A Review of Bose-Einstein Condensation in Certain Quantum Magnets Containing Cu and Ni

Size: px
Start display at page:

Download "A Review of Bose-Einstein Condensation in Certain Quantum Magnets Containing Cu and Ni"

Transcription

1 A Review of Bose-Einstein Condensation in Certain Quantum Magnets Containing Cu and Ni Vivien S. Zapf Abstract We summarize a set of recent experimental and theoretical work on the phenomenon of Bose-Einstein Condensation (BEC) of magnetic degrees of freedom in quantum magnets. We will focus on two examples: BaCuSi 2 O 6, which contains planes of Cu S = 1/2 dimers, and NiCl 2-4SC(NH 2 ) 2 (DTN), an organic magnet with Ni S = 1 weakly-coupled chains. In both compounds, the BEC corresponds to a field-induced antiferromagnetic ordered state that persists over a magnetic field range H c1 to H c2. At the quantum critical point at H c1, the predicted power-law behavior of the critical fields and the magnetization for 3-D BEC is observed at low temperatures. In addition, BaCuSi 2 O 6 shows a dimensional crossover from a 3-D BEC to 2-D behavior below 1 K. 1 Introduction In the past decade there has been a surge of interest in the topic of quantum magnetism in condensed-matter systems. Quantum spin systems come in a wide variety of structures including reduced-dimensional ladders, chains or planes, dimers, frustrated spins, and single-molecule magnets. These materials all share the common trait that quantum effects, such as spin fluctuations and quantized spin levels, play a significant role in shaping the ground state and the physical properties of the system. The resultant behavior can be complex and challenge our understanding. In particular, there have been a number of attempts recently to observe Bose- Einstein Condensation (BEC) in quantum magnets. BEC was first observed in dilute gases of 87 Rb atoms [1], leading to a nobel prize being awarded in 21. It turns out that a form of BEC can also be observed in quantum magnets, e.g. crystalline lattices containing spins. BEC in quantum magnets was first predicted to occur in 1991 by V.S. Zapf National High Magnetic Field Laboratory, Los Alamos National Laboratory, vzapf@lanl.gov B. Barbara et al. (eds.), Quantum Magnetism. c Springer Science + Business Media B.V

2 24 V.S. Zapf Ian Affleck [2]. In the past few years, several reports of BEC in real spin systems have been published including TlCuCl 3 [3, 4], BaCu 2 SiO 6 [5, 6], CsCuCl 4 [7, 8], and NiCl 2-4SC(NH 2 ) 2 [9, 1]. In these compounds, the BEC phase transition occurs at a critical magnetic field at which XY antiferromagnetic order is induced. The quantum phase transition into the magnetically ordered state belongs to the same universality class as Bose-Einstein Condensation, and the bosons can be identified via a mapping from the spin degrees of freedom. All quantum magnets investigated for BEC to date contain either Cu 2+ (S = 1/2) or Ni 2+ (S = 1). In this paper we give a review of some recent experimental data on a material containing Cu, BaCuSi 2 O 6 and an organic crystal containing Ni, NiCl 2-4SC(NH 2 ) 2 (DTN). We describe the details of these systems and how BEC can be derived from the Hamiltonian and observed via thermodynamic measurements. Both BaCuSi 2 O 6 and DTN have body-centered tetragonal crystal structures (see Fig. 1) with antiferromagnetic exchange coupling. In BaCuSi 2 O 6, the strongest antiferromagnetic coupling (J = 51 K) occurs within the Cu dimers, such that the two S = 1/2 spins in each dimer form a S = singlet groundstate separated by a gap J from the S = 1 excited triplet (see Figs. 2 and 6). The dimers are arranged in square planes with an intraplane coupling between dimers of J = 6.7 K. The planes in turn are staggered along the c-axis, which results in frustrated antiferromagnetic coupling between planes of J f = 1.3 K. Thus J >> J >> J f [12, 5]. DTN, by contrast, is a chain compound, consisting of Ni S = 1 spins strongly coupled along Ni-Cl-Cl-Ni bonds in the c-axis with J c = 2.2 K. The interchain coupling J a =.18 K is an order of magnitude weaker than the intrachain coupling and no diagonal couplings analogous to J f in BaCuSi 2 O 6 have been observed in experiment. The exchange couplings were determined from inelastic neutron diffraction Cu J' J a J f J Ni Cl J c BaCuSi 2 O 6 c b NiCl 2-4SC(NH 2 ) 2 (DTN) Fig. 1 Tetragonal crystal structures of BaCuSi 2 O 6 (left) showing the Cu S = 1/2 dimers arranged in staggered planes, and DTN (right) showing the Ni and Cl atoms. The lines indicate the antiferromagnetic coupling strengths J (intradimer), J (intraplane), and J f (interplane) for BaCuSi 2 O 6 and J c and J a for DTN [9, 11] a

3 Bose-Einstein Condensation in Quantum Magnets 241 measurements [9], refined via Quantum Monte Carlo calculations and Electron Spin Resonance experiments [1]. The important feature of both DTN and BaCuSi 2 O 6 is that the zero field ground state is nonmagnetic and is separated by a gap from a magnetic excited state (see Fig. 2). In BaCuSi 2 O 6 the gap between the singlet ground state (S = ) and the excited triplet states (S = 1) is created by the intradimer coupling J. InDTN,there is no S = singlet only a S = 1 triplet. A uniaxial anisotropy D splits this S = 1 triplet into a S z = ground state and a S z = ±1 excited doublet. In both compounds, the excited S z =+1 state can be suppressed with magnetic field until it becomes degenerate with the S = ors z = ground state. The critical region where these two states overlap is where the antiferromagnetic order/bose-einstein Condensation occurs. The S z = ±1 spin levels are dispersed by the antiferromagnetic coupling, e.g. the spins can raise or lower their energy depending on their orientation with respect to their neighbors. In Fig. 2, the S z = ±1 energy levels are shown schematically as broad bands where the upper and lower edges of the bands correspond to the k = FM wave vector and the k =(π,π,π) AFM wave vector, respectively. Thus, the region of overlap between the ground state and the field-suppressed S z =+1 excited state occurs over a broad range of fields between H c1 and H c2. In both systems, 3-D XY antiferromagnetic order is observed between H c1 and H c2, (23.5 T to 49 T for BaCuSi 2 O 6 and 2.1 T to 12.6 T for DTN) [5, 13]. The magnetic order occurs in a dome-shaped region of the phase diagram with a maximum Néel temperature T N of 3.8 K for BaCuSi 2 O 6 and 1.2 K for DTN. The temperature-field phase diagrams are shown in Fig. 3. In BaCuSi 2 O 6 the groundstate is nonmagnetic for H < H c1 (S = ). In DTN, the spins form a disordered S z = spin liquid for H < H c1. When the field is increased to H c1,thespinsorder antiferromagnetically in the plane perpendicular to the applied field and then cant along the applied field direction as the field is increased from H c1 to H c2. Finally, the spins polarize along the field direction above H c2. The longitudinal magnetization therefore increases monotonically between H c1 and H c2, as shown in Fig. 3. It should be noted that for DTN, this phase diagram is only valid for fields along the tetragonal c-axis. For fields perpendicular to c, the spin levels within the triplet mix with one another leading to paramagnetic behavior for all fields. For BaCuSi 2 O 6, there is no uniaxial anisotropy created by the crystal structure. Thus, BEC should occur for all field directions with a small anisotropy due to an anisotropic g factor. The data discussed in this review was taken for H c. 2 Boson Mapping The bosons are created via a mapping from the spin levels. In the spin language, the Hamiltonians H DT N for DTN and H B for BaCuSi 2 O 6 are given by: H DTN = D(S z )2 +,α J a S S +eα + J c S S +eγ

4 242 V.S. Zapf DTN E S z = -1 S z = 1 H c1 = 2.2 T S z = H c2 = 12.6 T H E BaCuSi 2 O 6 S z = -1 S z = S z = 1 H c1 = 23.5 T H c2 = 49 T S = H Fig. 2 Energy level diagrams of BaCuSi 2 O 6 and DTN as a function of magnetic field parallel to the crystallographic c-axis. The broad colored bands for the S z = ±1 levels schematically indicate the width antiferromagnetic dispersion due to the coupling J a and J c for DTN, and J and J f for BaCuSi 2 O 6 H B = JS,1 S,2 +,α J S S +eα + J f S S +eγ,γ Here e α is the unit vector along a and b. e γ is the vector for coupling along the c-axis. For DTN, e γ = e c. However, for BaCuSi 2 O 6, the coupling occurs between dimers on staggered planes (see Fig. 1) such that e γ = e c ± 1/2e a ± 1/2e b. In both Hamiltonians, the first term creates the zero-field splitting between the ground state and the excited state. The indices 1, 2 in this term refer to the two Cu spins within the dimerofbacusi 2 O 6. The second term of the Hamiltonians expresses the AFM coupling within the plane, and the third term couples along the c-axis. For BaCuSi 2 O 6 it is implied that the couplings J and J f are summed over both spins within each dimer. When a magnetic field H is turned on, both Hamiltonians acquire an extra Zeeman term gµ B H S z. These Hamiltonians can be transformed into boson language via the identification S + = b,whereb is the boson creation operator. Then

5 Bose-Einstein Condensation in Quantum Magnets 243 T N (K) T N (K) data QMC MCE Specific Heat QMC H c1 H H (T) c DTN H c BaCuSi 2 O 6 H c AFM/BEC data QMC Torque Specific Heat MCE QMC 2 H c1 H (T) H c2 Fig. 3 Temperature T - Magnetic field H phase diagram of DTN (top) and BaCuSi 2 O 6 (bottom). Antiferromagnetic order/bose-einstein Condensation occurs under the dome-shaped region with the spin configuration indicated by arrows in the bottom figure. The Néel temperatures were determined from magnetocaloric effect (MCE) and specific heat data for DTN (top) [9] and torque, specific heat and MCE data for BaCuSi 2 O 6 (bottom) [6]. Quantum Monte Carlo (QMC) calculations of the phase diagrams are shown for comparison [5, 1]. The magnetization vs field at 16 mk (DTN) [13] and.5 K (BaCuSi 2 O 6 ) [5] is overlayed onto the phase diagram together with the predicted magnetization determined from QMC calculations [5, 1] M/M sat M/M sat H ef f = t,α (b +e α b + b b +e α )+t (b +e γ b + b b +e γ ) + V,α n n +eα +V n n +eγ + µ n The definitions of t, t, V, V,andµ in terms of the parameters of the spin-language Hamiltonian are summarized in Table 1. The Hamiltonian consists of kinetic energy terms (t and t ), potential energy terms (V and V ), and a chemical potential µ. The kinetic energy terms allow the bosons to hop on the lattice in the square a-b plane (t), and along the c-axis t, subect to the hard-core constraint of one boson per lattice site. The bosons repel each other proportional to V and V in and out of the plane, respectively. The repulsion is also proportional to the number of bosons, and therefore to the S z =+1 component of the spins. Finally, there is a chemical potential µ that is linear in the magnetic field and controls the number of bosons.

6 244 V.S. Zapf In this two-level boson-mapping model, [2, 14, 3] the mapping from spins to bosons treats the S = (ors z = for DTN) state as an unoccupied bosonic state, and the S z =+1 state as occupied bosonic state. The magnetic field acts as the chemical potential in this system, tuning the number of bosons, e.g. the weight of the S z =+1 component of the ground state. Condensation occurs as the number of bosons is tuned from zero to nonzero at H c1. As the magnetic field is further increased, the bosons become less dilute, and eventually near H c2, where the ground state is mostly S z =+1, a reverse mapping is necessary to create a dilute Bose gas, with S z =+1 being the unoccupied state and S = the occupied state. A second BEC transition then occurs across H c2. This two-level model described above, while didactic, is not exactly accurate in DTN because the third spin level S z = 1 is low enough in energy that it needs to be taken into account. In comparing the phase diagrams of BaCuSi 2 O 6 and DTN in Fig. 3, it is clear that the region of AFM order in BaCuSi 2 O 6 is more symmetric in field about the midpoint between H c1 and H c2. This reflects a particle-hole symmetry of the bosons in this compound. In DTN, by contrast, the upper S z = 1 level is low enough in energy that it breaks particle-hole symmetry of the bosons, and distorts the phase diagram in the T H plane. Therefore in DTN, the idea of two spin levels corresponding to occupied and unoccupied bosons is not a complete picture. Two theoretical papers have presented models of Bose-Einstein Condensation for DTN that take all three spin levels (S z =, S z =+1, S z = 1) into account. Wang and Wang [15] treat each spin level as a different type of boson and Ng et al. [16] interpret the S z = 1 level as an energetically unfavorable double occupancy state. In any case, the concept of bosons that condense is still valid in a three-level model and the universality class of Bose-Einstein Condensation is still applicable at the quantum phase transition. A key condition that separates bosonic systems that condense from those that don t is boson number conservation. The boson number must be set by some external constraint or else the bosons will merely be excitations of the system and vanish as the temperature is lowered to zero, as is the case e.g. for phonons. In DTN and BaCuSi 2 O 6, the number conservation is created by the tetragonal crystal structures, which provides an approximate uniaxial symmetry of the spin environment about the direction of the applied field. In the effective Hamiltonian it can be seen that every creation operator b is multiplied by a destruction operator b. This is an indication that the Hamiltonian obeys the uniaxial symmetry. If the Hamiltonian were Table 1 Relation between the parameters of the Hamiltonian in the boson-picture and the Hamiltonian in the spin picture DTN BaCuSi 2 O 6 t J a J t J c J f V J a /2 J /2 V J c /2 J f /2 µ D gµ B H J gµ B H

7 Bose-Einstein Condensation in Quantum Magnets 245 rotated by an angle φ in the plane perpendicular to the field, then b b e iφ and b be iφ, such that (b e iφ )(be iφ )=b b and the Hamiltonian is independent of φ. The fact that every creation operator is paired with a destruction operator also ensures that the boson number is conserved. Since b b is the number operator, a Hamiltonian containing only b b terms will commute with the number operator. Thus the uniaxial symmetry of the Hamiltonian creates a number conservation law for the bosons. We should mention that there are several caveats to the idea of BEC in quantum spin systems. First of all, the uniaxial spin symmetry of the Hamiltonian is approximate. The square lattice of the crystal does introduce a small anisotropy in the a-b plane and dipole-dipole interactions and Dzyaloshinskii-Moriya interactions could also create anisotropies. However, these effects have been shown to occur at lower energy than the mk temperatures measured scales (possibly) and can thus be neglected at the temperatures of tens to hundreds of mk at which these quantum magnets are studied [8, 1]. Another caveat is that the uniaxial symmetry is only obeyed in equilibrium and the conservation of the boson number is therefore only obeyed on average. On short time scales, thermal and quantum fluctuations can distort the symmetry of the lattice thereby produce fluctuations in the boson number. Thus, the effects of Bose-Einstein Condensation are studied through thermodynamic measurements in equilibrium. Nonequilibrium effects such as supercurrents are not robust. The boson number fluctuations create relaxation mechanisms for supercurrent excitations and thus supercurrents have finite lifetimes in quantum magnets. Nevertheless, the Bose-Einstein condensation picture in quantum magnets is valid for the temperatures at which these compounds are studied, and more importantly it provides a way of understanding the observed thermodynamic behavior near the quantum phase transition. The thermal phase transitions in these system belong to the d = 3, z = 1 universality class of an XY antiferromagnet, where d is the spatial dimension and z is the dynamical exponent. However, the field-induced quantum phase transition belongs to the d = 3, z = 2 universality class, and the challenge, as with all quantum phase transitions, is to find a classical phase transition to map it onto, allowing us to create a physical picture of what is happening. Bose-Einstein Condensation provides an intuitive way to describe the quantum phase transition in this system. 3 Experimental Investigation into Bose-Einstein Condensation One experimental approach to identifying Bose-Einstein Condensation is to measure the power-law temperature dependencies of the critical fields and the magnetization near T =. The mean-field theory for Bose-Einstein condensation has a critical dimension d + z 4. Near the quantum critical point (QCP), z = 2forthese systems, thus the condition d 2 must be satisfied for the theory to hold. The theory then predicts the following:

8 246 V.S. Zapf H c H c (T = ) T α (1) M z (H c ) ρ T α (2) where H c is H c1 or H c2, α = d/2 and the longitudinal magnetization M z is proportional to the boson density ρ. Thus, α = 3/2 for a 3-D BEC and α = 1fora 2-D BEC [2, 3, 14]. In contrast, the prediction for an Ising magnet is α = 2. These power laws are valid in the dilute boson limit, which is satisfied near H c1 and H c2. Experimentally, these power laws have proven difficult to measure since they are a low-temperature approximation to the boson distribution function and only valid as T. In addition, the power-law exponent α is very sensitive to the fitting range used and to the extrapolated value of the critical field H c [8]. To solve these problems, a method has been developed to determine the critical field H c1 independent of the exponent α, and to then extrapolate the exponent α in the limit as T [6]. Using this approach, an exponent within experimental error of α = 3/2 was found [6, 9] for BaCuSi 2 O 6 down to 1 K, and DTN down to 1 mk. For BaCuSi 2 O 6, H c1 (T ) was determined using torque, magnetocaloric effect and specific heat data [6]. The magnetization was extracted from torque measurements. For DTN, magnetocaloric effect and specific heat data was used to measure H c1 (T ) and the magnetization was measured using a VSM [9]. 4 Frustration and Dimensional Reduction Recent experiments have found that the exponent α = 3/2 for BaCuSi 2 O 6 is only valid down to 1 K. Magnetic torque data taken to down to 35 mk showed that the critical field vs temperature H c1 (T ) and the magnetization M z become linear with temperature (α = 1) as shown in Fig. 4 [11]. This data suggests a dimensional reduction at the quantum critical point with 2-D behavior occurring below T 1K in the vicinity of H c T c (K) BaCuSi 2 O 6 H c H (T) Fig. 4 Critical temperature vs field for BaCuSi 2 O 6 determined from magnetic torque data, showing linear behavior between 35 mk and 1 K [11]

9 Bose-Einstein Condensation in Quantum Magnets 247 Fig. 5 Body-centered tetragonal structure of NiCl 2-4SC(NH 2 ) 2 (DTN) showing the two interlocking Ni sublattices (red and blue atoms). The two sublattices are decoupled due to frustration, but this doesn t lead to a dimensional reduction. The significant AFM couplings along the c and a axes are shown as thick lines (J c = 2.2 K,J a =.18 K). The thin lines along (1,1,1) indicate the frustrated couplings, which are either very small or absent [9] This dimensional reduction at the quantum critical point can be understood by considering the body-centered tetragonal structure of the BaCuSi 2 O 6 (see Fig. 1). The square a-b planes are arranged in a staggered structure such that each spin has an even number of nearest neighbors on the next plane with coupling J f along (1,1,1). Since the AFM wave vector is commensurate with the lattice, this results in frustration that suppresses the coupling along the c-axis. The c-axis boson hopping term, which is derived from the c-axis AFM coupling J f, therefore goes to zero, restricting boson motion to the 2-D planes. One might expect phase fluctuations at the quantum critical point to restore 3-D behavior. However, the magnitude of these fluctuations in quadratic in the boson number ρ, and thus goes to zero as the critical field H c1 is approached [17]. This confluence of effects leading to 2-D behavior at the QCP in BaCuSi 2 O 6 make it a unique system. 2-D quantum critical behavior has been predicted to occur in many systems near quantum critical points but has never unambiguously observed. DTN also has body-centered structure with a commensurate AFM wave vector. However, frustration does not lead to dimensional reduction in this system. The reason is that the dominant AFM coupling occurs along the c-axis, J c with a weaker coupling J a in the tetragonal a-b plane. As shown in Fig. 5, the frustration occurs between spins at the edge of the unit cell, and those in the center. This decouples the two interlocking lattices (shown as red and blue in Fig. 5), giving rise to a two-fold degenerate ground state. However, each lattice is still three-dimensional so no dimensional reduction would be expected near the quantum critical points. Inelastic neutron scattering measurements at zero field [9] do not show any diagonal couplings to within experimental error, confirming that the frustrated couplings are either suppressed to a small value, or entirely absent. Due to the prevalence of quantum fluctuations in these systems, particularly in DTN, Quantum Monte Carlo (QMC) simulations are necessary to calculate the phase diagram and all finite-temperature behavior. QMC calculations have been performed for both BaCuSi 2 O 6 and DTN and the resulting predictions for the phase

10 248 V.S. Zapf S z = -1 S z = S z = 1 T (K) 3 2 DTN BaCuSi 2 O 6 S z = -1 1 S = 1 z H c1 H H c2 c1 H c2 H (T) Fig. 6 Energy levels (lines) and Néel temperatures T N (points) for DTN and BaCuSi 2 O 6,shown on the same scale for comparison. AFM/BEC occurs under the dome-shaped regions [9, 6] diagrams are shown in Fig. 3, together with the experimental data [5, 6, 9, 1]. For both systems, the QMC calculations fit the experimental phase diagrams very well. In addition, the longitudinal magnetization is also shown together with the QMC prediction. Much further work is needed in both compounds. For example, the 2-D behavior in BaCuSi 2 O 6 should be observable as a broad Shastry-Sutherland crossover in the specific heat at H c1. Neutron diffraction data examining the low-energy spin excitations in these systems will also shed light on the symmetry of the spin configurations. Finally, in DTN, a study is underway to investigate magnetostriction in the soft organic lattice, and its effects on the phase diagram and energy levels. In summary, the quantum magnets DTN and BaCuSi 2 O 6 have different spin level configurations, antiferromagnetic couplings, and energy scales (see Fig. 6). However, the underlying physics of field-induced antiferromagnetism corresponding to Bose-Einstein Condensation is largely the same and both systems show the critical exponent α = 3/2 at the quantum critical point. The most significant difference between the two compounds is that in BaCuSi 2 O 6 a frustration-induced decoupling along the c-axis results in a dimensional reduction at the quantum critical point H c1, leading to 2-D behavior with α = 1belowT = 1K. References 1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) 2. I. Affleck, Phys. Rev. B 43, 3215 (1991) 3. T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2)

11 Bose-Einstein Condensation in Quantum Magnets F. Yamada, T. Ono, M. Fuisawa, H. Tanaka, T. Sakakibara, Magnetic-field induced quantum phase transition and critical behavior in a gapped spin system TlCuCl 3. ArXiv:condmat/67439v1 5. M. Jaime, V.F. Correa, N. Harrison, C.D. Batista, N. Kawashima, Y. Kazuma, G.A. Jorge, R. Stern, I. Heinmaa, S.A. Zvyagin, Y. Sasago, K. Uchinokura, Phys. Rev. Lett 93, 8723 (24) 6. S.E. Sebastian, P.A. Sharma, M. Jaime, N. Harrison, V. Correa, L. Balicas, N. Kawashima, C.D. Batista, I.R. Fisher, Phys. Rev. B 72, 144(R) (25) 7. T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski, T. Lühmann, F. Steglich, Phys. Rev. Lett (25) 8. S.E. Sebastian, V.S. Zapf, N. Harrison, C.D. Batista, P.A. Sharma, M. Jaime, I.R. Fisher, A. Lacerda, Phys. Rev. Lett. 96, (26) 9. V.S. Zapf, D. Zocco, B.R. Hansen, M. Jaime, N. Harrison, C.D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, A. Paduan-Filho, Phys. Rev. Lett. 96, 7724 (26) 1. S. Zvyagin, J. Wosnitza, C.D. Batista, M. Tsukamoto, N. Kawashima, J. Krystek, V.S. Zapf, M. Jaime, N.F.O. Jr., A. Paduan-Filho, Phys. Rev. Lett. 98, 4725 (27) 11. S.E. Sebastian, N. Harrison, C.D. Batista, L. Balicas, M. Jaime, P.A. Sharma, N. Kawashima, I.R. Fisher, Nature 441, 617 (26) 12. Y. Sasago, K. Uchinokura, A. Zheludev, G. Shirane, Phys. Rev. B 55, 8357 (1997) 13. A. Paduan-Filho, X. Gratens, N.F. Oliveira, Phys. Rev. B 69, 245R (24) 14. T. Giamarchi, A.M. Tsvelik, Phys. Rev. B 59, (1999) 15. H.T. Wang, Y. Wang, Phys. Rev. B 71, (25) 16. K.K. Ng, T.K. Lee, Numerical study of magnetic field induced ordering in BaCuSi 2 O 6. Condmat/ M. Maltseva, P. Coleman, Phys. Rev. B 72, (R) (25)

arxiv:cond-mat/ v1 [cond-mat.str-el] 8 Nov 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 8 Nov 2006 Magnetostriction in the Bose-Einstein Condensate quantum magnet NiCl 2-4SC(NH 2 ) 2 arxiv:cond-mat/611229v1 [cond-mat.str-el] 8 Nov 26 V. S. Zapf 1, V. F. Correa, 2, C. D. Batista, 3 T. P. Murphy 2, E.

More information

Quantum phase transitions in coupled dimer compounds

Quantum phase transitions in coupled dimer compounds Quantum phase transitions in coupled dimer compounds Omid Nohadani, 1 Stefan Wessel, 2 and Stephan Haas 1 1 Department of Physics and Astronomy, University of Southern California, Los Angeles, California

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Anisotropic phase diagram of the frustrated spin dimer compound Ba 3 Mn 2 O 8

Anisotropic phase diagram of the frustrated spin dimer compound Ba 3 Mn 2 O 8 Anisotropic phase diagram of the frustrated spin dimer compound Ba 3 Mn 2 O 8 E. C. Samulon, 1 K. A. Al-Hassanieh, 2 Y.-J. Jo, 3,4 M. C. Shapiro, 1 L. Balicas, 3 C. D. Batista, 2 and I. R. Fisher 1 1 Geballe

More information

Bose-glass phases at the boundary of Bose-Einstein Condensates in quantum magnets

Bose-glass phases at the boundary of Bose-Einstein Condensates in quantum magnets Bose-glass phases at the boundary of Bose-Einstein Condensates in quantum magnets The organic quantum magnet NiCl 2 -tetrakis thiourea [NiCl 2-4SC(NH 2 ) 2 ] exhibits a magnetic field-induced phase transition

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMETARY IFORMATIO doi:10.1038/nature11406 SUPPLEMETARY IFORMATIO Bose glass and Mott glass of quasiparticles in a doped quantum magnet PACS numbers: 03.75.Lm, 71.23.Ft, 68.65.Cd, 72.15.Rn (a) Cl (1)

More information

Magnetic-field-induced ordered phase in the chloro-bridged copper(ii) dimer system [Cu 2 (apyhist) 2 Cl 2 ](ClO 4 ) 2

Magnetic-field-induced ordered phase in the chloro-bridged copper(ii) dimer system [Cu 2 (apyhist) 2 Cl 2 ](ClO 4 ) 2 Magnetic-field-induced ordered phase in the chloro-bridged copper(ii) dimer system [Cu 2 (apyhist) 2 Cl 2 ](ClO 4 ) 2 R. S. Freitas 1, W. A. Alves 2 and A. Paduan-Filho 1 1 Instituto de Física, Universidade

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Electron spin resonance of SrCu 2 BO 3 2 at high magnetic fields

Electron spin resonance of SrCu 2 BO 3 2 at high magnetic fields Electron spin resonance of SrCu 2 BO 3 2 at high magnetic fields S. El Shawish, 1 J. Bonča, 1,2 C. D. Batista, 3 and I. Sega 1 1 J. Stefan Institute, SI-1000 Ljubljana, Slovenia 2 Faculty of Mathematics

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

High Field NMR studies of Quantum Spin Systems. From Bose Einstein Condensation to Magnetization Plateaus C. BERTHIER

High Field NMR studies of Quantum Spin Systems. From Bose Einstein Condensation to Magnetization Plateaus C. BERTHIER Institut d Etudes Scientifique de Cargese International Summer School MAGNETIC FIELDS FOR SCIENCE High Field NMR studies of Quantum Spin Systems. From Bose Einstein Condensation to Magnetization Plateaus

More information

Unveiling the quantum critical point of an Ising chain

Unveiling the quantum critical point of an Ising chain 1 Unveiling the quantum critical point of an Ising chain Y. F. Dai, H. Zhang, S. Y. Zhou, B. Y. Pan, X. Qiu, X. C. Hong, T. Y. Guan, J. K. Dong, Y. Chen, & S. Y. Li * Department of Physics, State Key Laboratory

More information

Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems

Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems Magnetic Quantum Phase Transitions in Coupled Spin Dimer Systems Hidekazu TANAKA Research Center for Low Temperature Physics, Tokyo Institute of Technology TlCuCl 3, KCuCl 3, (NH 4 CuCl 3 ) Magnetic insulator.

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method

External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 00, (): 96-00 External magnetic field effect on the two particles spins system using Dzyaloshinskii-Moriya Method

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4 Physics Physics Research Publications Purdue University Year 2007 Spin-wave dispersion in half-doped La3/2Sr1/2NiO4 D. X. Yao E. W. Carlson This paper is posted at Purdue e-pubs. http://docs.lib.purdue.edu/physics

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S= 1 2 chains in CuCl 2 2 CD 3 2 SO

Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S= 1 2 chains in CuCl 2 2 CD 3 2 SO Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S= 1 2 chains in CuCl 2 2 CD 3 2 SO Y. Chen, 1,2 M. B. Stone, 1,3 M. Kenzelmann, 1,4 C. D. Batista, 5 D. H. Reich, 1 and C. Broholm 1,2

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

MAGNETIC PHASES OF THE FRUSTRATED SPIN DIMER COMPOUND Ba 3 Mn 2 O 8

MAGNETIC PHASES OF THE FRUSTRATED SPIN DIMER COMPOUND Ba 3 Mn 2 O 8 MAGNETIC PHASES OF THE FRUSTRATED SPIN DIMER COMPOUND Ba 3 Mn 2 O 8 A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits Observation of topological phenomena in a programmable lattice of 18 superconducting qubits Andrew D. King Qubits North America 218 Nature 56 456 46, 218 Interdisciplinary teamwork Theory Simulation QA

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Pressure- and field-induced magnetic quantum phase transitions in TlCuCl 3

Pressure- and field-induced magnetic quantum phase transitions in TlCuCl 3 INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 1 () S7 S73 PII: S953-9()7153-3 Pressure- and field-induced magnetic quantum phase transitions in TlCuCl 3 BNormand

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

arxiv:cond-mat/ v1 6 Oct 1995

arxiv:cond-mat/ v1 6 Oct 1995 Magnetic excitations and effects of magnetic fields on the spin-peierls transition in CuGeO 3 José Riera and Sergio Koval Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2001 arxiv:cond-mat/0111065v1 [cond-mat.str-el] 5 Nov 2001 Low Energy Singlets in the Excitation Spectrum of the Spin Tetrahedra System Cu 2 Te 2 O 5 Br 2 P. Lemmens a,b K.Y. Choi b A. Ionescu b J. Pommer b

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

Specific heat of the S=1 spin-dimer antiferromagnet Ba 3 Mn 2 O 8 in high magnetic fields

Specific heat of the S=1 spin-dimer antiferromagnet Ba 3 Mn 2 O 8 in high magnetic fields Specific heat of the S=1 spin-dimer antiferromagnet Ba 3 Mn 2 O 8 in high magnetic fields H. Tsujii, 1,2 B. Andraka, 1 M. Uchida, 3 H. Tanaka, 4 and Y. Takano 1 1 Department of Physics, University of Florida,

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Spatially anisotropic triangular antiferromagnet in magnetic field

Spatially anisotropic triangular antiferromagnet in magnetic field Spatially anisotropic triangular antiferromagnet in magnetic field Oleg Starykh, University of Utah Leon Balents, KITP Hosho Katsura, KITP Jason Alicea, Caltech Andrey Chubukov, U Wisconsin Christian Griset

More information

EPR in Kagome Staircase Compound Mg Co V 2 O 8

EPR in Kagome Staircase Compound Mg Co V 2 O 8 Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 EPR in Kagome Staircase

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

INTERACTING BOSE GAS AND QUANTUM DEPLETION

INTERACTING BOSE GAS AND QUANTUM DEPLETION 922 INTERACTING BOSE GAS AND QUANTUM DEPLETION Chelagat, I., *Tanui, P.K., Khanna, K.M.,Tonui, J.K., Murunga G.S.W., Chelimo L.S.,Sirma K. K., Cheruiyot W.K. &Masinde F. W. Department of Physics, University

More information

Frustrated Quantum Ising Spins Simulated by Spinless Bosons in a Tilted Lattice: From a Quantum Liquid to Antiferromagnetic Order

Frustrated Quantum Ising Spins Simulated by Spinless Bosons in a Tilted Lattice: From a Quantum Liquid to Antiferromagnetic Order Frustrated Quantum Ising Spins Simulated by Spinless Bosons in a Tilted Lattice: From a Quantum Liquid to Antiferromagnetic Order The Harvard community has made this article openly available. Please share

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

Nematic quantum paramagnet in spin-1 square lattice models

Nematic quantum paramagnet in spin-1 square lattice models Nematic quantum paramagnet in spin-1 square lattice models Fa Wang( 王垡 ) Peking University Ref.: arxiv:1501.00844 Acknowledgments Prof. Dung-Hai Lee, UC Berkeley Prof. Kivelson, Stanford Discussions with

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July, BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Supporting Information

Supporting Information Supporting Information Yi et al..73/pnas.55728 SI Text Study of k z Dispersion Effect on Anisotropy of Fermi Surface Topology. In angle-resolved photoemission spectroscopy (ARPES), the electronic structure

More information

Electron Spin Resonance in High Magnetic Fields

Electron Spin Resonance in High Magnetic Fields Electron Spin Resonance in High Magnetic Fields Sergei Zvyagin Dresden High Magnetic Field Laboratory (HLD) Helmholtz Zentrum Dresden Rossendorf Dresden, Germany Historical Perspective 1902: Nobel Prize

More information