On g Evaluations with L p Domains under Jump Filtration

Size: px
Start display at page:

Download "On g Evaluations with L p Domains under Jump Filtration"

Transcription

1 O g valuaos wh L Domas uder Jum Flrao Sog Yao Absrac Gve 1,, he uque L soluos of backward sochasc dffereal equaos wh jums BSDJs allow us o exed he oo of g evaluaos, arcular g execaos, o he jum case wh L domas. We exlore may mora roeres of he exeded g evaluaos cludg ooal samlg, ucrossg equaly, Doob-Meyer decomoso, geeraor rereseao ad Jese s equaly. Mos of hese resuls are mora for he furher develome of jum-flrao cosse olear execaos wh L domas 95. Keywords: Backward sochasc dffereal equao wh jums, L soluos, g evaluao, g execao, ooal samlg, ucrossg equaly, Doob-Meyer decomoso, geeraor rereseao, reverse comarso heorem of BSDJs, Jese s equaly. 1 Iroduco Le 1, ad T,. Gve a Lschz geeraor g, 94 showed ha for each egrable ermal daa ξ, he real-valued backward sochasc dffereal equao wh jums BSDJ T T Y = ξ + gs, Y s, Z s, U s ds Z s db s U s xñds, dx,, T 1.1,T ha s drve by a Browa moo B ad a deede valued Posso o rocess adms a uque L soluo Y ξ, Z ξ, U ξ. I arcular, he rocess Y ξ ca be regarded as he so-called codoal g execao of ξ: g ξ F := Y ξ,, T. The g execao { g ξ F },T ca be furher geeralzed as g evaluaos { g τ,γ ξ }, by cosderg BSDJ wh radom horzo. Such a g evaluaos are closely relaed o a large class τ<γ of cohere or covex rsk measures for egrable facal osos whch may o be square-egrable a marke wh jums. I hs aer, we show ha as olear execaos wh L domas uder jum flrao he flrao geeraed by B ad Posso radom measure N, he g evaluaos her may mora margale roeres from he classc lear execaos such as ooal samlg, ucrossg equaly, Doob-Meyer decomoso, Jese s equaly ad ec. Mos of hese resuls wll asss us o sudy face markes wh jums usg olear evaluao crera or rsk measureme. The well-kow Allas aradox suggess eole o develo a olear-execao verso of he vo Neuma- Morgeser s axomac sysem of execed ules, a fudameal oo he moder ecoomcs. Movaed by such a geeralzao, Peg 77, 8 roduced he coces of g execaos ad g evaluaos va backward sochasc dffereal equaos BSDs. These wo semal works ad some followg research 3, 15,, 81, 86 amog ohers show ha he g evaluaos are closely relaed o axom-based cohere ad covex rsk measures see 4, 39 mahemacal face: Whe he geeraor g s osvely homogeeous or covex y, z, he ρ g ξ:= g ξ F defes a cohere or covex rsk measure. Reversely, uder cera domao codo see 4.1 of 3, a cohere or covex rsk measure {ρ },T wh L doma uder Browa flrao ca be rereseed by some g execao or he soluo of a BSD wh geeraor g ad square-egrable ermal daa ξ. L 67 ad Royer 87 exeded he g execaos o he jum case ad obaed a Doob-Meyer decomoso for g execaos wh L domas uder jum flrao. Uder a smlar domao codo o 4.1 of 3, 87 Dearme of Mahemacs, Uversy of Psburgh, Psburgh, PA 156; emal: sogyao@.edu.

2 g valuaos wh L Domas uder Jum Flrao also showed ha a rsk measure wh L doma s sll a g execao a facal marke wh jums. O he oher had, Ma ad Yao 68 geeralzed he g evaluaos o he quadrac case.e. he geeraor g has a quadrac growh z whle Hu e al. 45 derved a rereseao of covex rsk measures by quadrac g execaos uder a dffere domao codo. Recely, 54 eve exeded he quadrac g execaos o he jum case ad demosraed ha he corresodg margale roeres sll hold, such as Doob-Meyer decomoso ad dowcrossg equaly. Based o hese feaures, hey rovded a dual rereseao for dyamc rsk measures wh jums. The rese aer sars wh a src comarso heorem for L soluos of BSDJs Theorem. uder a addoal codo A3 u. Theorem. ogeher wh he uqueess resul of BSDJs L sese mles ha he corresodg g evaluaos wh L domas uder he jum flrao hers src mooocy, cosa reservg, me-cossecy, zero-oe law, raslao varace, covexy, osve homogeey g1 g7 from lear execaos ad hus reserves some classc margale roeres such as ooal samlg, ucrossg equaly ad Doob-Meyer decomoso Prooso 4.1, Prooso 4., Theorem 4.1. I arcular, he roof of he Doob-Meyer decomoso for g suermagales also deeds o a moooc lm heorem of egrable jum dffuso rocesses wh jums Theorem A.1 as well as a a ror L esmae of a geeralzed BSDJ Prooso 4.3. Moreover, we exlore oher ce roeres of g evaluaos: Usg a resul of 94, we ca rerese a geeraor g as he lm of he dfferece quoes of he corresodg g evaluaos see Prooso 5.1, whch gves rse o a reverse comarso heorem of BSDJs Theorem 5.1. Prooso 5.1 also esablshes a equvalece bewee he covexy res. osve homogeey of g y, z, u ad he covexy res. osve homogeey of g evaluaos, as well as a equvalece bewee he deedece of g o y varable ad he raslao varace of g evaluaos Prooso 5.. Whe he geeraor s covex z, u, we ca use he comarso heorem of BSDJs aga o derve Jese s equaly of g evaluaos Theorem 5.. Ma Corbuos. Gve U U loc, ulke he case of Browa sochasc egrals, he Burkholder-Davs-Gudy equaly s o alcable for he / h ower of he Posso sochasc egral, Y su s xñds, dx,, T see e.g. Theorem VII.9 of 34:.e. su, Y su s xñds, dx cao be domaed by,t Y s U x N d,,t dx 4. So o derve a a ror L esmae for BSDJs, we could o follow he classcal argume he { roof of 16, Prooso 3., eher could we emloy he sace U, T := U : U x νdxd } < { or he sace Ũ, := U :,T U x N d, dx } < Acually oe may o be able o comare,t U x N d, dx T wh U x νdxd. I 94, we sared wh a geeralzao of he Posso sochasc egral for a radom feld U U by cosrucg a càdlàg uformly egrable margale M U :=, U sxñds, dx,, T, whose quadrac varao M U, M U s sll, U sx N ds, dx,, T. I dervg he key L ye equaly see Lemma 3.1 of 94 abou he dfferece Y = Y 1 Y of wo egrable soluos o BSDJs wh dffere arameers, our delcae aalyss showed ha he varaoal jum ar Y s Y s Y s 1, Y s he dyamcs of Y wll s eveually bol dow o he erm T U 1 x U x νdxd, whch jusfes our choce of U over U, or Ũ, as he sace for jum dffuso. The esmao course of he varaoal jum s full of aalycal sublees, bu we maaged o overcome hem by ulzg some ew echques ad secal reames see of 94 for deals. I he rese aer, we develoed hese echques o hadle smlar bur more comlcaed echcal hurdles whe we are dervg he a ror L esmae for a secal BSDJ Prooso 4.3 see , or whe we are measurg he L dsace of a creasg sequece of jum dffuso rocesses Y from s lm Y Theorem A.1 see A.4 A.47 or A.57 A.6. As aforemeoed, boh Prooso 4.3 ad Theorem A.1 are crucal rovg he Doob-Meyer decomoso for g suermagales our ma Theorem 4.1.

3 1. Iroduco 3 Our aalyss he aer also heavly reles o he follow equaly T M U, M U = U x νdxd U x N d, dx=,t T U x νdxd. Alhough may of our resuls look smlar o hose wh L domas he o-jum case 3 or jum case 87, we have o do more delcae aalyss o overcome varous echcal sublees rased he L jum case. For sace, o demosrae he moooc lm heorem Theorem A.1, we orvally exed Lemma.3 of 78 o he L jum case, see Lemma A.4. All margale roeres of g evaluaos L jum case, esecally he Doob-Meyer decomoso ad he moooc lm heorem, wll lay mora roles our sudy of a geeral class of jum-flrao cosse olear execaos wh L domas, whch ecomasses may cohere or covex me-cosse rsk measures ρ = {ρ },T. Uder cera domao codo, we show 95 ha he olear execao reserves may mora margale roeres of lear execaos cludg ooal samlg ad Doob-Meyer decomoso, ad hus ca be rereseed by some g execao. Cosequely, oe ca ulze he BSDJ heory o sysemacally aalyze he rsk measure ρ wh L domas ad emloy umercal schemes of BSDJs o ru smulao for facal roblems volvg ρ a marke wh jums. I aoher of our accomay aer 93, we aalyze a BSDJ wh a egrable reflecg barrer L whose geeraor g s Lschz couous y, z, u. We show ha such a refleced BSDJ wh egrable arameers adms a uque L soluo, ad hus solves he corresodg omal sog roblem uder he g execao or some domaed rsk measure wh L doma: he Y comoe of he uque soluo s exacly he Sell eveloe of rocess L uder he g execao ad he frs me mees L s a omal sog me for maxmzg he g execao of reward L or mmzg he rsk measure of facal oso L. Releva Leraure. The backward sochasc equao BSD was roduced by Bsmu 1 as he adjo equao for he Poryag maxmum rcle sochasc corol heory. Laer, Pardoux ad Peg 76 commeced a sysemacal research of BSDs. Sce he, he BSD heory has grow radly ad has bee aled o varous areas such as mahemacal face, heorecal ecoomcs, sochasc corol ad omzao, aral dffereal equaos, dffereal geomery ad ec, see he refereces 38, L ad Tag 9 roduced o he BSD a jum erm ha s drve by a Posso radom measure deede of he Browa moo. These auhors obaed he exsece of a uque soluo o a BSDJ wh a Lschz geeraor ad square-egrable ermal daa. The Barles, Buckdah ad Pardoux 19, 7 showed ha he wellosedess of BSDJs gves rse o a vscosy soluo of a semlear arabolc aral egro-dffereal equao PID ad hus rovdes a robablsc erreao of such a PID. Laer, Pardoux 75 relaxed he Lschz codo of he geeraor o varable y by assumg a mooocy codo o varable y sead. Su 89 ad Mao ad Y 96 eve degeeraed he mooocy codo of he geeraor o a weaker verso so as o remove he Lschz codo o varable z. Durg he develome of he BSD heory, some effors were made relaxg he square egrably o he ermal daa so as o be comable wh he fac ha lear BSDs are well-osed for egrable ermal daa or ha lear execaos have L 1 domas: l Karou e al. 38 showed ha for ay egrable ermal daa, he BSD wh a Lschz geeraor adms a uque L soluo. The Brad ad Carmoa 14 reduced he Lschz codo of he geeraor o varable y by a srog mooocy codo as well as a olyomal growh codo o varable y. Laer, Brad e al. 16 foud ha he olyomal growh codo s o ecessary f oe uses he mooocy codo smlar o ha of 75. We aalyzed L soluos of mul-dmesoal BSDJs uder a moooe codo 94, whle Kruse ad Poer 61, 63 suded a smlar L soluo roblem of BSD uder a rgh-couous flrao whch may be larger ha he jum flrao: T T T Y =ξ+ fs, Y s, Z s, U s ds Z s db s U s xñds, dx dm s,, T, 1.,T where M s a local margale orhogoal o he jum flrao. Also, Klmsak suded L soluos of refleced BSDs uder a geeral rgh-couous flrao 57.

4 g valuaos wh L Domas uder Jum Flrao 4 3 The researches o BSDs over geeral flered robably saces have recely araced more ad more aeo. A seres of works 18, 36, 38, 17,, 66, 1 are dedcaed o he heory of BSDs 1. bu drve by a càdlàg margale uder a rgh-couous flrao ha s also quas-lef couous. Laely, 13, 74 removed he quaslef couy assumo from he flrao so ha he quadrac varao of he drvg margale does o eed o be absoluely couous. O he oher had, based o a geeral margale rereseao resul due o Davs ad Varaya 3, Cohe ad llo 5, 6 dscussed he case where he drvg margales are o a ror chose bu mosed by he flrao; see Hassa ad Ouke 44 for a smlar aroach o a BSD form of a geerc ma from a sace of semmargales o he saces of margales ad hose of fe-varao rocesses. Also, Maa ad Tevzadze 69 ad Jeablac e al. 48 suded BSDs for semmargales ad her alcaos o mea-varace hedgg. As o BSDs drve by oher dscouous radom sources, a 9 ad Bad 6 suded BSDs drve by a radom measure; Coforola e al. 8, 9 cosdered BSDs drve by a marked o rocess; 73, 5, 84, 4 aalyzed BSDs drve by Lévy rocesses;, 88, 55 dscussed BSDs drve by a rocess wh a fe umber of marked jums. 4 There are also ley of researches o quadrac BSDJs: To sudy he exoeal uly maxmzao roblem wh a addoal lably, Becherer 1 exeded Kobylask 6 s moooe sably aroach o a jum-dffuso model ad obaed a uque bouded soluo o a relaed BSD drve by a radom measure whose geeraor may o be Lschz couous u. Becherer e al. 11 recely geeralzed hs resul for radom measures of fe acvy wh a o-deermsc comesaor. Meawhle, Morlas 7 ulzed a smlar moooe sably aroach ad dyamc rogrammg o show ha a secal quadrac BSDJ wh bouded ermal daa has a uque soluo, whose Y comoe s he value rocess of a exoeal uly maxmzao roblem wh jums. Morlas 71 eve obaed a exsece resul for such quadrac BSDJs wh exoeally egrable ermal daa. For geeral quadrac BSDJs wh ubouded ermal daa, Ngoueyou 7 ad l Karou e al. 37 exeded Barreu ad l Karou 8 s quadrac semmargales aroach o he jum case. They maaged o oba a exsece resul for quadrac-exoeal BSDJs.e. quadrac BSDJs whose geeraors have a exoeal growh u wh ubouded ermal daa. Also, Jeablac e al. 49 descrbed he value rocess of a uly omzao roblem uder Kgha-uceray a jum seg as a class of quadrac-exoeal BSDJs. Whe geeraors of quadrac-exoeal BSDJs are allowed o be locally-lschz, Fuj ad Takahash 4 rovded a suffce codo for he Mallav s dffereably of such BSDJs wh bouded ermal daa whle 3 could sll emloy 6 s moooe sably aroach o show he wellosedess of such BSDJs. As o dffere mehods o quadrac BSDJs, Kaz-Ta e al. 51, 54 exloed he fxed-o aroach as Tevzadze 91 ad a exquse slg echque o demosrae he wellosedess of quadrac-exoeal BSDJs wh bouded ermal daa ad aled hs resul o sudy he relaed olear execaos; Laeve ad Sadje 64 ook a dualy aroach o characerze he value of a omal orfolo valuao roblem as he uque soluo o a BSDJ wh a covex geeraor whch has a mos quadrac growh z. 5 I s worh meog ha 53, 5 recely made a very eresg develome of secod-order BSDs wh jums, ad rovded a robablsc erreao for he relaed fully-olear PIDs. For ocs of BSDJs oher drecos, see Cohe ad llo 3, 4, 7 for BSDs drve by Markov chas; see Kharroub e al. 56 for mmal soluos o BSDs wh cosraed jums ad relaed quas-varaoal equales; see Aazz ad Ouke 1 for a class of cosraed BSDJs ad s alcao rcg ad hedgg Amerca oos; see Klmsak ad Rozkosz 58, 59 for a geeral o-markova BSD ad a relaed semlear ellc equao wh measure daa whose oeraor s assocaed wh a regular sem-drchle form; see 6, 43 for BSDJs wh sgular ermal daa ad her alcaos o omal oso argeg ad a o-markova lqudao roblem resecvely; see also 65, 41, 35 for umercal smulao of BSDJs amog oher. The res of he aer s orgazed as follows: We roduce some oaos Seco 1.1. I Seco, afer makg basc assumos o geeraor g, we revew some roeres of L soluos o BSDJs wh geeraor g cludg he wellosedess resul, he margale rereseao heorem as well as a a ror esmae, ad rove a src comarso heorem for hese L soluos. I Seco 3, we defe he g evaluao wh doma L uder jum flrao accordg o he wellosedess of BSDJs wh geeraor g L sese. The we show ha he g evaluao reserves may basc roeres of lear execaos. I Seco 4, we obaed some margale

5 1.1 Noao ad Prelmares 5 roeres of he g evaluao such as ooal samlg, ucrossg equaly ad Doob-Meyer decomoso. Seco 5 dscuss some oher fe roeres of g evaluaos cludg a geeraor rereseao va g evaluaos, some of s cosequeces ad Jese s equaly of he g evaluaos. The roofs of our resuls are relegaed o Seco 6. We geeralze 79 s moooc lm heorem for egrable jum dffuso rocesses wh jums he aedx as s eresg s ow rgh. 1.1 Noao ad Prelmares Throughou hs aer, we fx a me horzo T, ad le Ω, F, P be a comlee robably sace o whch a d dmesoal Browa moo B s defed. For a geerc càdlàg rocess, we deoe s corresodg jum rocess by :=,, T wh :=. Gve a measurable sace, F, le be a valued Posso o rocess o Ω, F, P ha s deede of B. For ay scearo ω Ω, he se D ω of all jum mes of ah ω s a couable subse of, T see e.g. Seco 1.9 of 46. We assume ha for some fe measure ν o, F, he coug measure N d, dx of o, T has comesaor N d, dx = νdxd. The corresodg comesaed Posso radom measure Ñ wll be deoed by Ñd, dx:=n d, dx νdxd. For ay, T, we defe sgma-felds F B := σ { B s ; s }, F N := σ { } N, s, A; s, A F, F :=σ F B F N ad augme hem by all P ull ses of F. Clearly, he jum flrao F = {F },T s comlee ad rghcouous.e. sasfes he usual hyoheses, see e.g., 8. Deoe by P res. P he F rogressvely measurable res. F redcable sgma-feld o, T Ω, ad le T be he colleco of all F sog mes. For ay τ T, we se T τ :={γ T : γ τ, P a.s.}. Recall ha a uformly egrable càdlàg margale M s sad o be a BMO Bouded Mea Oscllao margale f here exss C > such ha for ay τ T M, M T M, M τ F τ C ad Mτ C, P a.s. The followg saces of fucos wll be used he sequel: 1 For ay 1,, le L +, T be he sace of all measurable fucos ψ :, T, wh T d<. ψ For 1,, le L ν := L, F, ν; R be he sace of all real-valued, F measurable fucos u wh u L ν := ux νdx 1 <. For ay u 1, u L ν, we say u 1 =u f u 1 x=u x for ν a.s. x. 3 For ay sub-sgma-feld { G of F, le L G be he sace of all real-valued, G measurable radom varables ad se { L G := ξ L G : ξ L G := } ξ } 1 < for ay 1, ; { } L G := ξ L G : ξ L G := esssu ξω <. ω Ω 4 Le D be he sace of all real-valued, F adaed càdlàg rocesses, ad le K be a subsace of D ha cludes all F redcable càdlàg creasg rocesses wh =. 5 Se Z loc :=L loc, T Ω, P, d dp ; R d, he sace of all R d valued, F redcable rocesses Z wh T Z d <, P a.s. 6 For ay { 1,, we le D := D : D := { } } 1 <, where := su <.,T K :=K D = { K K : K T < }. { Z, := {Z Z loc : Z Z, := T Z d } 1 } <. For ay Z Z,, he Burkholder-Davs-Gudy equaly mles ha T su Z s db s c Z s ds < 1.3,T for some cosa c > deedg o. So { Z sdb s s a uformly egrable margale. },T

6 g valuaos wh L Domas uder Jum Flrao 6 U loc := loc L, T Ω, P F, d dp νdx; R be he sace of all P F measurable radom felds U :, T Ω R such ha T U x νdxd= T U d<, P a.s. { L ν U := U U loc : U U :={ T U x νdxd } } 1 < =L, T Ω, P F, d dp νdx; R. For ay U U loc res. U, holds for d dp a.s., ω, T Ω ha U, ω L ν. Accordg o Seco 1. of 94, we ca defe a Posso sochasc egral of U: M U := U s xñds, dx,, T, 1.4, whch s a càdlàg local margale res. uformly egrable margale wh quadrac varao M U, M U =, U sx N ds, dx,, T. The jum rocess of M U s M U ω = 1 { Dω }U, ω, ω,, T. For ay U U, a aalogy o 5.1 of 94 shows ha U x N d, dx s U x νdxd, <s T. 1.5,s We smly deoe D Z, U by S. As usual, we se x := x, x + := x for ay x R, ad use he coveo f :=. Gve,, he followg wo equales wll be frequely aled hs aer: For ay a, b R, a ± b ± a b. 1.6 For ay fe subse {a 1,, a } of,, 1 1 a a 1 1 a. 1.7 Also, we le c deoe a geerc cosa deedg oly o arcular, c sads for a geerc cosa deedg o ohg, whose form may vary from le o le. =1 =1 =1 L Soluos of BSDs wh Jums From ow o, we fx 1, ad se q := 1. A mag g :, T Ω R R d L ν R s called a geeraor f s P BR BR d B L ν /BR measurable. For ay τ T, g τ, ω, y, z, u:=1 {<τω} g, ω, y, z, u,, ω, y, z, u, T Ω R R d L ν s also P BR BR d B L ν /BR measurable. We say a geeraor g s covex y, z, u f holds P a.s. ha for ay, α, T, 1 ad y, z, u R R d L ν, =1, g, αy 1 +1 αy, αz 1 +1 αz, αu 1 +1 αu αg, y1, z 1, u 1 +1 αg, y, z, u..1 Also, we say a geeraor g s osvely homogeeous y, z, u f holds P a.s. ha g, αy, αz, αu= αg, y, z, u,, α, T,, y, z, u R R d L ν.. Defo.1. Gve 1,, le ξ L F T ad g be a geeraor. A rle Y, Z, U D Z loc U loc s called a soluo of a backward sochasc dffereal equao wh jums ha has ermal daa ξ ad geeraor g BSDJ ξ, g for shor f T gs, Y s, Z s, U s ds<, P a.s. ad f 1.1 holds P a.s. We shall make he followg sadard assumos o geeraors g: A1 T g,,, d L F T. A There exs wo, valued, B, T F T measurable rocesses β, Λ wh T β q Λ d L F T such ha for d dp a.s., ω, T Ω g, ω, y 1, z 1, u g, ω, y, z, u β, ω y 1 y +Λ, ω z 1 z, y 1, z 1, y, z R R d, u L ν.

7 . L Soluos of BSDs wh Jums 7 A3 There exss a fuco h:, T Ω R R d L ν L ν L q ν such ha h s P BR BR d BL ν BL ν/bl q ν measurable; There exs κ 1 1, ad κ κ 1 such ha for ay, ω, y, z, u 1, u, x, T Ω R R d L ν L ν κ 1 h, ω, y, z, u 1, u x κ ; I holds for d dp a.s., ω, T Ω ha g, ω, y, z, u 1 g, ω, y, z, u u1 x u x h, ω, y, z, u 1, u x νdx, y, z, u 1, u R R d L ν L ν..3 We refer o Ξ:=β, Λ, κ 1, κ as a coeffce se. Remark.1. Le 1, ad le g be a geeraor. 1 By A3, ad Hölder s equaly, A ad A3 mly A There exs wo, valued, B, T F T measurable rocesses β, Λ wh T ha for d dp a.s., ω, T Ω β q Λ d L F T such g, ω, y 1, z 1, u 1 g, ω, y, z, u β, ω y 1 y + u 1 u L ν +Λ, ω z1 z, y, z, u R R d L ν, =1,. If g sasfes A ad T g,,, d<, P a.s., he a aalogy o Remark.1 of 94 shows ha for ay Y, Z, U D 1 Z loc U loc, oe has T gs, Y s, Z s, U s ds<, P a.s. 3 If g sasfes A1, A res. A, he g, ω, y, z, u := g, ω, y, z, u,, ω, y, z, u, T Ω R R d L ν ad g τ, τ T are also geeraors sasfyg A1, A res. A. If g furher sasfes A3, so do g ad g τ. 4 We eed he assumo κ 1 > 1 A3 for a src comarso heorem of BSDJs Theorem. ad he ucrossg equaly of g suermargales Prooso 4.. Acually, s ecessary for he Doléas-Dade exoeals M 6.6 ad M D 6.4 o be srcly osve margales see e.g. 5, whch he allows us o aly Grsaov Theorem o chage robables he roofs of Theorem. ad Prooso 4.. For smlcy, we se Ĉ := T 1 β q Λ d L, ad le C be a geerc cosa deedg o T, ν,, F T Ĉ ad κ f ecessary, whose form may vary from le o le. For L soluos of BSDs wh jums, we frs quoe a wellosedess resul, he corresodg margale rereseao heorem as well as a a ror esmae from Remark 4.1, Prooso 3.1, Corollary 4.1, Corollary.1 ad Lemma 3.1 of 94. Theorem.1. Gve 1,, Le g be a geeraor sasfyg A1 ad A. BSDJ ξ, g adms a uque soluo Y ξ,g, Z ξ,g, U ξ,g S, whch sasfes Y ξ,g + D Z ξ,g + Z U ξ,g C ξ +, U T For ay ξ L F T, he g,,, d..4 I arcular, for ay τ T ad ξ L F τ, he uque soluo Y ξ,gτ, Z ξ,gτ, U ξ,gτ of he BSDJ ξ, gτ S sasfes ha P { Y ξ,gτ =Y ξ,gτ τ,, T } =1 ad ha Z ξ,gτ, U ξ,gτ =1{ τ} Z ξ,g τ, U ξ,gτ, d dp a.s. Remark.. Gve 1,, le g be a geeraor sasfyg A1 ad A. I holds for ay ξ L F T ha P { Y ξ,g = Y ξ,g,, T } =1. Corollary.1. Le 1,. For ay ξ L F T, here exss a uque ar Z, U Z, U such ha P a.s. ξ F = ξ + Z s db s + U s xñds, dx,, T., Prooso.1. Le 1,. For = 1,, le ξ L F T, g be a geeraor, ad Y, Z, U be a soluo of BSDJ ξ, g such ha Y 1 Y D. If g sasfes A, he Y 1 Y + Z 1 Z + U 1 U T C ξ D Z, U 1 ξ + g 1, Y, Z, U g, Y, Z, U d..5

8 g valuaos wh L Domas uder Jum Flrao 8 Moreover, we have he followg src comarso heorem for BSDJs, whch wll lay a key role he aer. Theorem.. Le 1,, τ T ad γ T τ. For = 1,, le ξ L F T, le g be a geeraor, ad le Y, Z, U be a soluo of BSDJ ξ, g such ha Y 1 Y D ad ha Yγ 1 Yγ, P a.s. For eher =1 or =, f g sasfes A, A3, ad f g 1, Y 3, Z 3, U 3 g, Y 3, Z 3, U 3, d dp a.s. o τ, γ, he holds P a.s. ha Y 1 Y for ay τ, γ. If oe furher has Yτ 1 = Yτ, P a.s., he holds P a.s. ha Y 1 =Y for ay τ, γ; holds d dp a.s. o τ, γ ha Z 1, U 1 =Z, U ad g 1, Y, Z, U =g, Y, Z, U, = 1,. 3 g valuaos wh L Domas The wellosedess resul of BSDs wh jums L sese Theorem.1 gves rse o a olear execao, called g evaluaos wh L domas, whch geeralzes he oe roduced 77 ad 8: Defo 3.1. Gve 1,, le g be a geeraor sasfyg A1, A, ad le τ T, γ T τ. g evaluao τ,γ g : L F γ L F τ by Defe g τ,γξ:=y ξ,gγ τ, ξ L F γ. If γ = T, we call g ξ F τ := g τ,t ξ he codoal g execao of ξ L F T a me τ. By Theorem.1, holds for ay ξ L F γ ha 1 {τ=γ} g τ,γξ=1 {τ=γ} Y ξ,gγ τ =1 {τ=γ} Yγ ξ,gγ =1 {τ=γ} Y ξ,gτ T = 1 {τ=γ} ξ, P a.s. 3.1 Lemma 3.1. Gve 1,, le g be a geeraor sasfyg A ad ha d dp a.s. g, y,, =, y R. 3. For ay τ T ad γ T τ, holds for ay ξ L F γ ha g τ,γξ = g ξ F τ, P a.s. I arcular, whe g, he g evaluao degeeraes o he classc lear execao: for ay τ T ad γ T τ, holds for ay ξ L F γ ha g τ,γξ = ξ F τ, P a.s. Le 1, ad le g be a geeraor sasfyg A1 ad A. Oe ca deduce from he uqueess resul ad he comarso heorem of L soluos o BSDJs Theorem.1 ad. as well as Lemma 3.1 ha he g evaluaos wh L domas ossess he followg basc roeres cf. 81: Le τ T, γ T τ ad ξ L F γ. g1 Src Mooocy : If g furher sasfes A3, he for ay η L F γ wh ξ η, P a.s. oe has τ,γξ g τ,γη, g P a.s.; Moreover, f furher holds ha τ,γξ= g τ,γη, g P a.s., he ξ =η, P a.s. g Cosa Preservg : Uder 3., f ξ s F τ measurable, he τ,γξ=ξ, g P a.s. g ζ,γ ξ = g τ,γξ. g3 Tme Cossecy : For ay ζ T wh τ ζ γ, P a.s., holds P a.s. ha g τ,ζ g4 Zero Oe Law : For ay A F τ, we have 1 A τ,γ1 g A ξ = 1 A τ,γξ, g P a.s.; I addo, f g,,, =, d dp a.s., he τ,γ1 g A ξ=1 A τ,γξ, g P a.s. g5 Traslao Ivarace : If g s deede of y, he τ,γξ+η= g τ,γξ+η, g P a.s. for ay η L F τ. g6 Covexy : If g s covex y, z, u, he τ,γαξ+1 αη α g τ,γξ+1 α g τ,γη, g P a.s. for ay η L F γ ad α, 1. g7 Posve Homogeey : If g s osvely homogeeous y, z, u, he τ,γαξ g = ατ,γξ, g P a.s. for ay α,. Now, le us cosder wo secfc geeraors sasfyg A1 A3 ad her corresodg g evaluaos: xamle 3.1. Gve 1,, le Ξ be a coeffce se. The fucos g Ξ, ω, y, z, u := β, ω y +Λ, ω z κ 1 u xνdx+κ g Ξ, ω, y, z, u := g Ξ, ω, y, z, u, u + xνdx,, ω, y, z, u, T Ω R R d L ν are wo geeraors sasfyg A1 A3 wh resec o he same coeffce se Ξ, where u ± x:=ux ±. The Ξ τ,γ := gξ τ,γ ad Ξ τ,γ := gξ τ,γ, τ T, γ T τ are wo g evaluaos wh L domas.

9 4. g Margales 9 I lgh of he comarso heorem for BSDJs Theorem., we ca boud he varao of a g evaluao by g Ξ evaluao ad g Ξ evaluao as follows. Prooso 3.1. Gve 1,, le g be a geeraor sasfyg A1 A3 wh resec o some coeffce se Ξ. For ay τ T, γ T τ ad ξ, η L F T, holds P a.s. ha Ξ τ,γξ η g τ,γξ g τ,γη Ξ τ,γξ η. 4 g Margales Le g be a geeraor sasfyg A1 ad A. We ca defe margales wh resec o he g evaluaos ha have L domas uder jum flrao. Defo 4.1. Gve 1,, le g be a geeraor sasfyg A1 ad A. A real-valued, F adaed rocess s called a g submargale res. g suermargale or g margale f for ay s T, s < ad g,s s res. or =, P a.s. The g margales rea may classc roeres such as ooal samlg, ucrossg equaly ad Doob-Meyer decomoso. Le us sar wh he ooal samlg heorem of g margales, whch s mora for he Doob-Meyer decomoso of g margales Theorem 4.1. Prooso 4.1. Ooal Samlg Gve 1,, le g be a geeraor sasfyg A1 A3. Le be a g submargale res. g suermargale wh < ad le τ T, γ T τ. If s rgh-couous or f τ, γ are fely valued, he g τ,γ γ res. τ, P a.s. The roof of Prooso 4.1 deeds o he followg lemma. Lemma 4.1. Gve 1,, le g be a geeraor sasfyg A1 ad A. Le τ T akg values a fe se {= 1 < < =T } wh. If <s +1 for some {1, 1}, he for ay ξ L F τ s g τ,τ sξ = 1 {τ }ξ + 1 {τ +1} g,sξ, P a.s. 4.1 To rese he ucrossg equaly of g margales, we recall he oo of umber of ucrossgs: Gve a real-valued rocess ad wo real umbers a < b, for ay fe subse D = { 1 < < m } of, T, we defe he umber of ucrossgs U D a, b; ω of erval a, b by he samle ah { ω} D as follows: Se m := m ad τ := 1. For =1,, m, we recursvely defe 1 ω := m{ D : > ω, ω < a} m T ω := m{ D : > 1 ω, ω > b} m T, ad 4. wh he coveo m =. The U D a, b; ω s se o be he larges eger such ha ω< m. To w, m U D a, b; ω = 1 {τω< m}. =1 Prooso 4.. Ucrossg Iequaly Gve 1,, le g be a geeraor sasfyg A1 A3 wh resec o some coeffce se Ξ, ad le be a g suermargale wh <. For ay real umbers a<b ad ay fe subse D ={ 1 < < m } of, T, he ucrossg umber U D a, b; of erval a, b sasfes l 1+U D a, b; { e 3Ĉ l b a, Ξ m m a + m } gs,,, ds + a e3ĉ b a Ĉ+ κ l1+κ 1 ν T. The Doob-Meyer decomoso of g margales wll lay a crucal role for rereseg jum-flrao cosse olear execaos wh doma L F T by g execaos our accomayg aer 95. Theorem 4.1. Doob-Meyer Decomoso Gve 1,, le g be a geeraor sasfyg A. ha g also sasfes A3 wh T Λ Assume d L F T f 1,, or wh Λ κ Λ, f =. If D s

10 g valuaos wh L Domas uder Jum Flrao 1 a g suermargale res. g submargale ad f T g,,, d <, he here exs uque rocesses Z, U, K Z, U K such ha P a.s. = T + T gs, s, Z s, U s ds T Z s db s U s xñds, dx+k T K res. K T +K,, T. 4.3,T The roof of Theorem 4.1 reles o a moooc lm heorem of jum dffuso rocesses over D see Theorem A.1 as well as he followg a ror L esmae o a secal BSDJ: Prooso 4.3. Gve 1, ad ξ L F T, le g be a geeraor ad le be a real-valued, F adaed càdlàg rocess wh + D. Le Y, Z, U, K D Z loc U loc K sasfes ha P a.s. Y =ξ+ T T gs, Y s, Z s, U s ds+k T K 1 {Y > }dk =. T Z s db s U s xñds, dx,, T,T If here exs hree, valued, B, T F T measurable rocesses f, β, Λ wh T f d L F T, T β q Λ d L F T such ha he Z, U Z, U ad 4.4 g, Y, Z, U f +β Y + U L ν +Λ Z, d dp a.s., 4.5 Y D + Z Z, + U U +K T C ξ + 5 Oher Fe Proeres of g valuaos T + + f d. 4.6 I hs seco we wll exed some fe roeres of g evaluaos o he jum case wh L domas. These roeres have bee exlored for dffere reasos uder Browa flrao, ad hus form a mora grede of he olear-execao heory. I lgh of Prooso 4.1 of Arv verso of 94, we ca frs rerese geeraors g as he lm of he dfferece quoes of he corresodg g evaluaos: Prooso 5.1. Gve 1, ad κ g >, le g be a geeraor sasfyg A1 ad A here exss some, valued, B, T F T measurable rocess β wh T βq d L + F T such ha for d dp a.s., ω, T Ω g, ω, y 1, z 1, u 1 g, ω, y, z, u β, ω y 1 y +κ g z1 z + u 1 u L ν, y, z, u R R d L ν, =1,. Le, y, z, u, T R R d L ν such ha lm gs, y, z, u=g, y, z, u, P a.s. ad s + 1 ε + ε The holds P a.s. ha g, y, z, u = lm r,s uxñdr, dx, s, T. su s,+δ gs, y,, < for some δ =δ, y, T. 5.1 g,+ε y + V, + ε, z, u y, where V, s, z, u := zbs B + A smle alcao of Prooso 5.1 gves rse o he followg reverse o Theorem.. Theorem 5.1. A Reverse Comarso Theorem of BSDJs Gve 1,, κ g > ad = 1,, le g be a geeraor sasfyg A1 ad A. Le, y, z, u, T R R d L ν such ha boh g 1 ad g sasfy 5.1. If here exss δ, y, T such ha,sξ g1,sξ, g P a.s. for ay s, +δ, y ad ξ L F s, he holds P a.s. ha g 1, y, z, u g, y, z, u.

11 6. Proofs 11 As oher cosequeces of Prooso 5.1, we have he followg reverse g5 g7 roeres of g evaluaos, whch show ha he covexy res. osve homogeey of g y, z, u s equvale o he covexy res. osve homogeey of g evaluaos ad ha he deedece of g o y varable s equvale o he raslao varace of g evaluaos. Prooso 5.. Gve 1,, assume ha L ν s a searable sace. Le g be a geeraor such ha for some κ g >, A holds wh Λ =κ g,, T ad ha for P a.s. ω Ω g, ω, y, z, u s rgh couous, T for ay y, z, u R R d L ν If g also sasfes A1, A ad f for ay, y, T R, su s,+δ δ =δ, y, T, he g s covex res. osvely homogeeous y, z, u f ad oly f gs, y,, < for cera g,s s a covex res. osvely homogeeous oeraor o L F s for ay s T. 5.3 If g also sasfes 3. ad A3, he g s deede of y f ad oly f g, ξ + c = g, ξ + c,, T, ξ L F, c R. 5.4 Wha ex s a Jese s equaly of g evaluaos wh L domas. Before dscussg, we recall some basc feaures of covex fucos see 85 for he relaed oos: Le f : R R be a covex fuco ad x R. Oe has { fλx λfx + 1 λf, f λ, 1, fλx λfx + 1 λf, f λ, 1 c =, 1,. 5.5 Also, he subdffereal fx of f a x s he erval f x, f +x, where f x ad f +x are lef dervaves ad rgh dervaves of f a x resecvely. Theorem 5.. Jese s Iequaly Le f : R R be a covex fuco. Gve 1,, le g be a geeraor deede of y such ha A, A3 hold ad ha g,, =, d dp a.s. 5.6 Gve τ T ad γ T τ, le ξ L F γ such ha fξ < ad ha f g τ,γξ, 1 c, P a.s. If holds for d dp a.s., ω τ, γ ha g, ω, z, u s covex z, u R d L ν, 5.7 he f g τ,γξ g τ,γ fξ, P a.s. 6 Proofs 6.1 Proofs of Seco Proof of Remark.1 1: We ca deduce ha for d dp a.s., ω, T Ω g, ω, y, z, u 1 g, ω, y, z, u κ u 1 x u x νdx So oe ca ake β :=β 1 κ ν q,, T. Le Y, Z, U D 1 Z loc U loc. Fx N. Defe { τ :=f, T : gs,,, ds+ κ ν 1 q u 1 u L ν, y, z, u 1, u R R d L ν L ν. 6.1 Zs ds+ } U s x νdxds> T T.

12 g valuaos wh L Domas uder Jum Flrao 1 Hölder s equaly ad A mly ha τ g, Y, Z, U d T + Y 1 β q d τ g,,, +β Y +Λ Z +β U L ν d + τ +Ĉ Y D 1 + Ĉ Ĉ 1 q <, 1 τ Λ d Z d 1 + τ β q 1 τ q d U 1 L d ν whch shows ha τ g, Y, Z, U d< exce o a P ull se N. Sce T g,,, d<, P a.s. ad sce Z, U Z loc U loc, here exss a P ull se N such ha for ay ω N c, τ ω=t for some =ω N. Now, for ay ω N, c oe ca deduce ha T N {} g, ω, Y ω, Z ω, U ω τω d= g, ω, Y ω, Z ω, U ω d<. 3 Le τ T. If g sasfes A1, A res. A, he g ad g τ are clearly P BR BR d B Lν /BR measurable fucos sasfyg A1, A res. A. Assume furher ha g sasfes A3. The g τ sasfes A3 wh h τ, ω, y, z, u 1, u x:=1 {<τω} h, ω, y, z, u1, u x κ 1, κ,, ω, y, z, u 1, u, x, T Ω R R d L ν L ν. O he oher had, for ay, ω, y, z, u 1, u, T Ω R R d L ν L ν, oe ca deduce ha g, ω, y, z, u 1 g, ω, y, z, u = g, ω, y, z, u g, ω, y, z, u 1 u x+u 1 x h, ω, y, z, u, u 1 xνdx. 6. So g sasfes.3 wh h, ω, y, z, u 1, u x = h, ω, y, z, u, u 1 x κ 1, κ, x. The P BR BR d BL ν BL ν/bl q ν measurably of mag h easly mles ha of mags h τ ad h. Proof of Theorem.1: Le ξ L F T. Uder A1 ad A, he wellosedess of BSDJ ξ, g drecly follows from Remark 4.1 of 94. By A, holds d dp a.s. ha g, Y ξ,g, Z ξ,g, U ξ,g g,,, + β Y ξ,g + U ξ,g L ν + Λ Z ξ,g. So we see ha he codo 3.1 of 94 holds for ξ 1, f 1, Y 1, Z 1, U 1 = ξ, g, Y ξ,g, Z ξ,g, U ξ,g, ξ, f, Y, Z, U =,,,, ad g, Φ, Λ, Γ, Υ = g,,,, β, Λ, β,,, T. The Lemma 3.1 ad Corollary 4.1 of 94 yelds.4 ad he remag cocluso. Proof of Remark.: Gve ξ L F T, le Y, Z, U S be he uque soluo of BSDJ ξ, g. Mullyg 1 o BSDJ ξ, g shows ha Y, Z, U S solves BSDJ ξ, g. The we see from Remark.1 3 ad Theorem.1 ha P { Y ξ,g = Y ξ,g,, T } =1. Proof of Prooso.1: By A, holds d dp a.s. ha g 1, Y 1, Z 1, U 1 g, Y, Z, U g 1, Y, Z, U g, Y, Z, U +β Y 1 Y + U 1 U L ν +ΛZ 1 Z whch shows ha he codo 3.1 of 94 holds for ξ, f, Y, Z, U =ξ, g, Y, Z, U, =1, ad g, Φ, Λ, Γ, Υ = g 1, Y, Z, U g, Y, Z, U, β, Λ, β,,, T. The Lemma 3.1 of 94 gves rse o.5. Proof of Theorem.: Whou loss of geeraly, we suose ha g 1 sasfes A, A3 ad ha g 1, Y, Z, U g, Y, Z, U, d dp a.s. o τ, γ Se Y, Z, U:=Y 1 Y, Z 1 Z, U 1 U ad cosder he followg F rogressvely measurable rocesses:, a b g 1, Y 1, Z 1, U 1 g 1, Y, Z 1, U 1 := 1 {Y }, Y Θ := e asds >, ad g 1, Y, Z 1, U 1 g 1, Y, Z, U 1 := 1 {Z } Z Z,, T.

13 6.1 Proofs of Seco 13 By A, holds d dp a.s. ha Defe H :=h, Y, Z, U 1, U ad M := b s db s + a β ad b Λ. 6.4, H s xñds, dx,, T. 6.5 T Sce Λ d + T H x νdxd Ĉ +κ ν T <, we see from 1.3 ad 1.4 ha M s a uformly egrable margale. For ay ζ T, 6.4 ad A3 aga yeld ha Mζω, ω=1 {ζω Dω }H ζω, ω, ζω, ω κ 1, κ, ω Ω, ad ha M, M T M, M ζ F ζ = T ζ b s ds+ T = b s ds+ ζ ζ,t T ζ Hs x N ds, dx F ζ H s x νdxdsf ζ Ĉ +κ ν T <. Thus, M s a BMO margale. I vrue of 5, he Doléas-Dade exoeal of M M:=e M 1 M c 1+ M s e Ms >,, T 6.6 <s s a uformly egrable margale, where M c deoe he couous ar of M. Defe a robably measure Q by dq dp := T M, whch sasfes dq dp F := M,, T. The Grsaov s Theorem e.g. 47, 8 he shows ha B Q := B b sds,, T s a Q Browa moo ad Ñ Q, A := Ñ, A, H sxνdxds,, T, A F s a Q comesaed Posso radom measure. By 6.4, Θ e T βd eĉ, P a.s. ad hus Q a.s. 6.7 Now, we fx s T ad N. Defe γ := f { r τ, T : r τ Z r dr + r τ U r x νdxdr > } γ T τ ad se ζ :=τ γ, ς :=τ s γ. Alyg Iô s formula o Θ r Y r o ζ, ς = τ, γ, s yelds ha ς ς Θ ζ Y ζ = Θ ς Y ς + Θ r gr a r Y r dr Θ r Z r db r Θ r U r xñdr, dx, P a.s. 6.8 ζ ζ ζ,ς where g r :=g 1 r, Yr 1, Zr 1, Ur 1 g r, Yr, Zr, Ur. By A3 ad 6.3, holds dr dp a.s. o τ, γ ha g r =a r Y r +b r Z r +g 1 r, Yr, Zr, Ur 1 g r, Yr, Zr, Ur a r Y r +b r Z r + H r xu r xνdx. Pluggg hs equaly back o 6.8 leads o ha Θ ζ Y ζ Θ ς Y ς M s M +Ms M, P a.s. ad hus Q a.s., 6.9 where M r := r 1 {r τ,γ }Θ r Z r db Q r ad M r :=,r 1 {r τ,γ }Θ r U r xñ Q dr, dx, r, T. We ca deduce from he Burkholder-Davs-Gudy equaly, 1.5 ad 6.7 ha Q su r,t M r + su r,t M r c Q γ τ Θ r Z r dr + c e Ĉ γ Q Z r dr τ + γ τ τ,γ Θ r U r x N dr, dx U r x νdxdr c e Ĉ + <, hus M ad M are wo uformly egrable Q margales. Takg codoal execao Q F ζ 6.9 yelds ha Q a.s. Θ ζ Y ζ Q Θς Y ς F ζ =1{γ<τ γ} Q Θς Y ς F γ +1{γ τ γ} Q Θς Y ς F τ γ :=η 1 +η. 6.1

14 g valuaos wh L Domas uder Jum Flrao 14 As Z, U Z loc U loc, oe has T Zr + U r L ν dr <, P a.s. ad hus Q a.s. So for Q a.s. ω Ω here exss a N ω N such ha for ay N ω, γ ω = γω ad hus η 1 ω = I follows ha lm η 1 =, Q a.s. O he oher had, he frs equaly 6.11 also shows ha lm Θ ζ Y ζ = Θ τ γ Y τ γ ad lm Θ ς Y ς =Θ τ s γ Y τ s γ, Q a.s. eve hough he rocess Y may o be lef-couous. For ay N, 6.7 shows ha Θ ς Y ς eĉy, P a.s. Sce a slgh exeso of 83, Prooso A.1 a shows ha q T M <, we ca deduce from Hölder s equaly ha Q Y = T MY T M Lq F T Y D <. 6.1 As 6.1, a codoal-execao verso of domaed covergece heorem ad 6.11 yeld ha Θ τ γ Y τ γ lm Q Θς Y ς F τ γ = Q Θτ s γ Y τ s γ F τ γ, Q a.s Takg s = T shows ha Θ τ γ Y τ γ Q Θγ Y γ F τ γ, Q a.s. ad hus P a.s. I follows ha Y τ γ, P a.s. By he rgh couy of rocesses Y 1 ad Y, holds P a.s. ha Y 1 Y for ay τ, γ. Suose furher ha Yτ 1 = Yτ, P a.s. For ay, T, as Θ τ γ Y τ γ, Q a.s., alyg 6.13 wh, s =, shows ha = Θ τ Y 1 τ Y τ Q Θτ γ Y τ γ F τ, Q a.s. So Q Θτ γ Y τ γ = Q Q Θτ γ Y τ γ F τ =, whch haes oly f Y τ γ =, P a.s. sce Θ τ γ >. Usg he rgh τ γ τ couy of Y 1, Y aga shows ha P { Y 1 =Y, τ, γ } =1. I he follows from 1.1 ha P a.s. g 1 r, Y 1 r, Z 1 r, U 1 r g r, Y r, Z r, U r dr = τ γ τ Zr 1 Zr db r + τ,τ γ U 1 r x U r xñdr, dx,, T. As couous fe-varaoal rocesses, couous margales ad dscouous jum margales are of dffere aures, ay wo of hem oly ersec a. So holds d dp a.s. o τ, γ ha Z 1 = Z ad U 1 x = U x, d dp νdx a.s. o o τ, γ Sce he laer s equvale o U 1 = U, d dp a.s. o τ, γ, we furher see ha d dp a.s. o τ, γ g 1, Y 1, Z 1, U 1 =g, Y, Z, U ad hus g 1, Y j, Z j, U j =g, Y j, Z j, U j, j =1,. 6. Proofs of Seco 3 Proof of Lemma 3.1: Le γ T. I suffces o show ha he uque soluo Y, Z, U = Y ξ,gγ, Z ξ,gγ, U ξ,gγ of BSDJ ξ, g γ s also he uque soluo of BSDJ ξ, g S : Se M := Z sdb s +, U sxñds, dx,, T. Sce Z, U =1{ γ} Z, U, d dp a.s. by Theorem.1, we ca deduce from 3. ha P a.s. T Y = ξ+ = ξ+ T T 1 {s<γ} gs, Y s, Z s, U s ds M T +M =ξ+ 1 {s γ} gs, Y s, Z s, U s ds M T +M g s, Y s, 1 {s γ} Z s, 1 {s γ} U s ds MT +M =ξ+ whch shows ha Y, Z, U s he uque soluo of BSDJ ξ, g. T g s, Y s, Z s, U s ds MT +M,, T, Proof of g1 g7: 1 Le g sasfes A3 ad le η L F γ wh ξ η, P a.s. Alyg Theorem. wh g 1 = g = g γ yelds ha P { Y ξ,gγ Y η,gγ, τ, γ } =1. I arcular, τ,γξ=y g τ ξ,gγ Yτ η,gγ =τ,γη, g P a.s. Moreover, f furher holds ha Yτ ξ,gγ = τ,γξ g = τ,γη g = Yτ η,gγ, P a.s., Theorem. aga shows ha P { Y ξ,gγ = Y η,gγ, τ, γ } = 1. The Theorem.1 mles ha ξ = Y ξ,gγ T = Yγ ξ,gγ = Yγ η,gγ = Y η,gγ T = η, P a.s., rovg g1. Le g sasfes 3.. For ay ξ L F τ L F γ, Lemma 3.1 ad 3.1 mly ha τ,γξ= g g ξ F τ =τ,τ g ξ=ξ, P a.s., rovg g.

15 6. Proofs of Seco Se Y, Z, U := Y ξ,gγ, Z ξ,gγ, U ξ,gγ ad Y, Z, U := Y η,g ζ, Z η,g ζ, U η,g ζ wh η := g ζ,γ ξ L F ζ. We defe Y := 1 {<ζ} Y +1 { ζ} Y ad Z, U := 1{ ζ} Z, U +1 {>ζ} Z, U,, T. Oe ca deduce ha Y, Z, U belog o S ad ha P a.s. T Y ζ = ξ + = ξ + ζ T ζ T g γ s, Y s, Z s, U s ds g γ s, Y s, Z s, U s ds ζ T ζ Z s db s Z s db s ζ,t ζ,t U s xñds, dx U s xñds, dx,, T Le, T. Sce Theorem.1 shows ha Z s, U s =1 {s ζ} Z s, U s =1 {s ζ} Z s, U s, ds dp a.s., akg =ζ 6.14 yelds ha T Y ζ = η+ = Y ζ + = ξ+ ζ ζ ζ T ζ T 1 {s<ζ} gs, Y s, Z s, U s ds 1 {s<γ} gs, Y s, Z s, U s ds g γ s, Y s, Z s, U s ds T ζ ζ ζ Z s db s ζ Z s db s ζ,t Z s db s ζ,t ζ,ζ U s xñds, dx U s xñds, dx U s xñds, dx, P a.s Mullyg 1 { ζ} o 6.14 ad mullyg 1 {<ζ} o 6.15 leads o ha T Y = 1 {<ζ} Y +1 { ζ} Y = ξ+ g γ s, Y s, Z s, U s ds T Z s db s U s xñds, dx,,t P a.s. The we see from he rgh couy of rocess Y ha P a.s. T Y =ξ+ g γ s, Y s, Z s, U s ds T Z s db s U s xñds, dx,, T.,T So Y, Z, U solves BSDJ ξ, g γ. By uqueess, oe has P { Y = Y,, T } = 1. I arcular, alyg 3.1 wh τ, γ, ξ = τ, ζ, g ζ,γ ξ yelds ha τ,γξ g = Y τ = Y τ = 1 {τ<ζ} Y τ +1 {τ=ζ} Y ζ = 1 {τ<ζ} g τ,ζ η+1 {τ=ζ} g ζ,γ ξ = g τ,ζ g ζ,γ ξ, P a.s. Hece, g3 holds. 4a Fx A F τ. Se Y 1, Z 1, U 1 := Y ξ,gγ, Z ξ,gγ, U ξ,gγ ad Y, Z, U := Y 1 Aξ,g γ, Z 1 Aξ,g γ, U 1 Aξ,g γ. Gve = 1,, alyg Corollary.1 wh ξ = 1 A Y L F τ shows ha here exss a uque ar Z, U Z, U such ha P a.s., Y := 1 A Y F = 1A Y + Z sdb s +, U sxñds, dx,, T. We defe Y := 1 {<τ} Y +1 { τ} 1 A Y, Z, U := 1{ τ} Z, U +1 {>τ} 1 A Z, U,, T, ad ca deduce ha Y, Z, U belog o S. For ay, T, sce {τ } F τ, we see ha A {τ } F ad hus A {τ < γ} F. The { } 1A 1 {τ <γ} s a F adaed càdlàg rocess. I follows ha,t g A, ω, y, z, u:=1 {ω A} 1 {τω <γω} g, ω, y, z, u,, ω, y, z, u, T Ω R R d L ν s a P BR BR d B L ν /BR measurable mag ha sasfes A1 ad A. Gve, T, mullyg 1 A o he BSDJ ξ, g γ over erod τ, T yelds ha T 1 A Yτ 1 = 1 A ξ + = 1 A ξ + = 1 A ξ + τ T τ T τ 1 A 1 {s<γ} gs, Ys 1, Zs 1, Us 1 ds T τ 1 A Zs 1 db s 1 A 1 {τ s<γ} gs, 1 A Ys 1, 1 A Zs 1, 1 A Us 1 ds 1 g A s, Y s, Z 1 s, U 1 T s ds τ Z 1 sdb s T τ,t τ τ,t Z 1 sdb s 1 A U 1 s xñds, dx τ,t U 1 sxñds, dx U 1 sxñds, dx, P a.s. 6.16

16 g valuaos wh L Domas uder Jum Flrao 16 Smlarly, mullyg 1 A o he BSDJ 1 A ξ, g γ over erod τ, T yelds ha T 1 A Yτ =1 A ξ + g A s, Y s, Z s, U T s ds Z sdb s U sxñds, dx, τ τ τ,t P a.s Fx =1,. The rgh couy of rocess Y, 6.16 ad 6.17 shows ha P a.s. T 1 A Yτ =1 A ξ + g A s, Y s, Z s, U T s ds Z sdb s U sxñds, dx,, T τ τ τ,t Le, T. Sce Y = 1 A Y F τ =1A Y, P a.s. akg = 6.18 yelds ha τ τ Yτ = Y ZsdB s UsxÑds, dx=1 A Y Z sdb s = 1 A ξ+ τ T τ τ,τ g A s, Y s, Z s, U sds T τ Z sdb s τ,t τ τ,τ U sxñds, dx U sxñds, dx, P a.s Mullyg 1 { τ} o 6.18 ad mullyg 1 {<τ} o 6.19 leads o ha T Y = 1 {<τ} Y +1 { τ} 1 A Y = 1 A ξ+ g A s, Y s, Z s, U sds T Z sdb s U sxñds, dx,,t P a.s. The rgh couy of rocess Y he mles ha P a.s. T T Y =1 A ξ+ g A s, Y s, Z s, U sds Z sdb s,t U sxñds, dx,, T. Thus boh Y 1, Z 1, U 1 ad Y, Z, U solve BSDJ 1A ξ, g A. By uqueess, oe has P { Y 1 =Y,, T } =1. I follows ha 1 A g τ,γξ=1 A Y 1 τ =Y 1 τ =Y τ =1 A Y τ =1 A g τ,γ1 A ξ, P a.s. 4b Nex, suose ha g,,, =, d dp a.s. Se Y, Z, U := Y ξ,gγ, Z ξ,gγ, U ξ,gγ. Sce η := 1A Y τ L F τ, Theorem.1 shows ha he BSDJ η, g τ adms a uque soluo Y, Z, U S. We defe Y := 1 {<τ} Y + 1 { τ} 1 A Y, Z, U :=1{ τ} Z, U +1 {>τ} 1 A Z, U,, T. Lke Y, Z, U, he rocesses Y, Z, U also belog o S. Gve, T, smlar o 6.16, mullyg 1 A o he BSDJ ξ, g γ over erod τ, T aga yelds ha T 1 A Y τ = 1 A ξ + = 1 A ξ + = 1 A ξ + τ T τ T τ T 1 A g γ s, Y s, Z s, U s ds τ g γ s, 1 A Y s, 1 A Z s, 1 A U s ds 1 A Z s db s T τ T g γ s, Y s, Z s, U s ds Z s db s By he rgh couy of rocess Y, holds P a.s. ha T T 1 A Y τ =1 A ξ + g γ s, Y s, Z s, U s ds Z s db s τ τ τ τ,t Z s db s τ,t τ,t τ,t 1 A U s xñds, dx U s xñds, dx U s xñds, dx, Le, T. Takg = 6. ad usg a aalogy o 6.15 yeld ha T T Y τ = η+ 1 {s<τ} gs, Y s, Z s, U s ds Z s db s U s xñds, dx = 1 A Y τ + τ τ τ τ 1 {s<γ} gs, Y s, Z s, U s ds T = 1 A ξ+ g γ s, Y s, Z s, U s ds τ T τ τ τ Z s db s τ,t Z s db s τ,t P a.s. U s xñds, dx,, T. 6. τ,τ U s xñds, dx U s xñds, dx, P a.s. 6.1

17 6. Proofs of Seco 3 17 Mullyg 1 { τ} o 6. ad mullyg 1 {<τ} o 6.1 leads o ha Y = 1 {<τ} Y +1 { τ} 1 A Y = 1 A ξ+ T g γ s, Y s, Z s, U s ds T Z s db s U s xñds, dx,,t P a.s. The rgh couy of rocess Y he shows ha P a.s. Y =1 A ξ+ T g γ s, Y s, Z s, U s ds T Z s db s U s xñds, dx,, T.,T So Y, Z, U solves BSDJ 1 A ξ, g γ. By uqueess, oe has P { Y = Y 1 Aξ,g γ,, T } = 1. I follows ha τ,γ1 g A ξ=y 1 Aξ,g γ τ =Y τ =1 A Y τ =1 A τ,γξ, g P a.s., rovg g4. 5 Assume ha g s deede of y. Se Y, Z, U := Y ξ,gγ, Z ξ,gγ, U ξ,gγ ad le η L F τ. I lgh of Theorem.1, he BSDJ Y τ +η, g τ adms a uque soluo Y, Z, U S. We defe Y := 1 {<τ} Y +1 { τ} Y +η ad Z, U :=1{ τ} Z, U +1 {>τ} Z, U,, T. Oe ca deduce ha Y, Z, U belog o S. Gve, T, addg η o he BSDJ ξ, g γ over erod τ, T aga yelds ha T Y τ +η = ξ+η+ = ξ+η+ τ T τ T g γ s, Z s, U s ds τ Z s db s T g γ s, Zs, U s ds Z s db s τ τ,t τ,t U s xñds, dx U s xñds, dx, P a.s. By he rgh couy of rocess Y, holds P a.s. ha T T Y τ +η =ξ+η+ g γ s, Zs, U s ds Z s db s U s xñds, dx,, T. 6. τ τ τ,t Le, T. Sce Theorem.1 shows ha Z s, U s =1 {s τ} Z s, U s =1 {s τ} Z s, U s, ds dp a.s., akg =τ 6. yelds ha T Y τ = Y τ +η+ = Y τ +η + τ τ τ T 1 {s<τ} gs, Z s, U s ds 1 {s<γ} gs, Z s, U s ds T = ξ+η+ g γ s, Z s, U s ds τ T τ τ τ τ Z s db s Z s db s Z s db s τ,t τ,t τ,τ U s xñds, dx U s xñds, dx U s xñds, dx, P a.s. 6.3 Mullyg 1 { τ} o 6. ad mullyg 1 {<τ} o 6.3 leads o ha Y = 1 {<τ} Y +1 { τ} Y +η = ξ+η+ T g γ s, Z s, U s ds T Z s db s U s xñds, dx,,t P a.s. The rgh couy of rocess Y he shows ha P a.s. Y =ξ+η+ T g γ s, Z s, U s ds T Z s db s U s xñds, dx,, T.,T So Y, Z, U solves BSDJ ξ + η, g γ. By uqueess, oe has P { Y = Y ξ+η,gγ,, T } = 1. I follows ha τ,γξ+η=y g τ ξ+η,gγ =Y τ =Y τ +η =τ,γξ+η, g P a.s. Therefore, g5 holds. 6 Assume ha g s covex y, z, u ad le η L F γ, α, 1. We se Y 1, Z 1, U 1 := Y ξ,gγ, Z ξ,gγ, U ξ,gγ, Y, Z, U := Y η,gγ, Z η,gγ, U η,gγ ad Y, Z, U := αy αy, αz αz, αu αu. As g :=αg γ, Y 1, Z 1, U 1 +1 αg γ, Y, Z, U,, T s a F rogressvely measurable rocess, oe ca regard

18 g valuaos wh L Domas uder Jum Flrao 18 as a secal geeraor. I holds P a.s. ha Y = αy 1 +1 αy = αξ +1 αη+ T αz 1 s +1 αzs dbs = αξ +1 αη+ T g s ds T,T T Z s db s αgγ s, Y 1 s, Z 1 s, U 1 s +1 αg γ s, Y s, Z s, U s ds αu 1 s x+1 αu s x Ñ ds, dx,t U s xñds, dx,, T. Sce he covexy of g y, z, u shows ha P { g γ, Y, Z, U g,, T } = 1, a alcao of Theorem. wh g 1, Y 1, Z 1, U 1 = g γ, Y αξ+1 αη,gγ, Z αξ+1 αη,gγ, U αξ+1 αη,gγ ad g, Y, Z, U = g, Y, Z, U yelds ha P { Y αξ+1 αη,gγ Y, τ, γ } = 1. Hece, we oba τ,γ g αξ+1 αη,g αξ+1 αη = Y γ τ Y τ = ατ,γξ+ g 1 ατ,γη, g P a.s. 7 Nex, assume ha g s osvely homogeeous y, z, u. Le α, ad se Y, Z, U:= Y ξ,gγ, Z ξ,gγ, U ξ,gγ. I holds P a.s. ha αy = αξ+ = αξ+ T T αg γ s, Y s, Z s, U s ds T g γ s, αy s, αz s, αu s ds T αz s db s,t αz s db s,t αu s xñds, dx αu s xñds, dx,, T, whch shows ha αy, αz, αu S solves BSDJ αξ, g γ. Thus, P { Y αξ,gγ = αy,, T } = 1. I arcular, τ,γ αξ=y g τ αξ,gγ = αy τ = α τ,γξ, g P a.s. Proof of xamle 3.1: 1 Sce 1.6 ad Hölder s equaly mly ha u ± 1 x u ± x νdx u1 x u x 1 νdx ν q u 1 u L ν, u 1, u L ν, we see ha u u± xνdx s a couous fuco o L ν. I follows ha g Ξ ad g Ξ are wo P BR BR d B Lν /BR measurable mags. Clearly, g Ξ ad g Ξ sasfy A wh coeffces β, Λ, ad g Ξ,,, g Ξ,,,. To verfy A3 for g Ξ, we le, ω, y, z, u 1, u, T Ω R R d L ν L ν. As g Ξ, ω, y, z, u 1 g Ξ, ω, y, z, u = κ 1 u 1 x u x νdx+κ u + 1 x u + x νdx = κ1 u1 x u x + κ κ 1 u + 1 x u+ x νdx, 6.4 g Ξ sasfes.3 wh h κ, ω, y, z, u 1, u x:=κ 1 +1 {u1x u x}κ κ 1 u+ 1 x u+ x u 1x u x, x. Clearly, h κ, ω, y, z, u 1, u s a real-valued, F measurable fuco. Sce a + b + for ay a, b R wh a b, 6.5 we ca deduce from 1.6 ha κ 1 h κ, ω, y, z, u 1, u x = κ 1 +1 {u1x u x}κ κ 1 u+ 1 x u+ x u 1x u x κ, whch mles ha h κ, ω, y, z, u 1, u L q ν. I remas o show ha he mag h κ s P BR BR d BL ν BL ν/bl q ν measurable: le, ω, y, z, u 1, u, T Ω R R d L ν L ν, le λ> ad defe f λ α:= α+ λ 1, α R. For ay u L ν, 6.5 ad 1.6 show ha he fuco φ u1 λ u x:=f λ u1 x ux u + 1 x u+ x u 1x ux, x akes values, 1, so φu1 λ u Lq ν. We frs show ha φ u1 λ s a couous mag from L ν o L q ν. Fx ε> ad se δ =δλ, ε:= λε 3 ν 1 q. Le u, ũ L ν wh ũ u L ν <δ1/ 1 1 ε/ 1. Sce u+ 1 x u+ x u 1 x ux u+ 1 x ũ+ x u 1 x ũx = ũ+ x u + xu 1 x ũx+u + 1 x ũ+ xux ũx u 1 x uxu 1 x ũx ũx ux u 1x ũx + u 1 x ũx ux ũx = ux ũx u 1 x ux u 1 x ũx u 1 x ux, x

19 6. Proofs of Seco 3 19 ad sce he Lschz coeffce of f λ s o larger ha 1/λ, oe ca deduce from 1.6 ha for ay x { ũ u <δ} φ u1 λ u x φ u1 λ ũ x = f λ u1 ux u + 1 x u+ x u 1 x ux u+ 1 x ũ+ x + f λ u1 ux f λ u1 ũx u + 1 x ũ+ x u 1 x ũx u 1 x ũx u 1x ux + ux ũx λ u 1 x ux + 1 λ ux ũx 3 ux ũx < 3δ λ λ. I follows ha φ u1 λ u x φ u1 λ ũ x q νdx { ũ u <δ} or φ u 1 λ u φu1 λ ũ L q ν ε. Ths shows ha 3δ q 3δ qν νdx+ q q νdx + λ { ũ u δ} λ δ ũ u L <εq, ν he mag φ u1 λ s uformly couous from L ν o L q ν ad hus BL ν/bl q ν measurable. 6.6 For ay u L ν, we defe a fuco φ u1 u L q ν by φ u 1 u x := lm φ u 1 λ u u + 1 x=1 x u+ x {u1x ux>} λ u 1 x ux I lgh of he bouded covergece heorem, lm φ u1 λ u q u φu1 λ L = lm q ν λ Namely, φ u1 u s he lm of { φ u1 1, 1, x. φ u1 λ ux φu1 ux q νdx=. λ u} λ> Lq ν. I he follows from 6.6 ha he mag φ u1 s BL ν/bl q ν measurable. Defe φu 1 u u x := x u+ x {u1x ux<} u 1x ux 1, 1, u L ν, x. Oe ca smlarly show ha φ u1 s also a BL ν/bl q ν measurable mag. Cosequely, he mag u h κ, ω, y, z, u 1, u s aga BL ν/bl q ν measurable. Symmercally, he mag u h κ, ω, y, z, u, u s BL ν/bl q ν measurable. Pug hem ogeher yelds he execed measurably of h κ. 3 Smlar o 6., we see from 6.4 ha for ay, ω, y, z, u 1, u, T Ω R R d L ν L ν g Ξ, ω, y, z, u 1 g Ξ, ω, y, z, u = u x+u 1 x h κ, ω, y, z, u, u 1 xνdx. So g Ξ sasfes.3 wh h κ, ω, y, z, u 1, u x = h κ, ω, y, z, u, u 1 x κ 1, κ, x. Clearly, he mag h κ s also P BR BR d BL ν BL ν/bl q ν measurable. Therefore, g Ξ also sasfes A3. Proof of Prooso 3.1: Fx τ T, γ T τ ad ξ, η L F T. Se Y 1, Z 1, U 1 = Y ξ,gγ, Z ξ,gγ, U ξ,gγ, Y, Z, U = Y η,gγ, Z η,gγ, U η,gγ ad Y 3, Z 3, U 3 = Y ξ η,gξ γ, Z ξ η,g Ξ γ, U ξ η,g Ξ γ. The P BR BR d B L ν /BR measurably of g, he P measurably of rocess Y, he P measurably of rocess Z ad he P F measurably of radom feld U mly ha he mag g, ω, y, z, u := g, ω, y+y, ω, z+z, ω, u+u, ω g, ω, Y, ω, Z, ω, U, ω,, ω, y, z, u, T Ω R R d L ν s also P BR BR d B L ν /BR measurable. For Y, Z, U :=Y 1 Y, Z 1 Z, U 1 U S, holds P a.s. ha Y =ξ η+ T 1 {<γ} gs, Y 1 s, Z 1 s, U 1 s gs, Y s, Z s, U s ds T Z s db s U s xñds, dx,, T.,T Namely, Y, Z, U solves he BSDJ ξ η, g γ. We ca deduce from A ad A3 ha d dp a.s. g, Y, Z, U =g, Y 1, Z 1, U 1 g, Y, Z, U =g, Y 1, Z 1, U 1 g, Y, Z, U 1 +g, Y, Z, U 1 g, Y, Z, U β Y +Λ Z + U x h, Y, Z, U 1, U xνdx β Y +Λ Z +κ U + xνdx κ 1 U xνdx=g Ξ, Y, Z, U.

20 g valuaos wh L Domas uder Jum Flrao Sce g Ξ also sasfes A ad A3 by xamle 3.1, alyg Theorem. wh τ, γ =, T, Y 1, Z 1, U 1 = Y, Z, U ad Y, Z, U =Y 3, Z 3, U 3 yelds ha P { Y 1 Y =Y Y 3,, T } =1. I arcular, g τ,γξ g τ,γη=y 1 τ Y τ Y 3 τ = Ξ τ,γξ η, P a.s. 6.7 Mullyg 1 o BSDJ η ξ, gγ Ξ shows ha Y η ξ,g Ξ γ, Z η ξ,g Ξ γ, U η ξ,g Ξ γ s he uque soluo of BS- DJ } ξ η, g Ξ γ. So P { Y η ξ,gξ γ =Y ξ η,gξ γ,, T = 1, whch ogeher wh 6.7 mles ha g τ,γξ g τ,γη = g τ,γη g τ,γξ Ξ τ,γη ξ = Y η ξ,gξ γ τ = Y ξ η,gξ γ τ = Ξ τ,γξ η, P a.s. 6.3 Proofs of Seco 4 Proof of Lemma 4.1: Le < s +1 for some {1, 1} ad le ξ L F τ s. Se Y, Z, U := Y ξ,g τ s, Z ξ,gτ s, U ξ,gτ s ad Ỹ, Z, Ũ := Y ξ,gs, Z ξ,gs, U ξ,gs. Le, s. Sce {τ } = {τ +1 } c F F, ad sce Z r, U r = 1 {r τ s} Z r, U r, dr dp a.s. by Theorem.1, mullyg 1 {τ } ad 1 {τ +1} o BSDJ ξ, g τ s over erod, T resecvely yelds ha P a.s. ad ha P a.s. T T 1 {τ }Y = 1 {τ }ξ+ 1 {τ }1 {r<τ s} gr, Y r, Z r, U r dr 1 {τ }1 {r τ s} Z r db r 1 {τ }1 {r τ s} U r xñdr, dx=1 {τ }ξ, 6.8,T T T 1 {τ +1}Y =1 {τ +1}ξ+ 1 {τ +1}1 {r<τ s} gr, Y r, Z r, U r dr 1 {τ +1}1 {r τ s} Z r db r 1 {τ +1}1 {r τ s} U r xñdr, dx,t = 1 {τ +1}ξ+ s 1 {τ +1}gr, Y r, Z r, U r dr Also, a aalogy o 6.8 shows ha P a.s. 1 {τ }Ỹ =1 {τ }ξ+ s s 1 {τ }g r, Ỹr, Z s r, Ũr dr 1 {τ +1}Z r db r 1 {τ +1}U r xñdr, dx. 6.9,s 1 Z {τ } r db r 1 {τ }ŨrxÑdr, dx. 6.3,s Nex, se Y r, Z r, U r := 1 {τ }Ỹr, Z r, Ũr + 1{τ +1}Y r, Z r, U r, r, s. As Y L F, Theorem.1 shows ha he BSDJ Y, g adms a uque soluo Y, Z, U S. Defe Y r := 1 {r<} Y r +1 {r } Y r s ad Zr, U r :=1{r } Z r, U r +1 {<r s} Z r, U r, r, T. Oe ca deduce ha Y, Z, U belog o S. For ay, T, addg 6.9 o 6.3 yelds ha s Y = Y s =1 {τ }Ỹ s+1 {τ +1}Y s =ξ + = ξ + T g s r, Y r, Z r, U r dr T s Z r db r,t s gr, Y r, Z r, U r dr s Z r db r s,s U r xñdr, dx U r xñdr, dx, P a.s O he oher had, for ay,, as Theorem.1 shows ha Y =Y =Y T =Y, P a.s., we have Y Y = Y Y = = g r, Y r, Z r, U r dr g r, Y r, Z r, U r dr Z r db r Z r db r,, U r xñdr, dx, U r xñdr, dx P a.s.

21 6.3 Proofs of Seco 4 1 Takg = 6.31 yelds ha T Y = ξ+ T g s r, Y r, Z r, U r dr Z r db r U r xñdr, dx, P a.s. 6.3,T By he rgh-couy of Y, we see from 6.31 ad 6.3 ha P a.s. T T Y =ξ+ g s r, Y r, Z r, U r dr Z r db r U r xñdr, dx,, T,,T whch shows ha Y, Z, U solves BSDJ ξ, g s. I follows ha,sξ g = Y ξ,gs 6.8 wh =, we see from Theorem.1 aga ha P a.s. = Y = Y, P a.s. The alyg g τ,τ sξ=y τ =Y =1 {τ }Y + 1 {τ +1}Y =1 {τ }ξ+1 {τ +1}Y =1 {τ }ξ+1 {τ +1} g,sξ. Proof of Prooso 4.1: Le us oly cosder he g submargale case, as he oher cases ca be derved smlarly. 1 Assume frs ha γ akes values a fe se {= 1 < < =T }. If, T, 3.1 shows ha γ,γ g γ =Y γ,gγ γ argue ha for ay, T, =Y γ,gγ γ = g γ,γ γ = γ = γ, P a.s. The le us ducvely g γ,γ γ γ, P a.s Suose ha for some {,, }, 6.33 holds for each, T. Gve 1,, he g1, g3 roeres of g evaluaos ad 4.1 mly ha g γ,γ γ = g γ,γ g γ,γ γ g γ,γ γ =1 {γ 1} γ +1 {γ } g, γ, P a.s Sce {γ }={γ 1 } c F 1 F, he g4 of g evaluaos ad he g submargaly of show ha P a.s. 1 {γ } g, γ =1 {γ } g, 1 {γ } γ =1 {γ } g, 1 {γ } =1 {γ } g, 1 {γ } =1 {γ } γ. Pug back o 6.34 roves 6.33 for ay 1, T. Ths comlees he ducve se. Hece, 6.33 holds for ay, T. If s also fely valued, for examle {=s 1 < <s m =T }, he we see from 6.33 ha P a.s. τ,γ g γ =Yτ γ,gγ =Y γ,gγ γ τ = m j=1 1 {τ=sj}y γ,gγ γ s j = m m 1 {τ=sj}γ s g j,γ γ 1 {τ=sj} γ sj = γ τ = τ. j=1 Nex, assume ha s rgh-couous bu τ, γ are geeral sog mes. Se Y, Z, Y := Y γ,gγ, Z γ,gγ, U γ,gγ. For ay N, we se := T, =,, ad defe τ := =1 1 { 1 <τ } ad γ := =1 1 { 1 <γ } T. Le m, N wh m> ad se Y, Z, Y := Y γ,gγ, Z γ,gγ, U γ,gγ. Sce τm τ γ, Par 1 shows ha Yτ m =τ g m,γ γ τm, P a.s. As lm τ m =τ, he rgh couy of rocesses Y ad mles ha m Yτ = lm Y τ m m lm τ m = τ, P a.s m By Prooso.1, Yτ Y τ Y Y γ C D γ γ + g, Y, Z, U d Also, A1 A3, 6.1, 1.7 ad Hölder s equaly mles ha T g, Y, Z, U T d g,,, +β Y +Λ Z +κ ν 1 q U L ν d T + T 4 1 g,,, d Ĉ q T Y +Ĉ T Z d +κ ν T q U <. L d ν γ j=1

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

BSDEs with polynomial growth generators Philippe Briand IRMAR, Universite Rennes 1, Rennes Cedex, FRANCE Rene Carmona Statistics & Operations R

BSDEs with polynomial growth generators Philippe Briand IRMAR, Universite Rennes 1, Rennes Cedex, FRANCE Rene Carmona Statistics & Operations R BSDEs wh olyomal growh geeraors Phle Brad IRMAR, Uverse Rees 1, 35 42 Rees Cedex, FRANCE Ree Carmoa Sascs & Oeraos Research, Prceo Uversy, Prceo NJ 8544, USA July 22, 1998 revsed December 15, 1998 Absrac

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A, OF THE ROMANIAN ACADEMY Volume 0, Number /009,. 000-000 ON ZALMAI EMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

Unit 10. The Lie Algebra of Vector Fields

Unit 10. The Lie Algebra of Vector Fields U 10. The Le Algebra of Vecor Felds ================================================================================================================================================================ -----------------------------------

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis

A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis Avalable Ole a h://rm.srbau.ac.r Vol.1 No.3 Auum 15 Joural of Ne Researches Mahemacs Scece ad Research Brach (IAU) A Recurre Neural Neork o Idefy Effce Decso Makg Us Daa Evelome Aalyss A. Ghomash a G.

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

BILINEAR GARCH TIME SERIES MODELS

BILINEAR GARCH TIME SERIES MODELS BILINEAR GARCH TIME SERIES MODELS Mahmoud Gabr, Mahmoud El-Hashash Dearme of Mahemacs, Faculy of Scece, Alexadra Uversy, Alexadra, Egy Dearme of Mahemacs ad Comuer Scece, Brdgewaer Sae Uversy, Brdgewaer,

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations Global Joural of Scece Froer Research Mahemacs a Decso Sceces Volume Issue 7 Verso. Jue Te : Double Bl Peer Revewe Ieraoal Research Joural Publsher: Global Jourals Ic. (USA Ole ISSN: 49-466 & Pr ISSN:

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

NUMERICAL EVALUATION of DYNAMIC RESPONSE

NUMERICAL EVALUATION of DYNAMIC RESPONSE NUMERICAL EVALUATION of YNAMIC RESPONSE Aalycal solo of he eqao of oo for a sgle degree of freedo syse s sally o ossble f he excao aled force or grod accelerao ü g -vares arbrarly h e or f he syse s olear.

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Fourth Order Runge-Kutta Method Based On Geometric Mean for Hybrid Fuzzy Initial Value Problems

Fourth Order Runge-Kutta Method Based On Geometric Mean for Hybrid Fuzzy Initial Value Problems IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 29-765X. Volume, Issue 2 Ver. II (Mar. - Apr. 27), PP 4-5 www.osrjourals.org Fourh Order Ruge-Kua Mehod Based O Geomerc Mea for Hybrd Fuzzy

More information

OPTIMALITY AND SECOND ORDER DUALITY FOR A CLASS OF QUASI-DIFFERENTIABLE MULTIOBJECTIVE OPTIMIZATION PROBLEM

OPTIMALITY AND SECOND ORDER DUALITY FOR A CLASS OF QUASI-DIFFERENTIABLE MULTIOBJECTIVE OPTIMIZATION PROBLEM Yugoslav Joural of Oeraos Research 3 (3) Nuber, -35 DOI:.98/YJOR394S OPTIMALITY AND SECOND ORDER DUALITY FOR A CLASS OF QUASI-DIFFERENTIABLE MULTIOBJECTIVE OPTIMIZATION PROBLEM Rsh R. SAHAY Deare of Oeraoal

More information

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin Egeerg Leers, 4:2, EL_4_2_4 (Advace ole publcao: 6 May 27) Sablzao of LTI Swched Sysems wh Ipu Tme Delay L L Absrac Ths paper deals wh sablzao of LTI swched sysems wh pu me delay. A descrpo of sysems sablzao

More information

March 14, Title: Change of Measures for Frequency and Severity. Farrokh Guiahi, Ph.D., FCAS, ASA

March 14, Title: Change of Measures for Frequency and Severity. Farrokh Guiahi, Ph.D., FCAS, ASA March 4, 009 Tle: Chage of Measures for Frequecy ad Severy Farroh Guah, Ph.D., FCAS, ASA Assocae Professor Deare of IT/QM Zarb School of Busess Hofsra Uversy Hesead, Y 549 Eal: Farroh.Guah@hofsra.edu Phoe:

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. ublc Affars 974 Meze D. Ch Fall Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he Effce Markes Hypohess (rev d //) The rese Value Model Approach o Asse rcg The exbook expresses he sock prce

More information

Domination in Controlled and Observed Distributed Parameter Systems

Domination in Controlled and Observed Distributed Parameter Systems Iellge Cool ad Auoao 3 4 7-6 h://dxdoorg/436/ca346 Publshed Ole May 3 (h://wwwscrorg/joural/ca) Doao Coolled ad Observed Dsbued Paraeer yses L Aff M Joud E M Magr A El Ja Deare of Maheacs ad Couer cece

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai Ro Geeralzed B-lear Mxed Varaoal-lke Iequaly for Ro Fuzzy Mappgs Hogxa Da Depare of Ecooc Maheacs Souhweser Uversy of Face Ecoocs Chegdu 674 P.R.Cha Absrac I h paper we roduce sudy a ew class of ro geeralzed

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. coomcs 435 Meze. Ch Fall 07 Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he ffce Markes Hypohess The rese Value Model Approach o Asse rcg The exbook expresses he sock prce as he prese dscoued

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures Sesors,, 37-5 sesors ISSN 44-8 by MDPI hp://www.mdp.e/sesors Asympoc Regoal Boudary Observer Dsrbued Parameer Sysems va Sesors Srucures Raheam Al-Saphory Sysems Theory Laboraory, Uversy of Perpga, 5, aveue

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy

Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy Advaces Pure Mahemacs, 5, 5, 48-5 Publshed Ole Jue 5 ScRes. h://www.scr.org/joural/am h://d.do.org/.436/am.5.5846 Aalyc heory of Fe Asymoc Easos he Real Doma. Par II-B: Soluos of Dffereal Ieuales ad Asymoc

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments Pure ad Appled Mahemacs Joural 25 4(: -8 Publshed ole Jauary 23 25 (hp://wwwscecepublshggroupcom/j/pamj do: 648/jpamj254 ISSN: 2326-979 (Pr ISSN: 2326-982 (Ole Orbal ucldea sably of he soluos of mpulsve

More information

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition SSN 76-7659 Eglad K Joural of forao ad Copug Scece Vol 7 No 3 pp 63-7 A Secod Kd Chebyshev olyoal Approach for he Wave Equao Subec o a egral Coservao Codo Soayeh Nea ad Yadollah rdokha Depare of aheacs

More information

Broadband Constraint Based Simulated Annealing Impedance Inversion

Broadband Constraint Based Simulated Annealing Impedance Inversion Joural of Comuaoal Scece & Egeerg 8 (213) 3-34 Joural of Comuaoal Scece & Egeerg Avalable a h://wwwasocseorg SSN 171-468 Broadbad Cosra Based Smulaed Aealg medace verso Guagxua Che 1, a, Yahu Du 1,b, Pae

More information

Geometric Modeling

Geometric Modeling Geomerc Modelg 9.58. Crves coed Cc Bezer ad B-Sle Crves Far Chaers 4-5 8 Moreso Chaers 4 5 4 Tycal Tyes of Paramerc Crves Corol os flece crve shae. Ierolag Crve asses hrogh all corol os. Herme Defed y

More information

Quantitative Portfolio Theory & Performance Analysis

Quantitative Portfolio Theory & Performance Analysis 550.447 Quaave Porfolo heory & Performace Aalyss Week February 4 203 Coceps. Assgme For February 4 (hs Week) ead: A&L Chaper Iroduco & Chaper (PF Maageme Evrome) Chaper 2 ( Coceps) Seco (Basc eur Calculaos)

More information

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model Amerca Joural of Theorecal ad Appled Sascs 06; 5(3): 80-86 hp://www.scecepublshggroup.com/j/ajas do: 0.648/j.ajas.060503. ISSN: 36-8999 (Pr); ISSN: 36-9006 (Ole) Regresso Approach o Parameer Esmao of a

More information

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay Ieraoal Joural of Advaces Appled Maemacs ad Mecacs Volume, Issue 2 : (23) pp. 53-64 Avalable ole a www.jaamm.com IJAAMM ISSN: 2347-2529 O a algorm of e dyamc recosruco of pus sysems w me-delay V. I. Maksmov

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Optimal control for multi-input bilinear systems with an application in cancer chemotherapy.

Optimal control for multi-input bilinear systems with an application in cancer chemotherapy. Ieraoal Joural of Scefc ad Iovave Mahemacal Research (IJSIMR) Volume 3, Issue 2, February 2015, PP 22-31 ISSN 2347-307X (Pr) & ISSN 2347-3142 (Ole) www.arcjourals.org Omal corol for mul-u blear sysems

More information

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS Vol.7 No.4 (200) p73-78 Joural of Maageme Scece & Sascal Decso IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS TIANXIANG YAO AND ZAIWU GONG College of Ecoomcs &

More information

Integral Φ0-Stability of Impulsive Differential Equations

Integral Φ0-Stability of Impulsive Differential Equations Ope Joural of Appled Sceces, 5, 5, 65-66 Publsed Ole Ocober 5 ScRes p://wwwscrporg/joural/ojapps p://ddoorg/46/ojapps5564 Iegral Φ-Sably of Impulsve Dffereal Equaos Aju Sood, Sajay K Srvasava Appled Sceces

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

Optimal Control and Hamiltonian System

Optimal Control and Hamiltonian System Pure ad Appled Maheacs Joural 206; 5(3: 77-8 hp://www.scecepublshggroup.co//pa do: 0.648/.pa.2060503.3 ISSN: 2326-9790 (Pr; ISSN: 2326-982 (Ole Opal Corol ad Haloa Syse Esoh Shedrack Massawe Depare of

More information

Multiobjective Duality in Variational Problems with Higher Order Derivatives

Multiobjective Duality in Variational Problems with Higher Order Derivatives Coucaos ad Newor 00 38-44 do:0.436/c.00.0 Publshed Ole May 00 (h://www.scrp.org/joural/c) Mulobjecve Dualy Varaoal Probles wh Hgher Order Dervaves Absrac qbal Husa Ruaa G. Maoo Deare of Maheacs Jayee sue

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS

CONTROLLABILITY OF A CLASS OF SINGULAR SYSTEMS 44 Asa Joural o Corol Vol 8 No 4 pp 44-43 December 6 -re Paper- CONTROLLAILITY OF A CLASS OF SINGULAR SYSTEMS Guagmg Xe ad Log Wag ASTRACT I hs paper several dere coceps o corollably are vesgaed or a class

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays Avalable ole a www.scecedrec.com Proceda Egeerg 5 (0) 86 80 Advaced Corol Egeergad Iformao Scece Sably Crero for BAM Neural Neworks of Neural- ype wh Ierval me-varyg Delays Guoqua Lu a* Smo X. Yag ab a

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Inner-Outer Synchronization Analysis of Two Complex Networks with Delayed and Non-Delayed Coupling

Inner-Outer Synchronization Analysis of Two Complex Networks with Delayed and Non-Delayed Coupling ISS 746-7659, Eglad, UK Joural of Iformao ad Compug Scece Vol. 7, o., 0, pp. 0-08 Ier-Ouer Sycrozao Aalyss of wo Complex eworks w Delayed ad o-delayed Couplg Sog Zeg + Isue of Appled Maemacs, Zeag Uversy

More information

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations.

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations. Ale Mahemacs 7 8 956-966 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 Numercal Mehos for a Class of Hybr Wealy Sgular Iegro-Dffereal Equaos Shhchug Chag Dearme of Face Chug Hua Uversy Hschu

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control Sychrozao of Complex ework Sysem wh me-varyg Delay Va Perodcally Ierme Corol JIAG Ya Deparme of Elecrcal ad Iformao Egeerg Hua Elecrcal College of echology Xaga 4, Cha Absrac he sychrozao corol problem

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

A Remark on Polynomial Mappings from to

A Remark on Polynomial Mappings from to Aled Mahemacs 6 7 868-88 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 A Remar o Polyomal Mags from o ad a Alcao of he Sofware Male Research Th Bch Thuy Nguye UNESP Uversdade Esadual Paulsa

More information