Application of the relaxat ion met hod to model hydraulic jumps

Size: px
Start display at page:

Download "Application of the relaxat ion met hod to model hydraulic jumps"

Transcription

1 Application of the relaxat ion met hod to model hydraulic jumps P. J. Montgomery Mathematics and Computer Science Program, University of Northern British Columbia, Prince George, Canada. Abstract A finite difference method, known as the relaxation method, is generalized from a class of relaxation schemes with the ultimate aim of numerically modelling hydraulic jumps at a phase interface. This method has been applied previously to model gravity currents arising from the instantaneous release of a dense volume of fluid. The relaxation scheme is an iterative, second order accurate, timemarching method which is able to capture shocks and interfaces without front tracking or calculation of the eigenvalues of the Jacobian matrix for the flux vector. In this paper, the relaxation scheme will be described, with specific attention paid to the new generalizations included to account for boundary conditions, spatially dependent flux terms, and simple forcing terms. Numerical results will be compared with simple theory using the inviscid Burgers equation, permitting the simplicity of the scheme to be portrayed through this example. The more general case of the shallowwater equations for a single layer in one spatial dimension will then be modelled numerically for an initial release boundary value problem to show that the method is widely applicable to problems involving two fluids of large density differences such as air and water where the systems are sufficiently decoupled. 1 Introduction Gravity currents resulting from the initial release of a dense volume of fluid

2 within a region of less dense fluid have been modelled extensively by using the shallow-water equations [l]. One physical limit of this model, for large density differences between the fluids, recovers the two phase dam-break problem for water flowing beneath a layer of air. The study of gravity current front prediction thus is connected with the problem of finding a phase interface. During a study of the model equations for gravity currents [2], a firstorder hyperbolic system of equations was discussed in the form where R = (-m, m) represents the real number line, a subset of which is defined by R+ = [O, m). In equation (l), the real vectors are defined as U -- u(x,t) E Rn, f = f(u,x) E R", and b = b(u,x) E R" for a positive integer n 2 1. Throughout this article, vectors will appear in boldface notation. Numerical systems such as equation (1) are used to model gravity currents which exhibit the properties of shallow layer flow: accelerations in the horizontal direction are much greater than those in the vertical direction. An excellent review of the properties and various modelling equations for gravity currents has recently been completed by Simpson (l]. Previous work by Montgomery and Moodie [3] has revealed a connection between the Froude number for a hydraulic jump and the Rankine-Hugoniot jump conditions at a discontinuity in the solution. These results have spurred the author to investigate a more general use for the relaxation method in multiphase flow. To solve systems such as (1) with various initial and boundary values, a numerical method presented by Jin and Xin [4] was modified [2]. The original class or relaxation schemes is applicable to initial value problems for hyperbolic systems of conservation laws in several space dimensions. These schemes are finite-difference, iterative, and have been shown to be total variation diminishing (TVD) for scalar hyperbolic conservation laws. For nonlinear hyperbolic systems, the second-order relaxation schemes are stable, conservative, and capture discontinuous solutions in a nonoscillatory manner corresponding to the correct shock speed for initial value problems. The original method is limited to flux vectors of the specific form f = f(u) and b = 0, while the generalized relaxation method encompasses the system (1) with both initial and boundary values as appropriate to the specific problem under study. This paper contains a brief description of the relaxation method with its modifications. Complete details may be found elsewhere [2], although it is hoped that there is enough information provided herein to allow researchers working in the field to be able to use the method without further references. This exposition is found in Section 2. Section 3 includes a comparison of the relaxation method with the exact solution for a scalar initial value

3 problem: Burgers' Equation with a nonhomogeneous forcing term. Section 4 presents a brief survey of some numerical results for an initial boundary value problem for the single layer shallow-water equations in one spatial dimension, or the river flow problem. Some concluding comments follow in Section 5. 2 The generalized relaxation method In this section, the relaxation method proposed by Jin and Xin [4] is briefly described in its generalized form [2] to include problems for which the system has spatial dependence in the flux vector, boundary values and nonzero forcing terms. Although the scheme may be expressed for systems of more than one spatial variable, it is described for systems of conservation laws in one spatial dimension so that the ideas may be expressed in as simple a notation as possible. Associated with the system (1) is a larger system, called the m,odi,fied relaxation system. This system consists of 2n equations derived from the,n equations in (l), and it can be expressed as d d -W + -F(w) = B(w, b, f), (X, t) E R X R', dt dx where W, F, and B are all vector-valued functions in R2n. f in (2) is the same vector-valued function that appears in equation (1). These new vectors are defined as and B = for real scalars cr and E. Using the definition (3), the system (2) may be restated as two separate systems of n equations each by and The modified relaxation system interpreted in the form (4), (5) is now interpreted as a linear system, with the special property that in the limit as E -+ 0, equation (5) yields the solution f = v, which subtitutes back into (4)

4 46 Computational method^ irl Mulriphase F lo~ to yield the original system (1). In this way, it is theorized that for small enough values of E, solutions of (1) can be obtained as limits of solutions to the linear, and much simpler to deal with, system (2). It should be noted that there are two parameters, E and a, introduced in the notation (3) and present in equation (5). The relaxation parameter E is a small positive constant, chosen as where At is the width of the discretization for the time variable t. In general, a value of E = 10-l0 or 10-l1 was found to be sufficient to satisfy (6) while being small enough so that the approximate solutions to (2) were indistinguishable from those of (1). The parameter a is a dissipation constant whose choice depends on the magnitude of the eigenvalues of the Jacobian matrix fj(u, X), where the derivative is taken with respect to U alone. The eigenvalues provide a lower bound for a, which is bounded above for stability through the Courant- Friedrichs-Lewy condition [5]. Such a range for a may be expressed as In the inequality (7), X = maxi=l,,,., IXi(u, X) l is the supremum of the eigenvalues Xi of f'(u, X). The effects of choosing a are such that it is desirable to choose a as small as practicable while satisfying the lower bound in (7), and then to fix the grid widths At and Ax so that the upper bound holds. Conceptually, a must be large enough such that the characteristic curve X - cut creates a wide enough cone in (X, t) space to encompass the characteristic curves X - Xit from (l), while being small enough so that shocks are permitted to remain for enough time steps to be observable. If a is too large, then the resolution of discontinuities is poor, and the system becomes first order [4]. Once a and E are fixed, a finite-difference numerical method may be chosen to calculate solutions to the system (2). The method is fully described elsewhere [2] and is a second-order TVD Runge-Kutta splitting scheme, which employs Van Leer's slope limiter [5] to remove oscillations near any shocks. The simplicity of the scheme is its iterative procedure, which is by the following procedure starting from a known initial guess un and vn, and resulting in the next iteration.

5 The specific spatial discretization for the operator D is chosen as a secondorder scheme with a slope limiter to remove oscillations. Figure 1: Graph of lower layer height at a given time for varying cu The procedure consisting of equations (8) through (17) is explicit in each step excepting equations (8) and (12). Here, the values of U* and U** must be found implicitly through inverting the values of b(u*, X) and

6 48 Con~pirtutior~ul Methods in Mdtiphase Flow, b(u**, X) respectively. Although this implicit step may occasion to cause instability in the overall iterative procedure, this may be overcome by using the previous values of U as appropriate. Such a limitation was not found to be limiting in the types of equations considered. Discontinuities in the system are resolved through a finite difference across any jumps or shocks. The position may then be passively traced at each time step without any need for more general and time-consuming front-tracking methods [6]. Typically, it is sufficient to set a tolerance level for one of the system variables (e.g. U) to be above this level, and record the position of this point as the iteration progresses. Two pictures which show the typical resolution for the relaxation for the shallow water equations follow. The first, shown in Figure 1 on the previous page, is for changing values of cr in the calculation. These tend to have a sniall effect in the final solution, although change the computation t>ime accordingly so that larger values of cr necessitate smaller time grid spacing. The second diagram, Figure 2 below, shows the effect of changing the value of E. As may be observed from Figure 2, such an effect is more drastic on the resolution of the discontinuity. In practice, a few calculations with different choices of E permit the setting of the parameter for subsequent siniulations. Figure 2: Graph of lower layer height at a given time for varying E.

7 3 A scalar example The relaxation method may be used to calculate solutions to a simple nonlinear problem, namely the inviscid Burgers' Equation with a forcing t,erm. The initial value problem to be solved is expressed with the aid of the Heaviside function, H (X), as In equation (18), P is a constant parameter, and the Heaviside function is defined by The exact solution of problem (18) can be found through the method of characteristics. There is a propagating discontinuity in the solution initiated by the initial value which is denoted by the position X = s(t). With such notation, the exact solution to the initial value problem (18) can be easily verified as u(x, t) = seche + x o tanh if X 5 s(t), 0, if s(t) < X. (20) The solution (20) is incomplete until the position of the discontinuity is specified precisely. Such a calculation may be completed by using the Rankine- Hugoniot jump conditions, which are straightforward for the homogeneous problem. However, it may be quickly noted that the solution (20) is in fact incorrect in the case that s < X since the constant (0) does not satisfy the initial equation (18). This problem may be rectified by altering the equation (18) to include the undetermined discontinuity by replacing the forcing The position of the discontinuity is found to satisfy the first order ordinary differential equation with initial value s(0) = 0, This result recovers the tradition limit of u(s,t)/2 in the limit as --, 0, and intuitively yields a shock speed which is either slower or faster than the homogeneous case depending on the sign of P. The relaxation method may be applied to this example (18) to produce favourable results to the theoretical solution (20). 4 Application of the relaxation method to the shallowwater equations The one-dimensional shallow-water equations for a fluid with horizontal velocity u(x, t) and layer height h(x, t) overlying a rigid boundary and beneath

8 50 Con~ptational Methods ir~ Multiphase Flow a fluid of much less density may be written as (Whitham [7]) The constant,b represents the angle of the rigid bottom boundary measured from the horizontal, and the constant Cf is a coefficient of friction for a ChBzy-type basal drag law. These equations are also known as the river flow equations (see, for example, [7] page 134). The initial value considered for the river flow problem is that of a finite volume of fluid starting at rest, in a similar geometry to a dam-break problem. The initial variables are expressed as U(%, 0) = 0, h(x, 0) = 1-px -1_<X<l, otherwise. The vertical cross sections of the fluid can be thought of as a representation of an air/water or other phase interface, and the subsequent motion of the discontinuity represents the position of the phase interface. An example of the numerical solution for problem (22),(23) is given below in Figure 3. There, a volume of fluid spreading up a slope can be seen to slow and reverse its flow direction to eventually cause a 'backfill' to a stable configuration. Figure 3: Graph of h at a several times for p = 0.05.

9 5 Concluding remarks Computational Methods in Multiphase Flow 5 1 Wen a fluid dynamic problem involving several phases can be modelled by a first-order hyperbolic system in conservation form (l), then the relaxation method is a straightforward numerical technique which may help to provide insight into the development of time-dependent solutions. The numerical method is used to solve the modified relaxation system (2) as an approximation of the original system of equations, and is an explicit iterative procedure which is well-suited to initial value problems for systems of nonlinear hyperbolic conservation laws. In this paper, some of the modifications to the numerical method are discussed with reference to the river flow problem for an air-water interface. With comparison of the results for the technique for this simplistic situation, it is hoped that the procedure may be applied to more difficult problems in multiphase flow. References [l] Simpson, J.E., Gravity Currents in the Environment and the Laboratory, Second Edition, Cambridge University Press, Cambridge, [2] Montgomery, P. J., Shallow-water Models for Gravity Currents, Ph.D. Thesis, University of Alberta, Edmonton, [3] Montgomery, P.J. & Moodie, T.B., Jump conditions for hyperbolic systems of forced conservation laws with an application to gravity currents, Stud. in Appl. Math, accepted for publication (2000). [4] Jin, S. & Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure and Appl. Math, 48, pp , [5] Leveque, R. J., Numerical Methods for Conservation Laws, Birkhauser- Verlag, Basel, [6] Davis, S.F., An interface tracking method for hyperbolic systems of conservation laws, Applied Numerical Mathematics, 10, pp , [7] Whitham, G.B., Linear and Nonlinear Waves, Wiley, New York, Acknowledgments The author gratefully recognizes the support given by the University of Northern British Columbia in the form of a Conference Travel Grant. I also wish to thank Professor T. Bryant Moodie at the University of Alberta, for providing a setting in which prior research leading to the ideas contained herein was conducted.

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Waves in a Shock Tube

Waves in a Shock Tube Waves in a Shock Tube Ivan Christov c February 5, 005 Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier Stokes equations for an inviscid and compressible fluid

More information

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS ARTURO S. LEON Dept. of Civil and Envir. Engng., Univ. of Illinois at Urbana-Champaign, 2519 Hydrosystems Lab., MC-250. 205 North Mathews Av., Urbana,

More information

Cranfield ^91. College of Aeronautics Report No.9007 March The Dry-Bed Problem in Shallow-Water Flows. E F Toro

Cranfield ^91. College of Aeronautics Report No.9007 March The Dry-Bed Problem in Shallow-Water Flows. E F Toro Cranfield ^91 College of Aeronautics Report No.9007 March 1990 The Dry-Bed Problem in Shallow-Water Flows E F Toro College of Aeronautics Cranfield Institute of Technology Cranfield. Bedford MK43 OAL.

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

ARTICLE IN PRESS Mathematical and Computer Modelling ( )

ARTICLE IN PRESS Mathematical and Computer Modelling ( ) Mathematical and Computer Modelling Contents lists available at ScienceDirect Mathematical and Computer Modelling ournal homepage: wwwelseviercom/locate/mcm Total variation diminishing nonstandard finite

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Modeling Rarefaction and Shock waves

Modeling Rarefaction and Shock waves April 30, 2013 Inroduction Inroduction Rarefaction and shock waves are combinations of two wave fronts created from the initial disturbance of the medium. Inroduction Rarefaction and shock waves are combinations

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Notes: Outline. Shallow water equations. Notes: Shallow water equations. Notes:

Notes: Outline. Shallow water equations. Notes: Shallow water equations. Notes: Outline Nonlinear hyperbolic systems Shallow water equations Shock waves and Hugoniot loci Integral curves in phase plane Compression and rarefaction R.J. LeVeque, University of Washington IPDE 2011, July

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

The method of lines (MOL) for the diffusion equation

The method of lines (MOL) for the diffusion equation Chapter 1 The method of lines (MOL) for the diffusion equation The method of lines refers to an approximation of one or more partial differential equations with ordinary differential equations in just

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS 1106 September 11~16, 2005, Seoul, Korea IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS ARTURO S. LEON 1, MOHAMED S. GHIDAOUI 2, ARTHUR R. SCHMIDT 3 and MARCELO

More information

Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media

Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media Randall J. LeVeque 1 and Darryl H. Yong 2 1 Department of Applied Mathematics, University of Washington, Box 35242, Seattle, WA 98195-242

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

arxiv: v2 [math.ap] 1 Jul 2011

arxiv: v2 [math.ap] 1 Jul 2011 A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime arxiv:1105.3074v2 [math.ap] 1 Jul 2011 Abstract Philippe G. efloch 1 and Mai Duc Thanh 2 1 aboratoire

More information

Sung-Ik Sohn and Jun Yong Shin

Sung-Ik Sohn and Jun Yong Shin Commun. Korean Math. Soc. 17 (2002), No. 1, pp. 103 120 A SECOND ORDER UPWIND METHOD FOR LINEAR HYPERBOLIC SYSTEMS Sung-Ik Sohn and Jun Yong Shin Abstract. A second order upwind method for linear hyperbolic

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Numerical Oscillations and how to avoid them

Numerical Oscillations and how to avoid them Numerical Oscillations and how to avoid them Willem Hundsdorfer Talk for CWI Scientific Meeting, based on work with Anna Mozartova (CWI, RBS) & Marc Spijker (Leiden Univ.) For details: see thesis of A.

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

A FRONT-TRACKING METHOD FOR HYPERBOLIC THREE-PHASE MODELS

A FRONT-TRACKING METHOD FOR HYPERBOLIC THREE-PHASE MODELS A FRONT-TRACKING METHOD FOR HYPERBOLIC THREE-PHASE MODELS Ruben Juanes 1 and Knut-Andreas Lie 2 1 Stanford University, Dept. Petroleum Engineering, USA 2 SINTEF IKT, Dept., Norway ECMOR IX, August 30 September

More information

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation W.L. Jin and H.M. Zhang August 3 Abstract: In this paper we study the Payne-Whitham (PW) model as

More information

Non-linear Scalar Equations

Non-linear Scalar Equations Non-linear Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro August 24, 2014 1 / 44 Overview Here

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Alexander Kurganov, 1, * Eitan Tadmor 2 1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

arxiv: v1 [math.na] 27 Jun 2017

arxiv: v1 [math.na] 27 Jun 2017 Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited J.P.A. Pitt a,, C. Zoppou a, S.G. Roberts a arxiv:706.08637v [math.na] 27 Jun 207 a Mathematical Sciences Institute, Australian

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 4 Burger s equation In Lecture 2 we remarked that if the coefficients in u x, y,! "! "x + v x,y,! "! "y = 0 depend not only on x,y but also on!, then the characteristics may cross and the solutions become

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

VISCOUS FLUX LIMITERS

VISCOUS FLUX LIMITERS VISCOUS FLUX LIMITERS E. F. Toro Department of Aerospace Science College of Aeronautics Cranfield Institute of Technology Cranfield, Beds MK43 OAL England. Abstract We present Numerical Viscosity Functions,

More information

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS JOHN A. TRANGENSTEIN Department of Mathematics, Duke University Durham, NC 27708-0320 Ш CAMBRIDGE ЩР UNIVERSITY PRESS Contents 1 Introduction

More information

Sediment Transport and Deposition from a Two-Layer Fluid Model of Gravity Currents on Sloping Bottoms

Sediment Transport and Deposition from a Two-Layer Fluid Model of Gravity Currents on Sloping Bottoms Sediment Transport and Deposition from a Two-Layer Fluid Model of Gravity Currents on Sloping Bottoms By T B Moodie, J P Pascal, and G E Swaters This article reports on a theoretical and numerical study

More information

Propagation and quenching in a reactive Burgers-Boussinesq system.

Propagation and quenching in a reactive Burgers-Boussinesq system. Propagation and quenching in a reactive system., University of New Meico, Los Alamos National Laboratory, University of Chicago October 28 Between Math and Astrophysics Motivation The model Reaction Compression

More information

GFD 2013 Lecture 4: Shallow Water Theory

GFD 2013 Lecture 4: Shallow Water Theory GFD 213 Lecture 4: Shallow Water Theory Paul Linden; notes by Kate Snow and Yuki Yasuda June 2, 214 1 Validity of the hydrostatic approximation In this lecture, we extend the theory of gravity currents

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Mathematics, Vol.4, No.3, 6, 39 5. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT ) Zhengfu Xu (Department of Mathematics, Pennsylvania

More information

Numerical Schemes Applied to the Burgers and Buckley-Leverett Equations

Numerical Schemes Applied to the Burgers and Buckley-Leverett Equations University of Reading Numerical Schemes Applied to the Burgers and Buckley-Leverett Equations by September 4 Department of Mathematics Submitted to the Department of Mathematics, University of Reading,

More information

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS Dean Wang April 30, 2015 24.505 Nuclear Reactor Physics Outline 2 Introduction and Background Coupled T-H/Neutronics Safety Analysis Numerical schemes

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow: Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

More information

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Alberto Bressan ( ), Paolo Baiti ( ) and Helge Kristian Jenssen ( ) ( ) Department of Mathematics, Penn State University, University

More information

Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations

Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations Thida Pongsanguansin, Khamron Mekchay and Montri Maleewong Abstract The adaptive Discontinuous Galerkin DG method for solving

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhauser Boston Basel Berlin Preface to the Fourth Edition Preface to the Third Edition

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel Conference Applications of Mathematics 1 in honor of the th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 1 STEADY AND UNSTEADY D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

A Fifth Order Flux Implicit WENO Method

A Fifth Order Flux Implicit WENO Method A Fifth Order Flux Implicit WENO Method Sigal Gottlieb and Julia S. Mullen and Steven J. Ruuth April 3, 25 Keywords: implicit, weighted essentially non-oscillatory, time-discretizations. Abstract The weighted

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Finite volume approximation of the relativistic Burgers equation on a Schwarzschild (anti-)de Sitter spacetime

Finite volume approximation of the relativistic Burgers equation on a Schwarzschild (anti-)de Sitter spacetime Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math 2017 41: 1027 1041 c TÜBİTAK doi:10.906/mat-1602-8 Finite volume approximation of the relativistic

More information

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation arxiv:math/6768v1 [math.ap] 6 Jul 6 Claire David, Rasika Fernando, and Zhaosheng Feng Université Pierre et Marie Curie-Paris

More information

Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics a

Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics a Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics are described by quasilinear hyperbolic systems with

More information

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION Fareed Hussain Mangi*, Umair Ali Khan**, Intesab Hussain Sadhayo**, Rameez Akbar Talani***, Asif Ali Memon* ABSTRACT High order

More information

Generalized Functions Theory and Technique Second Edition

Generalized Functions Theory and Technique Second Edition Ram P. Kanwal Generalized Functions Theory and Technique Second Edition Birkhauser Boston Basel Berlin Contents Preface to the Second Edition x Chapter 1. The Dirac Delta Function and Delta Sequences 1

More information

Francis X. Giraldo,

Francis X. Giraldo, 1 Time-Integrators Francis X. Giraldo, giraldo@nrlmry.navy.mil, www.nrlmry.navy.mil/~giraldo/projects/nseam.html 1.1 Introduction Roughly speaking, there are 2 classes of TIs: 1. EulerianMethods(fixed-frame-e.g.,arockatthebottomofaflowing

More information

Wave propagation methods for hyperbolic problems on mapped grids

Wave propagation methods for hyperbolic problems on mapped grids Wave propagation methods for hyperbolic problems on mapped grids A France-Taiwan Orchid Project Progress Report 2008-2009 Keh-Ming Shyue Department of Mathematics National Taiwan University Taiwan ISCM

More information

On the entropy stability of Roe-type finite volume methods

On the entropy stability of Roe-type finite volume methods Proceedings of Symposia in Applied Mathematics On the entropy stability of Roe-type finite volume methods Mária Lukáčová - Medvid ová and Eitan Tadmor Abstract. We study the entropy stability of a class

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara Chp 4: Non-linear Conservation Laws; the Scalar Case By Prof. Dinshaw S. Balsara 1 4.1) Introduction We have seen that monotonicity preserving reconstruction and iemann solvers are essential building blocks

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

A finite volume method for solving the gravity wave-model equations

A finite volume method for solving the gravity wave-model equations Journal of Physics: Conference Series PAPER OPEN ACCESS A finite volume method for solving the gravity wave-model equations To cite this article: Cecilia Heru Purwitaningsih and Sudi Mungkasi 2018 J. Phys.:

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University. Email: wxs27@psu.edu November 5, 2015 Abstract We study two systems of conservation

More information

Lecture 12: Transcritical flow over an obstacle

Lecture 12: Transcritical flow over an obstacle Lecture 12: Transcritical flow over an obstacle Lecturer: Roger Grimshaw. Write-up: Erinna Chen June 22, 2009 1 Introduction The flow of a fluid over an obstacle is a classical and fundamental problem

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

Rankine-Hugoniot-Riemann solver for steady multidimensional conservation laws with source terms

Rankine-Hugoniot-Riemann solver for steady multidimensional conservation laws with source terms Rankine-Hugoniot-Riemann solver for steady multidimensional conservation laws with source terms Halvor Lund a,b,c,, Florian Müller a, Bernhard Müller b, Patrick Jenny a a Institute of Fluid Dynamics, ETH

More information

Shock on the left: locus where cars break behind the light.

Shock on the left: locus where cars break behind the light. Review/recap of theory so far. Evolution of wave profile, as given by the characteristic solution. Graphical interpretation: Move each point on graph at velocity c(ρ). Evolution as sliding of horizontal

More information

Force analysis of underwater object with supercavitation evolution

Force analysis of underwater object with supercavitation evolution Indian Journal of Geo-Marine Sciences Vol. 42(8), December 2013, pp. 957-963 Force analysis of underwater object with supercavitation evolution B C Khoo 1,2,3* & J G Zheng 1,3 1 Department of Mechanical

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator American Review of Mathematics and Statistics December 2014, Vol. 2, No. 2, pp. 43-53 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

An efficient numerical method for hydraulic transient computations M. Ciccotelli," S. Sello," P. Molmaro& " CISE Innovative Technology, Segrate, Italy

An efficient numerical method for hydraulic transient computations M. Ciccotelli, S. Sello, P. Molmaro&  CISE Innovative Technology, Segrate, Italy An efficient numerical method for hydraulic transient computations M. Ciccotelli," S. Sello," P. Molmaro& " CISE Innovative Technology, Segrate, Italy Abstract The aim of this paper is to present a new

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems Bob Peeters Joint work with Onno Bokhove & Jason Frank TW, University of Twente, Enschede CWI, Amsterdam PhD-TW colloquium, 9th

More information

Topic 5: The Difference Equation

Topic 5: The Difference Equation Topic 5: The Difference Equation Yulei Luo Economics, HKU October 30, 2017 Luo, Y. (Economics, HKU) ME October 30, 2017 1 / 42 Discrete-time, Differences, and Difference Equations When time is taken to

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

Stability properties of a family of chock capturing methods for hyperbolic conservation laws

Stability properties of a family of chock capturing methods for hyperbolic conservation laws Proceedings of te 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 0-, 005 (pp48-5) Stability properties of a family of cock capturing metods for yperbolic conservation

More information

Burgers equation - a first look at fluid mechanics and non-linear partial differential equations

Burgers equation - a first look at fluid mechanics and non-linear partial differential equations Burgers equation - a first look at fluid mechanics and non-linear partial differential equations In this assignment you will solve Burgers equation, which is useo model for example gas dynamics anraffic

More information

2 A: The Shallow Water Equations

2 A: The Shallow Water Equations 2 A: The Shallow Water Equations 2.1 Surface motions on shallow water Consider two-dimensional (x-z) motions on a nonrotating, shallow body of water, of uniform density, as shown in Fig. 1 below. The ow

More information

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Diploma Thesis Institute for Numerical Simulation, TUHH On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Corrected version Katja Baumbach August 17, 2006 Supervisor: Prof. Dr.

More information

Non-convex flux functions and compound shock waves in sediment beds

Non-convex flux functions and compound shock waves in sediment beds Non-convex flux functions and compound shock waves in sediment beds Gert Bartholomeeusen 1, Hans De Sterck 2, and Gilliane Sills 3 1 University of Oxford, Department of Engineering Science, Parks Road,

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information