ) ; f 2 (s Ys 2 2 s ) = Y s ; f 1 (s Ys 1 1 s ) ; f 1 (s Ys 2 1 s ) +Y s ; f 1 (s Ys 2 1 s ) ; f 1 (s Ys 2 2 s ) +Y s ; f 1 (s Y 2 s 2 s ) ; f 2 (s Y 2 s 2 s )

6 6 Phle Brad ad Ree Carmoa ad he equaly 2 1 jy s jj s j ; ( 1 ) 2 =" jy s j 2 + "j s j 2 mles ha: e jy j 2 +(1; ") e s j s j 2 ds e T jj 2 + e s ; ; ( 1) 2 " +2 e s jy s jjf s jds ; M : jy s j 2 ds Seg = +2 1 ; ( 1 ) 2 =", he revous equaly ca be rewre he followg way e jy j 2 +(1; ") e s j s j 2 ds + e s jy s j 2 ds e T jj 2 ; M +2 e s jy s jjf s jds: (2) Takg he codoal execao wh resec o F of he revous equaly, we deduce sce he codoal execao of M vashes, e jy j 2 e T jj 2 +2 ad sce >1, Doob's maxmal equaly mles: e jy j 2 T K e T jj 2 T + e s jy s jjf s jds F e s jy s jjf s jds K e T jj 2 + e (=2) jy j e (=2)s jf s jds : T where we use he oao K for a cosa deedg oly o ad whose value could be chagg from le o le. Thaks o he equaly ab a 2 =2+b 2 =2, we ge T e jy j 2 K e T jj 2 T 2 + e (=2)s jf s jds T e jy j 2 whch gves T e jy j 2 K e T jj 2 T 2 + e (=2)s jf s jds : (3) Now comg back o he equaly (2),wehave sce "<1, e s j s j 2 ds 1 e T jj 2 +2 e s jy s jjf s jds ; 2 e s Y s s dw s 1 ; " ad by Burkholder-Davs-Gudy's equaly we oba e s j s j 2 ds K " e T jj 2 T + e s jy s jjf s jds =2 +K " e 2s jy s j 2 j s j 2 ds

7 BSDEs wh olyomal geeraors 7 ad hus follows easly ha: e s j s j 2 ds K " e T jj 2 + +K " T T e (=2) jy j =2 e (=2) jy j e s j s j 2 ds e (=2)s jf s jds whch yelds he equaly, usg oe more me he equaly ab a 2 =2+b 2 =2, e s j s j 2 ds K " e T jj 2 + e jy j 2 T 2 + e (=2)s jf s jds T e s j s j 2 ds : h Takg o accou he uer boud foud for T e jy j 2 gve (3), we derve from he above equaly, 2 e s j s j 2 ds K " e T jj 2 + e (=2)s jf s jds whch cocludes he rs ar of hs rooso. ha (2) gves For he secod assero we smly remark e s jy s j 2 ds e T jj 2 +2 e s jy s jjf s jds ; 2 e s Y s s dw s A smlar comuao gves: e s jy s j 2 ds K " e T jj 2 + e jy j 2 T 2 + e (=2)s jf s jds T e s j s j 2 ds whch comlees he roof usg he rs ar of he rooso already show ad keeg md ha f >( 1 ) 2 =" ; 2 1 he >. 2 Corollary 3.3 Uder he assumos ad wh he oao of he revous rooso, here exss a cosa K, deedg oly o, T, 1 ad 1 such ha: jy j 2 T + j j 2 d K jj 2 T 2 + jf s jds : T Proof. From he revous rooso, we have (akg " = 1=2): T ad hus e ;T ; e jy j 2 T + e j j 2 d K e T jj 2 T + e 2 2 s jf s jds T jy j 2 T + j j 2 d K e T + jj 2 T 2 + jf s jds :

8 8 Phle Brad ad Ree Carmoa I s eough o se K = e jjt K o coclude he roof. 2 Remark. I s la o check ha he assumos (A1 ).3{4 are o eeded he above roofs of he resuls of Prooso 3.2 ad s corollary. Corollary 3.4 Le ; (Y ) T 2 B 2 be a soluo of he BSDE (1) ad le us assume ha 2 L 2 ad assume also ha here exss a rocess (f ) T 2 H 2 (IR k ) such ha 8(s y z) 2 [ T] IR k IR kd y f(s y z) jyjjf s j;jyj 2 + jyjjz j: The, f <"<1 ad 2 =" ; 2, here exss a cosa K " whch deeds oly o ad o " such ha: e jy j 2 T + e j j 2 d K " e T jj 2 T + e 2 2 s jf s jds T Proof. As usual we sar wh I^o's formula o see ha : e jy j 2 + e s j s j 2 ds = e T jj 2 +2 e s Y s f(s Y s s )ds ; e s jy s j 2 ds ; M rovded we se M =2 e s Y s s dw s for each 2 [ T]. Usg he assumo o y f(s y z) ad he he equaly 2jY s jj s j ; 2 =" jy s j 2 + "j s j 2,we deduce ha e jy j 2 +(1; ") e s j s j 2 ds e T jj 2 + e s ; ; " +2 e s jy s jjf s jds ; M : jy s jds Sce 2 ; 2 =", he revous equaly mles e jy j 2 +(1; ") e s j s j 2 ds e T jj 2 +2 e s jy s jjf s jds ; M : Ths equaly s exacly he same as he equaly (2). As a cosequece we ca comlee he roof of hs as he roof of Prooso Exsece I hs subseco, we sudy he exsece of soluos for he BSDE (1) uder he assumos (A 1) ad (A 2). We shall rove ha he BSDE (1) has a soluo he sace B 2. We may assume, whou los of geeraly, ha he cosa s equal o. Ideed, (Y ) 2[ T ] solves he BSDE (1) B 2 f ad oly f, seg for each 2 [ T], Y = e ; Y ad = e ; he rocess ; Y solves B 2 he followg BSDE: Y = + f(s Y s s )ds ; s dw s T

9 BSDEs wh olyomal geeraors 9 where = e ;T ad f( y z) =e ; f( e y e z)+y. Sce ; f sases he assumo (A 1) ad(a2)wh =, = ad C = C ex ; T ( ; 1) + + ; + jj, we shall assume ha = he remag of hs seco. Our roof s based o he followg sraegy: rs, we solve he roblem whe he fuco f doesodeedohevarable z ad he we use a x o argume usg he a ror esmae gve subseco 3.1, Prooso 3.2 ad Corollary 3.3. The followg rooso gves he rs se. Prooso 3.5 Le he assumos (A 1) ad (A 2) hold. Gve a rocess (V ) T he sace H 2,here exss a uque soluo ; (Y ) 2[ T ] he sace B 2 o he BSDE Y = + f(s Y s V s )ds ; s dw s T: (4) Proof. We shall wre he sequel h(s y) lace of f(s y V s ). Of course h sases he assumo (A 1) wh he same cosas as f ad ; h( ) belogs o H 2 sce f s Lschz wh resec o z ad he rocess V belogs o H 2. Wha wewould lke o do s o cosruc a sequece of Lschz (globally y uformly wh resec o (! s)) fucos h whch aroxmae h ad whch are moooe. However, we oly maage o cosruc a sequece for whch each h s moooe a gve ball (he radus deeds o ). As we wll see laer he roof, hs \ local " mooocy ssuce o oba he resul. Ths s maly due o Prooso 2.1 whose key dea ca be raced back oawork of S. Peg [18, Theorem 2.2]. We shall use a aroxmae dey. Le : IR k ;! IR + be a oegave C 1 fuco wh he u ball for or ad such ha R (u)du = 1 ad dee for each eger 1, (u) =(u). We deoe also, for each eger, by a C 1 fuco from IR k o IR + such ha 1, (u) =1forjuj ad (u) = as soo as juj +1. We se moreover 8 < = : jj f jj oherwse, 8 < ad, h ~ (s y) = : h(s y) h(s y) jh(s )j oherwse. f jh(s )j Such a h ~ sases he assumo (A 1) ad moreover we have j j ad j h ~ (s )j. Fally we se q() = 1=2 ( +2C) 1+T where [r] sads as usual for he eger ar of r ad we dee h (s ) = ; q()+1 h ~ (s ) s 2 [ T]: We rs remark ha h (s y) = wheever jyj q() + 3 ad ha h (s ) s globally Lschz wh resec o y uformly (! s). Ideed, h (s ) s a smooh fuco wh comac or ad hus wehave y2ir k rh (s y) = rh jyjq()+3 (s y) ad, from he growh assumo o f (A 1).3, s o hard o check ha j h ~ (s y)j ^jh(s )j + C ; 1+jyj whch mles ha rh (s y) + C(1 + 2 ;1 jyj ) + C2 ;1 r(u) du: As a mmedae cosequece, he fuco h s globally Lschz wh resec o y uformly (! s). I addo j j ad jh (s )j ^jh(s )j +2C ad hus Theorem 5.1 [6] rovdes a soluo (Y ) o he BSDE Y = + h (s Ys )ds ; s dw s T (5)

10 1 Phle Brad ad Ree Carmoa whch belogs acually o B q for each q>1. I order o aly Prooso 2.1 we observe ha, for each y, y h (s y) = (u) q()+1 (y ; u)y h ~ (s y ; u)du = (u) q()+1 (y ; u)y h ~ (s y ; u) ; h ~ (s ;u) du + (u) q()+1 (y ; u)y h ~ (s ;u)du: Hece, we deduce ha, sce he fuco ~ h (s ) s moooe (recall ha = ) hs seco) ad vew of he growh assumo o f we have: 8(s y) 2 [ T] y h (s y) ; ^jh(s )j +2C jyj: (6) Ths esmae wll ur ou o be very useful he sequel. Ideed, we ca aly Prooso 2.1 o he BSDE (5) o show ha, for each, choosg " =1=T, jy j( +2C)e1=2 1+T 2 : (7) T O he oher had, he equaly (6)allows oe o use Corollary 3.4, o oba, for a cosa K deedg oly o : jy j 2 T + j j 2 d K jj 2 T 2 + jh(s )j +2C ds : (8) 2IN T I s worh og ha, haks o jh(s )j jf(s )j + jv s j, he rgh had sde of he revous equaly s e. We wa o rove ha he sequece ; (Y ) coverges owards he IN soluo of he BSDE (4) ad order o do ha we rsshow ha he sequece ; (Y ) s IN acauchy sequece he sace B 2. Ths fac reles maly o he followg roery: h sases he mooocy codo he ball of radus q(). Ideed, x 2 IN ad le us ck y y such ha jyj q() adjy jq(). We have: (y ; y ) (h (s y) ; h (s y ) = (y ; y ) (u) q()+1 (y ; u) h ~ (s y ; u)du ;(y ; y ) (u) q()+1 (y ; u) h ~ (s y ; u)du: Bu, sce jyj jy jq() ad sce he or of s cluded he u ball, we ge from he fac ha q()+1 (x) =1assooasjxj q()+1, (y ; y ) (h (s y) ; h (s y )= (u)(y ; y ) ; h ~ (s y ; u) ; ~ h (s y ; u) du: Hece, by he mooocy of ~ h,wege 8y y 2 B( q()) (y ; y ) (h (s y) ; h (s y ) : (9) We ow ur o he covergece of ; (Y ). Le us x wo egers m ad such ha m. IN I^o's formula gves, for each 2 [ T], jy j 2 + j s j 2 ds = jj 2 +2 Y s ; h m (s Ys m ) ; h (s Ys ) ds ; 2 Y s s dw s

11 BSDEs wh olyomal geeraors 11 where we have se = m ;, Y Y m ; Y ad m ;. We sl oe erm of he revous equaly o wo ars, recsely we wre: Y s ; h m (s Ys m ) ; h (s Ys ) = Y s ; h m (s Ys m ) ; h m (s Ys ) + Y s ; h m (s Ys ) ; h (s Ys ) : Bu vew of he esmae (7), we have jys m jq(m) adjys jq() q(m). Thus, usg he roery (9), he rs ar of he rgh had sde of he revous equaly s o-osve ad follows ha jy j 2 + I arcular, we have j s j 2 ds jj 2 +2 jy s j h m (s Ys ) ; h (s Ys ) ds ; 2 Y s s dw s : (1) h h j s j 2 ds 2 jj 2 + ad comg back o (1), Burkholder's equaly mles jy j 2 K jj 2 + T jy s j hm (s Y s ) ; h (s Y s ) ds jy s j hm (s Y s ) ; h (s Y s ) ds + ad he usg he equaly ab a 2 =2+b 2 =2we oba he followg equaly: h T jy j 2 h K jj h T jy s j h m (s Ys ) ; h (s Ys ) ds jy j 2 + K2 2 h from whch we ge, for aoher cosa sll deoed by K, h T jy j 2 + h j s j 2 ds K jj 2 + j s j 2 ds 1=2 jy s j 2 j s j 2 ds jy s j hm (s Y s ) ; h (s Y s ) ds : Obvously, sce 2 L 2, eds o L 2 as m!1wh m. So, we have oly o rove ha h jy s j hm (s Ys ) ; h (s Ys ) ds ;! as!1: For ay oegave umber k, we wre S m T = 1 jy s j+jys mjk jy s j hm (s Ys ) ; h (s Ys ) ds R m T = 1 jy s j+jys mj>k jy s j hm (s Ys ) ; h (s Ys ) ds ad wh hese oaos we have h jy s j hm (s Ys ) ; h (s Ys ) ds = S m + R m ad hece, he followg equaly: h jy s j h m (s Ys ) ; h (s Ys ) h ds k h m (s y) ; h (s y) ds + R m : (11) jyjk

12 12 Phle Brad ad Ree Carmoa Frs we deal wh R m ad usg Holder's equaly we ge he followg uer boud: h R m T 1 jy s j+jys m Seg A m ;1 2 jk ds h jy s j 2 +1 h = jy s j 2 +1 hm (s Ys ) ; h (s Ys ) 2 +1 ds h m (s Ys ) ; h (s Ys ) 2 +1 ds +1 2 : for oaoal coveece, we have R m IP ; ;1 jys j + jy s m jk 2 +1 ds A m 2 ad Chebyshev's equaly yelds: R m k 1; 2 T ;1 2 h ;jy 2IN h s j + jys m T ;1 j ds A m 2 ;1 jy j 2 2 k 1; A m +1 2 : (12) h We have already see ha 2IN T jy j2 s e (cf. (8)) ad we shall rove ha remas bouded as m vary. To do hs, le us recall ha A m A m h = jy s j 2 +1 hm (s Ys ) ; h (s Ys ) 2 +1 ds ad usg Youg's equaly (ab 1 r ar + 1 r b r wheever 1 r + 1 r =1)whr = +1 ad r = +1 we deduce ha A m 1 +1 h jy s j 2 ds + h +1 hm (s Ys ) ; h (s Ys ) 2 ds : The rs ar h of he las uer boud remas bouded as m vary sce from (8) we kow ha 2IN T jy j2 s e. Moreover, we derve easly from he assumo (A 1) ha h (s y) ^ h(s ) +2 C ; 1+jyj, ad he, hm (s Y s ) ; h (s Y s ) 2 h(s ) C ; 1+jY s j whch yelds he equaly, akg o accou he assumo (A 1).1, h hm (s Ys ) ; h (s Ys ) h 2 ds K jf(s )j 2 + jv s j 2 +1+jYs j 2 ds : Takg o accou (8) ad he egrably assumo o boh V ad f( ), we have roved ha m A m < 1. Comg back o he equaly (12), we ge, for a cosa, R m k 1;, ad sce >1, R m ca be made arbrary small by choosg k large eough. Thus, vew of he esmae (11), remas oly o check ha, for each xed k>, h h m (s y) ; h (s y) ds jyjk,

13 BSDEs wh olyomal geeraors 13 goes o as eds o y uformly wh resec o m o ge he covergece of ; (Y ) IN he sace B 2. Bu, sce h(s ) scouous (IP ; a:s: 8s), h (s ) coverges owards h(s ) uformly o comac ses. Takg o accou ha h jyjk (s y) h(s ) +2 C ; 1+k Lebesgue's covergece heorem gves he resul. Thus, he sequece ; (Y ) coverges owards a rogressvely measurable rocess (Y ) IN he sace B 2. Moreover, sce ; (Y ) s bouded B IN 2 (see (8)), Faou's lemma mles ha (Y ) belogs also o he sace B 2. I remas o check ha (Y ) solves he BSDE (4) whch s ohg bu Y = + h(s Y s )ds ; s dw s T: Of course, we wa o ass o he lm he BSDE (5). Le us rs remark ha ;! L 2 ad ha for each 2 [ T], s dw s ;! H 2 (IR kd ). Acually, we oly eed o rove ha for 2 [ T], h (s Ys )ds ;! h(s Y s )ds as!1: s dw s sce coverges o he sace For hs, we shall see ha h ( Y )edsoh( Y ) he sace L 1 ( [ T]). Ideed, h h (s Ys );h(s Y s ) h ds h (s Ys );h(s Ys ) h ds + h(s Y s );h(s Y s ) ds : The rs erm of he rgh had sde of he revous equaly eds o as goes o 1 by he same argume we use earler he roof o see ha jy s jjh m (s Ys );h (s Ys )jds goes o. For he secod erm, we shall rsly rove ha here exss a covergg subsequece. Ideed, sce Y coverges o Y s he sace S 2, here exss a subsequece (Y j )suchhaip{a.s., 8 2 [ T] Y j ;! Y : ; Sce h( ) s couous (IP{a.s., 8), IP{a.s. 8 h( Y j ) ;! h( Y ). Moreover, sce Y 2 S 2 ad (Y ) IN s bouded S 2 ((8)), s o hard o check from he growh assumo o f ha h h(s Y j s ) ; h(s Y s ) 2 ds < 1 j2in ad he he resul follows by uform egrably of he sequece. Acually, he covergece hold for he whole sequece sce each subsequece has a covergg subsequece. Fally, we ca ass o he lm he BSDE (5) ad he roof s comlee. 2 Wh he hel of hs rooso, we ca ow cosruc a soluo (Y ) o he BSDE (1). We clam he followg resul: Theorem 3.6 Uder he assumos (A 1) ad (A 2), he BSDE (1) has a uque soluo (Y ) he sace B 2. Proof. The uqueess ar of hs saeme salready roved Theorem 3.1. The rs se he roof of he exsece s o show he resul whe T s sucely small. Accordg o

14 14 Phle Brad ad Ree Carmoa Theorem 3.1 ad Prooso 3.5, le us dee he followg fuco from B 2 o self. For (U V ) 2 B 2, (U V )=(Y ) where (Y ) s he uque soluo B 2 of he BSDE: Y = + f(s Y s V s )ds ; s dw s T: Nex we rove ha s a src coraco rovded ha T s small eough. Ideed, f ; U 1 V 1 ad ; U 2 V 2 are boh elemes of he sace B 2,wehave, alyg Prooso 3.2 for ; Y = ; U V, =1 2, T jy j 2 T 2 + j j 2 d K jf(s Ys 2 Vs 1 ) ; f(s Ys 2 Vs 2 jds where Y Y 1 ;Y 2, 1 ; 2 ad K s a cosa deedg oly o. Usg he Lschz assumo o f, (A 1).1, ad Holder's equaly we ge he equaly T jy j 2 T + j j 2 d K 2 T jvs 1 ; V s 2 j2 ds : Hece, f T s such ha K 2 T < 1, s a src coraco ad hus has a uque xed o he sace B 2 whch s he uque soluo of he BSDE (1). The geeral case s reaed by subdvdg he me erval [ T] o a e umber of ervals whose leghs are small eough ad usg he above exsece ad uqueess resul each of he subervals. 2 4 The Case of Radom Termal Tmes I hs seco, we brey exla how o exed he resuls of he revous seco o he case of a radom ermal me. 4.1 Noao ad Assumos Le us recall ha (W ) s a d-dmesoal Browa moo, deed o a robably sace ( F IP) ad ha ; F s he comlee -algebra geeraed by (W ). Le be a sog me wh resec o ; F ad le us assume ha s e IP{a.s. Le us cosder also a radom varable F {measurable ad a fuco f deed o IR + IR k IR kd wh values IR k ad such ha he rocess ; f( y z) s rogressvely measurable for each (y z). We sudy he followg BSDE wh he radom ermal me : Y = + ^ f(s Y s s )ds ; ^ s dw s : (13) By a soluo of hs equao, we always mea a rogressvely measurable rocess ; (Y ) wh values IR k IR kd such ha =f>. Moreover, sce s e IP{a.s., (13) mles ha Y = f. We eed o roduce furher oao. Le us cosder q > 1 ad 2 IR. We say ha a rogressvely measurable rocess wh values IR belogs o H q (IR )f 1 q=2 e j j 2 d < 1:

15 BSDEs wh olyomal geeraors 15 Moreover, we say ha belogs o he sace S q (IR )f e (q=2)(^ ) j j q < 1: We are gog o rove a exsece ad uqueess resul for he BSDE (13) uder assumos whch arevery smlar o hose made seco 2 for he sudy of he case of BSDEs wh xed ermal mes. Precsely, we wll ose he framework of radom ermal mes he followg wo assumos: (A 3). There exs cosas, 2 IR, C, >1ad2f 1g such haip ; a:s:, we have: y 8(z z ) f( y z) ; f( y z ) jz ; z j z 8(y y ) (y ; y ) ; f( y z) ; f( y z) ;jy ; y j y 8z f( y z) f( z) + C( + jyj ) z y 7;! f( y z) scouous, (A 4). s F -measurable ad here exss a real umber such ha > 2 ; 2 ad e + e + e jj 2 + e s f(s ) 2 ds + e (=2)s 2 f(s ) ds < 1: Remark. I he case <, whch may occur f s a ubouded sog me, our egrably codos are fullled f we assume ha e jj 2 + e (=2)s f(s ) 2 ds < 1: For oaoal coveece, we wll smly wre, he remag of he aer, S q sead of S q (IR k ) ad H q(ir kd ) resecvely. ad H q 4.2 Exsece ad Uqueess I hs seco, we deal wh he exsece ad uqueess of he soluos of he BSDE (13). We clam he followg rooso. Prooso 4.1 Uder he assumos (A3) ad (A4), here exss a mos a soluo of he BSDE (13) he sace S 2 H 2. Proof. Le (Y 1 1 ) ad (Y 2 2 )bewo soluos of (13) he sace S 2 H 2. Le us oce rs ha Y 1 = Y 2 = f ad 1 = 2 = o he se f >g. Alyg I^o's formula, we ge e (^) jy ^ j 2 + e s j s j 2 ds = 2 ^ ^ ; ^ e s Y s ; f(s Y 1 s 1 s ) ; f(s Y 2 e s jy s j 2 ds ; 2 ^ s 2 s ) ds e s Y s s dw s

16 16 Phle Brad ad Ree Carmoa where we have se Y Y 1 ; Y 2 ad 1 ; 2. I s worh og ha, sce f s Lschz z ad moooe y, wehave, for each ">, 8( y y z z ) 2(y ; y ) ; f( y z) ; f( y z ) (;2 + 2 =")jy ; y j 2 + "jz ; z j 2 : (14) Moreover, by Burkholder's equaly he couous local margale ^ s a uformly egrable margale. Ideed, D ^ E 1=2 e s Y s s dw s = ad he, D ^ E 1=2 e s Y s s dw s K2 1 1 o e s Y s s dw s 1=2 e 2s jy s j 2 j s j 2 ds 1=2 K 1=2 e jy j 2 e s j s j 2 ds e jy j 2 + e s j s j 2 ds whch s e sce (Y ) belogs o he sace S 2 H 2. Thaks o he equaly > 2 ;2, we cachoose " such ha<"<1ad> 2 =" ; 2. Usg he equaly (14), we deduce ha, he execao of he sochasc egral vashg vew of he above comuao, for each, h e (^) jy ^ j 2 +(1; ") ^ e s j s j 2 ds whch gves he resul. 2 Before rovg he exsece ar of he resul, le us roduce a sequece of rocesses whose cosruco s due o R. W. R. Darlg ad E. Pardoux [5,. 1148{1149]. Le us se = 2 =2 ; ad le ( Y b b ) be he uque soluo of he classcal (he ermal me s deermsc) BSDE o [ ] by = e ^ F + e s f(s e ;s Y b s e ;s b s ) ; Y b s ds ; b s dw s: ^ Sce he 2 jj 2 he jj 2 ad sce e 2s f(s ) 2 ds e s f(s ) 2 ds he assumo (A 4) ad Theorem 3.6 esure ha ( b Y b ) belogs o he sace B 2 (o he erval [ ]). I vew of [12, Prooso 3.1], we have by (^) = b Y ad, b =of >g: Sce e belogs o L 2 (F ) here exss a rocess () H 2 such ha =f> ad e = e + s dw s :

17 BSDEs wh olyomal geeraors 17 We roduce sll ew oao. For each >we se: ad for each oegave : by = e F = ad, b = Y = e ;(^) b Y ad, = e ;(^ ) b : Ths rocess sases Y^ = Y ad =of >g ad moreover (Y )solves he BSDE Y = + ^ f (s Y s s )ds ; ^ s dw s (15) where f ( y z) =1 f( y z)+1 > y (cf [5]). We sar wh a echcal lemma. Lemma 4.2 Le he assumos (A 3) ad (A 4) hold. The, we have, wh he oao K( f) =K e jj 2 + e (=2)s 2 f(s ) ds e (^) jy j2 + e s jys j2 ds IN ad, also, for = ; 2, 1 e (^ ) j j 2 + e s j s j 2 ds e s js j2 ds K( f) (16) h e s j s j 2 ds K e jj 2 : (17) Proof. Frsly, le us remark ha = = f > ad, sce Y = f, we have e (^) jy j2 = e jy j2. Moreover, sce > 2 we ca d " such ha <"<1 ad > 2 =" ; 2. Alyg Prooso 3.2 (acually a very mere exeso o deal wh bouded sog mes as ermal mes), we ge e jy j 2 ^ + ^ e s jys ^ j 2 ds + KE e s js j 2 ds e (^) jy (^)j 2 + ^ e (=2)s f(s ) 2 ds : We have Y^ = Y = e ;(^ ) e F^ ad he we deduce mmedaely ha, sce =2 ; > ad usg Jese's equaly, h he (^ ) jy (^)j 2 = e (=2;)(^ ) e F ^ 2 (18) he jj 2 : Hece, for each eger, e jy ^ j2 + ^ e s jys ^ j2 ds + e s js j2 ds K( f): I remas o rove hawecadhesameuerboudfor e jy j 2 + e s jys j 2 ds + e s js j 2 ds : ^< ^ ^

18 18 Phle Brad ad Ree Carmoa Bu he execao s over he se f <g ad comg back o he deo of ( Y b b )for>, s eough o check ha e (;2)(^) j j 2 + e (;2)s j s j 2 ds + e (;2)s j s j 2 ds K he jj 2 o ge he equaly (16) of he lemma ad hus o comlee he roof sce, vew of he deo of, he revous equaly s ohg bu he equaly (17). Bu, for each, ( ) solves he he followg BSDE: = e F^ ; ad by Prooso 3.2, sce = ; 2 >, ^ s dw s e j j 2 ^ + e s ^ h j s j 2 ds + e s j s j 2 ds K e (^) j ^ j 2 : We have already see (cf (18)) ha e (^) j ^ j 2 e jj 2 ad hus he roof of hs raher echcal lemma s comlee. 2 Wh he hel of hs useful lemma we ca cosruc a soluo o he BSDE (13). Ths s he am of he followg heorem. Theorem 4.3 Uder he assumos (A 3) ad (A 3), he BSDE (13) has a uque soluo (Y ) he sace S 2 H 2 whch sases moreover e (^) jy j 2 + e s jy s j 2 ds + 1 e s j s j 2 ds K( f): Proof. The uqueess ar of hs clam s already roved Prooso 4.1. We cocerae ourselves o he exsece ar. We sl he roof o he wo followg ses: rs we showha he sequece ; (Y ) s a Cauchy sequece he sace S IN 2 H 2 ad he we shall rove ha he lmg rocess s deed a soluo. Le us rs recall ha for each eger, he rocess (Y ) sases Y^ = Y ad = o f > g ad moreover solves he BSDE (15) whose geeraor f s deed he followg way: f ( y z) =1 f( y z)+1 > y. If we xm, I^o's formula gves, sce we have also Ym^ m = Ym m = Ym^ = Ym = e ;(m^ ) m,form, m^ m^ e (^ ) jy ^ j 2 + e s j s j 2 ds = 2 e s Y s ; f m (s Ys m s m ) ; f (s Ys s ) ds ^ ^ ; m^ ^ e s jy s j 2 ds ; 2 m^ ^ e s Y s s dw s where we have sey Y m ; Y, m ;. I follows from he deo of f, e (^) jy ^ j 2 + m^ ^ e s j s j 2 ds = 2 ; +2 m^ ^ m^ ^ m^ ^ e s Y s ; f(s Y m s e s jy s j 2 ds ; 2 s m ) ; f(s Ys s ) ds m^ ^ e s Y s s dw s 1 s> e s Y s ; f(s Ys s ) ; Ys ds:

19 BSDEs wh olyomal geeraors 19 Sce > 2 ; 2, we ca d " such ha < " < 1 ad = ; 2 =" +2 >. Usg he equaly (14)wh hs", we deduce from he revous equaly, m^ e (^) jy ^ j 2 +(1; ") ^ m^ e s j s j 2 ds ; +2 ^ m^ (_)^ m^ e s jy s j 2 ds ; 2 e s Y s s dw s ^ e s jy s j: f(s Ys s ) ; Ys ds: Now, usg he equaly 2ab $a 2 + b 2 =$ for he secod erm of he rgh had sde of he revous equaly, wh $<,we ge, for each m, og =m(1; " ; $) >, e (^) jy ^ j 2 + m^ ^ e s jy s j 2 + j s j 2 ds 1 $ ; 2 m^ ^ m^ ^ e s f(s Y s s ) ; Ys 2 ds e s Y s s dw s : (19) I arcular, we have, he execao of he sochasc egral vashes (cf Lemma 4.2), m^ e s m^ jy s j 2 + j s j 2 ds K e s f(s Y s s ) ; Ys 2 ds : ^ Comg back o he equaly (19), Burkholder's equaly yelds m^ m^ e jy j 2 K e s f(s Y ^ s s );Y 2 m^ ds+ s 1=2 e 2s jy s j 2 j s j 2 ds : Bu, by a argume already used, m^ 1=2 K e 2s jy s j 2 j s j 2 ds 1=2 K e m^ jy j 2 m^ 1 m^ 2 e jy j 2 + K2 2 m^ 1=2 e s j s j 2 ds e s j s j 2 ds : As a cosequece we oba he equaly: m^ m^ e jy j 2 + e s m^ jy s j 2 + j s j 2 ds K e s f(s Y ^ s s ) ; Y 2 ds ad sce Y m = Y f m, Y = o f g for each, m = = as soo as m ad =of >g we deduce from he revous equaly where we have se; = e (^ ) jy j 2 + e s jy s j 2 ds + ^ 1 (A 3).3 mles ha, u o a cosa, ; s uer bouded by e s j s j 2 ds ; (2) e s f(s Y s s ) ; Ys 2 ds. Bu he growh assumo o f e s f(s ) jys j2 + js j2 + jys j2 ds : ^ s

20 2 Phle Brad ad Ree Carmoa Sce, by assumo (A 4), e s jf(s )j 2 ds ad e are e, he rs wo erms of he ; revous uer boud eds o as goes o 1. Moreover, comg back o he deo of by b for >,wehave e s jys j 2 + js j 2 ds = e (;2)s j s j 2 + j s j 2 ds ^ ^ ad by Lemma 4.2 (cf (17)) he quay above eds also o wh gog o 1. I remas o check ha he same s rue for e s jys j 2 ds = e (;2)s j s j 2 ds ^ ^ where, le us recall, s meas e F s. By Jese's equaly, s eough o show he followg: e (;2)s e jj 2 Fs ds ;! as!1: ^ If >2, sce e 2 jj 2 e jj 2 < 1 ad e jj 2 < 1, Lemma 4.1 [5] gves e (;2)s e jj 2 Fs ds < 1 from whch we ge he resul. Now, we deal wh he case 2 whch mles < 2 <2 <. Usg oce more me Jese's equaly, wehave e (;2)s e jj Fs ^ 2 ds ^ ^ e 2 jj 2 Fs ds e (2;) e jj 2 F s ad sce >2 we have e (2;) e jj 2 F s e (2;)(s^ ) e jj 2 F s. Hece, follows, e (;2)s e jj Fs ^ 2 ds ^ e (2;)s e jj 2 Fs he jj 2 1 e (2;)s ds: Sce 2 ; <ad e jj 2 < 1, we comlee he roof of he las case. Thus we have show ha ; coverges o as eds o 1 ad comg back o he equaly (2), we ge 1 e (^) jy j 2 + e s jy s j 2 ds + e s j s j 2 ds ;! as eds o 1, uformly m. I arcular he sequece ; (Y ) s a Cauchy sequece IN S 2 H 2 ad hus coverges hs sace o a rocess (Y ). Moreover, akg o accou he equaly (16) of Lemma 4.2, Faou's lemma mles e (^) jy j e s jy s j 2 ds + e s j s j 2 ds K( f): (21) ds ds

21 BSDEs wh olyomal geeraors 21 I remasocheck ha he rocess (Y ) solves he BSDE (13). To do hs, we follow he dscusso of R. W. R. Darlg, E. Pardoux [5,. 115{1151]. Leusckarealumber such ha <^=2 ^ (hs mles ha <)adleusxaoegaverealumber. Sce (Y ) solves he BSDE (15), we have, from I^o's formula, for, e (^ ) Y = e + + ^ ^ e s Y s e s f(s Y s s ) ; Y s ds ; ; f(s Y s s ) ds ad we wa o ass o he lm hs equao kowg ha " 1 e (^ ) jy ; Y j2 + e s jy s ; Ys j2 ds + We have, e (^) Y ;! e (^ ) Y L 2. Moreover, Holder's equaly gves e s jys ; Y s jds from whch we deduce, sce 2 <, ha also ha ^ e s s dw s coverges o Usg Holder's equaly, we have ^ e s s dw s e s j s ; s j2 ds ;! : 1=2 1=2 e s jys ; Y s j 2 ds e (2;)s ds ^ ^ e s; 2 s ; s dws ^ e s Ys ds eds o e s Y s ds L 1. We remark ^ e s s dw s L 2 sce, haks o 2 <, e s js ; s j 2 ds : e s Y s ; f(s Ys s ) 1 h ds e s Y ^ ; 2 s ; f(s Ys s ) 2 1=2 ds ^ ad we have already roved ha he rgh had sde eds o (see he deo of ; ). remas o sudy he erm ^ f(s Y s s )ds. Bu, sce f s Lschz z, wehave e s f(s Y s s ) ; f(s Ys s ) h ds 1=2 e s j ^ ; 2 s ; s j 2 ds ^ ad hus goes o wh. So ow, suces o show ha e s f(s Y s s ) ; f(s Y s s ) ds ;! o corol he lm he equao. We rove hs by showg ha each subsequece has a subsequece for whch he above covergece hold. Ideed, f we ck a subsequece (sll deoed by Y ), sce we have e (^ ) jy ; Y j 2 ;! here exs a subsequece sll deoed ; he same way such ha IP{a.s. 8 Y ; ;! Y. By he couy of he fuco f, IP{a.s. 8 f( Y ) ;! f( Y ). If we rove ha e s f(s Y s s ) ; f(s Y s s ) 2 ds < 1 IN I

22 22 Phle Brad ad Ree Carmoa he he sequece jf( Y ) ; f( Y ) wll be a uformly egrable sequece for he e measure e s 1 s ds dip (remember ha <)ad hus covergg L 1 (e s 1 s ds dip) whch s he desred resul. Bu from he growh assumo o f, wehave e s f(s Y s s ) ; f(s Y s s ) 2 ds Sce >, he equales (16){(21), mles ha s e. Moreover, K +K e s jf(s )j js j2 + j s j 2 ds IN h e s jys j2 ds e s jf(s )j 2 + js j2 + j s j 2 ds e s + jys j2 + jy s j 2 ds : 1 e jy j2 e (;)s ds: Sce >, we coclude he roof of he covergece of he las erm by usg he rs ar of he equales (16){(21). Passg o he lm whe goes o y, we ge, for each, e (^) Y = e + e s f(s Y s s ) ; Y s ds ; e s s dw s : ^ ^ I he follows by I^o's formula ha (Y ) solves he BSDE (13). 2 Refereces [1] G. Barles, R. Buckdah, ad E. Pardoux, Backward sochasc dereal equaos ad egral-aral dereal equaos, Sochascs Sochascs Re. 6 (1997), o. 1-2, 57{83. [2] G. Barles, H. M. Soer, ad P. E. Sougads, Fro roagao ad hase eld heory, SIAM J. Corol Om. 31 (1993), o. 2, 439{469. [3] Ph. Brad, BSDE's ad vscosy soluos of semlear PDE's, Sochascs Sochascs Re. 64 (1998), o. 1-2, 1{32. [4] Ph. Brad ad Y. Hu, Sably of BSDEs wh radom ermal me ad homogezao of semlear ellc PDEs, J. Fuc. Aal. 155 (1998), o. 2, 455{494. [5] R. W. R. Darlg ad E. Pardoux, Backwards SDE wh radom ermal me ad alcaos o semlear ellc PDE, A. Probab. 25 (1997), o. 3, 1135{1159. [6] N. El Karou, S. Peg, ad M.-C. Queez, Backward sochasc dereal equaos ace, Mah. Face 7 (1997), o. 1, 1{71. [7] M. Escobedo, O. Kava, ad H. Maao, Large me behavor of soluos of a dssave semlear hea equao, Comm. Paral Dereal Equaos 2 (1995), o. 7-8, 1427{1452. [8] S. Hamadee, Equaos dereelles sochasques rerogrades : le cas localeme lschze, A. Is. H. Pocare Probab. Sas. 32 (1996), o. 5, 645{659.

23 BSDEs wh olyomal geeraors 23 [9] M. Kobylask, Resulas d'exsece e d'uce our des equaos dereelles sochasques rerogrades avec des geeraeurs a crossace quadraque, C. R. Acad. Sc. Pars Ser. I Mah. 324 (1997), o. 1, 81{86. [1] J.-P. Leeler ad J. Sa Mar, Backward sochasc dereal equaos wh couous coeces, Sas. Probab. Le. 32 (1997), o. 4, 425{43. [11] J.-P. Leeler ad J. Sa Mar, Exsece for BSDE wh erlear-quadrac coece, Sochascs Sochascs Re. 63 (1998), o. 3-4, 227{24. [12] E. Pardoux, Backward sochasc dereal equaos ad vscosy soluos of sysems of semlear arabolc ad ellc PDEs of secod order, Sochasc aalyss ad relaed ocs VI (The Gelo Worksho, 1996) (L. Decreusefod, J. Gjerde, B. ksedal, ad A. S. Usuel, eds.), Progr. Probab., vol. 42, Brkhauser Boso, Boso, MA, 1998,. 79{127. [13] E. Pardoux ad S. Peg, Adaed soluo of a backward sochasc dereal equao, Sysems Corol Le. 14 (199), o. 1, 55{61. [14] E. Pardoux ad S. Peg, Backward sochasc dereal equaos ad quaslear arabolc aral dereal equaos, Sochasc aral dereal equaos ad her alcaos (Charloe, NC, 1991) (B. L. Rozovsk ad R. B. Sowers, eds.), Lecure Noes Corol ad Iform. Sc., vol. 176, Srger, Berl, 1992,. 2{217. [15] E. Pardoux, F. Pradelles, ad. Rao, Probablsc erreao of a sysem of sem-lear arabolc aral dereal equaos, A. Is. H. Pocare Probab. Sas. 33 (1997), o. 4, 467{49. [16] E. Pardoux ad S. hag, Geeralzed BSDEs ad olear Neuma boudary value roblems, Probab. Theory Relaed Felds 11 (1998), o. 4, 535{558. [17] S. Peg, Probablsc erreao for sysems of quaslear arabolc aral dereal equaos, Sochascs Sochascs Re. 37 (1991), o. 1-2, 61{74. [18] S. Peg, Backward sochasc dereal equaos ad alcaos o omal corol, Al. Mah. Om. 27 (1993), o. 2, 125{144. Phle Brad Ree Carmoa Isu de Recherche Mahemaque Sascs & Oeraos Research Program Uverse Rees I Prceo Uversy Rees Cedex, Frace Prceo, NJ 8544, USA brad@mahs.uv-rees1.fr rcarmoa@rceo.edu h:// h://

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

On g Evaluations with L p Domains under Jump Filtration

On g Evaluations with L p Domains under Jump Filtration O g valuaos wh L Domas uder Jum Flrao Sog Yao Absrac Gve 1,, he uque L soluos of backward sochasc dffereal equaos wh jums BSDJs allow us o exed he oo of g evaluaos, arcular g execaos, o he jum case wh

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A, OF THE ROMANIAN ACADEMY Volume 0, Number /009,. 000-000 ON ZALMAI EMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

Unit 10. The Lie Algebra of Vector Fields

Unit 10. The Lie Algebra of Vector Fields U 10. The Le Algebra of Vecor Felds ================================================================================================================================================================ -----------------------------------

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations Global Joural of Scece Froer Research Mahemacs a Decso Sceces Volume Issue 7 Verso. Jue Te : Double Bl Peer Revewe Ieraoal Research Joural Publsher: Global Jourals Ic. (USA Ole ISSN: 49-466 & Pr ISSN:

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

March 14, Title: Change of Measures for Frequency and Severity. Farrokh Guiahi, Ph.D., FCAS, ASA

March 14, Title: Change of Measures for Frequency and Severity. Farrokh Guiahi, Ph.D., FCAS, ASA March 4, 009 Tle: Chage of Measures for Frequecy ad Severy Farroh Guah, Ph.D., FCAS, ASA Assocae Professor Deare of IT/QM Zarb School of Busess Hofsra Uversy Hesead, Y 549 Eal: Farroh.Guah@hofsra.edu Phoe:

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

A New Iterative Method for Solving Initial Value Problems

A New Iterative Method for Solving Initial Value Problems A New Ierave Meod or Solvg Ial Value Problems Mgse Wu ad Weu Hog Dearme o Ma., Sascs, ad CS, Uvers o Wscos-Sou, Meomoe, WI 5475, USA Dearme o Maemacs, Clao Sae Uvers, Morrow, GA 36, USA Absrac - I s aer,

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations.

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations. Ale Mahemacs 7 8 956-966 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 Numercal Mehos for a Class of Hybr Wealy Sgular Iegro-Dffereal Equaos Shhchug Chag Dearme of Face Chug Hua Uversy Hschu

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. ublc Affars 974 Meze D. Ch Fall Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he Effce Markes Hypohess (rev d //) The rese Value Model Approach o Asse rcg The exbook expresses he sock prce

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. coomcs 435 Meze. Ch Fall 07 Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he ffce Markes Hypohess The rese Value Model Approach o Asse rcg The exbook expresses he sock prce as he prese dscoued

More information

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai Ro Geeralzed B-lear Mxed Varaoal-lke Iequaly for Ro Fuzzy Mappgs Hogxa Da Depare of Ecooc Maheacs Souhweser Uversy of Face Ecoocs Chegdu 674 P.R.Cha Absrac I h paper we roduce sudy a ew class of ro geeralzed

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

A Remark on Generalized Free Subgroups. of Generalized HNN Groups Ieraoal Mahemacal Forum 5 200 o 503-509 A Remar o Geeralzed Free Subroup o Geeralzed HNN Group R M S Mahmood Al Ho Uvery Abu Dhab POBo 526 UAE raheedmm@yahoocom Abrac A roup ermed eeralzed ree roup a ree

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

( 1)u + r2i. f (x2i+1 ) +

( 1)u + r2i. f (x2i+1 ) + Malaya Joural of Maemak, Vol. 6, No., 6-76, 08 hps://do.org/0.667/mjm060/00 Geeral soluo ad geeralzed Ulam - Hyers sably of r ype dmesoal quadrac-cubc fucoal equao radom ormed spaces: Drec ad fxed po mehods

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

NUMERICAL EVALUATION of DYNAMIC RESPONSE

NUMERICAL EVALUATION of DYNAMIC RESPONSE NUMERICAL EVALUATION of YNAMIC RESPONSE Aalycal solo of he eqao of oo for a sgle degree of freedo syse s sally o ossble f he excao aled force or grod accelerao ü g -vares arbrarly h e or f he syse s olear.

More information

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay Ieraoal Joural of Advaces Appled Maemacs ad Mecacs Volume, Issue 2 : (23) pp. 53-64 Avalable ole a www.jaamm.com IJAAMM ISSN: 2347-2529 O a algorm of e dyamc recosruco of pus sysems w me-delay V. I. Maksmov

More information

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments Pure ad Appled Mahemacs Joural 25 4(: -8 Publshed ole Jauary 23 25 (hp://wwwscecepublshggroupcom/j/pamj do: 648/jpamj254 ISSN: 2326-979 (Pr ISSN: 2326-982 (Ole Orbal ucldea sably of he soluos of mpulsve

More information

Domination in Controlled and Observed Distributed Parameter Systems

Domination in Controlled and Observed Distributed Parameter Systems Iellge Cool ad Auoao 3 4 7-6 h://dxdoorg/436/ca346 Publshed Ole May 3 (h://wwwscrorg/joural/ca) Doao Coolled ad Observed Dsbued Paraeer yses L Aff M Joud E M Magr A El Ja Deare of Maheacs ad Couer cece

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

BILINEAR GARCH TIME SERIES MODELS

BILINEAR GARCH TIME SERIES MODELS BILINEAR GARCH TIME SERIES MODELS Mahmoud Gabr, Mahmoud El-Hashash Dearme of Mahemacs, Faculy of Scece, Alexadra Uversy, Alexadra, Egy Dearme of Mahemacs ad Comuer Scece, Brdgewaer Sae Uversy, Brdgewaer,

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition SSN 76-7659 Eglad K Joural of forao ad Copug Scece Vol 7 No 3 pp 63-7 A Secod Kd Chebyshev olyoal Approach for he Wave Equao Subec o a egral Coservao Codo Soayeh Nea ad Yadollah rdokha Depare of aheacs

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures Sesors,, 37-5 sesors ISSN 44-8 by MDPI hp://www.mdp.e/sesors Asympoc Regoal Boudary Observer Dsrbued Parameer Sysems va Sesors Srucures Raheam Al-Saphory Sysems Theory Laboraory, Uversy of Perpga, 5, aveue

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Optimal Portfolio Selection Under Concave Price Impact

Optimal Portfolio Selection Under Concave Price Impact Appl Mah Opm 03 67:353 390 DOI 0.007/s0045-03-99-7 Opmal Porfolo Seleco Uder Cocave Prce Impac J Ma Qgshuo Sog Jg Xu Jafeg Zhag Publshed ole: 5 Jauary 03 Sprger Scece+Busess Meda New York 03 Absrac I hs

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

A Remark on Polynomial Mappings from to

A Remark on Polynomial Mappings from to Aled Mahemacs 6 7 868-88 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 A Remar o Polyomal Mags from o ad a Alcao of he Sofware Male Research Th Bch Thuy Nguye UNESP Uversdade Esadual Paulsa

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

Time-Dependent Perturbation Theory

Time-Dependent Perturbation Theory Tme-Depede Perurbao Theory Mchael Fowler 7/6/7 Iroduco: Geeral Formalsm We look a a Hamloa H H + V( ), wh V( ) some me-depede perurbao, so ow he wave fuco wll have perurbao-duced me depedece Our sarg po

More information

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS 44 Asa Joural o Corol Vol 8 No 4 pp 44-43 December 6 -re Paper- CONTROLLAILITY OF A CLASS OF SINGULAR SYSTEMS Guagmg Xe ad Log Wag ASTRACT I hs paper several dere coceps o corollably are vesgaed or a class

More information

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin Egeerg Leers, 4:2, EL_4_2_4 (Advace ole publcao: 6 May 27) Sablzao of LTI Swched Sysems wh Ipu Tme Delay L L Absrac Ths paper deals wh sablzao of LTI swched sysems wh pu me delay. A descrpo of sysems sablzao

More information

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model Amerca Joural of Theorecal ad Appled Sascs 06; 5(3): 80-86 hp://www.scecepublshggroup.com/j/ajas do: 0.648/j.ajas.060503. ISSN: 36-8999 (Pr); ISSN: 36-9006 (Ole) Regresso Approach o Parameer Esmao of a

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations Global Joural of Scece Froer Research: F Maheacs ad Decso Sceces Volue 8 Issue Verso. Year 8 Type: Double Bld Peer Revewed Ieraoal Research Joural Publsher: Global Jourals Ole ISSN: 49-466 & Pr ISSN: 975-5896

More information