An inertial forward-backward method for solving vector optimization problems

Size: px
Start display at page:

Download "An inertial forward-backward method for solving vector optimization problems"

Transcription

1 An inertial forward-backward method for solving vector optimization problems Sorin-Mihai Grad Chemnitz University of Technology gsor research supported by the DFG project GR 3367/4-1 joint work with Radu Ioan Boţ Splitting Algorithms, Modern Operator Theory, and Applications Workshop Oaxaca, September 19, 2017

2 Outline Preliminaries An inertial forward-backward proximal method Alternative constructions and hypotheses Numerical experiments 2 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

3 Preliminaries X - Hilbert space, Y - separable Banach space C Y pointed (i.e. C ( C) = {0}) closed convex cone (λc C λ 0) partial ordering C on Y C - greatest element with respect to C, C / Y, denote Y = Y { C } we write x C y if x C y and x y C = {y Y : y, y 0 y C} - dual cone to C A vector function F : X Y is proper: dom F = {x X : F (x) Y } C-convex: F (tx + (1 t)y) C tf (x) + (1 t)f (y) for all x, y Y and all t [0, 1] positively C-lsc: z, F ( ) is lower semicontinuous for all z C \ {0} 3 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

4 Solution concepts Consider the vector optimization problem (P) WMin F (x), x X where F : X Y proper and int C. An x X is a weakly efficient solution to (P): ( x int C) F (X) = notation: x WE(P) an efficient solution to (P): x X s.t. F (x) C F ( x) notation: x E(P) Proposition. F is C-convex x WE(P) z C \ {0} s.t. z, F ( x) z, F (x) x X. 4 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

5 Example Consider the vector optimization( problem ) x 2 (P) WMin 1 x 2, x 1,x 2 R x 2 where the vector-minimization is considered with respect to R 2 +. For all λ = (λ 1, λ 2 ) R 2 + \ {0} with λ 1 λ 2, one has inf{λ 1 (x 2 1 x 2 ) + λ 2 x 2 : x 1, x 2 R} = one cannot identify the weakly efficient solutions of (P) Only for λ = ( λ 1, λ 2 ) R 2 + \ {0} with λ 1 = λ 2 > 0 one gets λ 1 ( x 2 1 x 2 )+ λ 2 x 2 λ 1 (x 2 1 x 2 )+ λ 2 x 2 x 1, x 2 R for x 1 = 0, x 2 R. an unfortunate choice of the scalarization may lead nowhere (even for simple vector optimization problems) 5 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

6 Iterative methods for solving multiobjective/vector optimization problems algorithms for delivering one (weakly) efficient solution Newton: Fliege, Graña Drummond & Svaiter; Graña Drummond, Raupp & Svaiter steepest descent: Fliege & Svaiter; Graña Drummond & Svaiter projected gradient: Fukuda & Graña Drummond; Graña Drummond & Iusem proximal point: Bonel, Iusem & Svaiter; Villacorta & Oliveira algorithms for finding (approximating) the whole (weakly) efficient set Benson type: Löhne & Weißing adaptive scalarization: Berger & Büskens 6 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

7 Problem formulation Consider the vector optimization problem [ ] (VP) WMin F (x) + G(x), x X where F : X Y - Fréchet differentiable with an L-Lipschitz-continuous gradient G : X Y - proper int C 7 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

8 Inertial forward-backward proximal algorithm choose x 0, x 1 X 1 9 > β β n 0 n 0: (β n ) n is nondecreasing (z n) n C \ {0}: z n = 1 e n int C n 0: z n, e n = 1 n 0 1 let n = 1 2 if x n WE(VP): STOP { 3 find x n+1 WE G(x) + L 2 x ( x n + β n (x n x n 1 ) 1 L (z nf)(x n ) ) 2 e n : x Ω n }, where Ω n = {x X : (F + G)(x) C (F + G)(x n )} 4 let n := n + 1 and go to 2 8 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

9 Remarks F 0 & β n = 0 n 0 proximal point method [Bonel, Iusem & Svaiter] Y = R & C = R + inertial forward-backward proximal point method [Moudafi & Oliny] Y = R & C = R + & F 0 inertial proximal point method [Alvarez & Attouch] Y = R & C = R + & F 0 & β n = 0 n 0 ISTA [Beck & Teboulle] it is not necessary to impose the existence of a weakly efficient solution to (P) any z C \ {0} provides a good scalarization function for the vector optimization problems in Step 3 under additional hypotheses (e.g. δ > 0 : {z Y : z, x δ x z x C} ) the method delivers efficient solutions to (VP) 9 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

10 Convergence statement If F and G are C-convex G is positively C-lsc (F + G)(X) (F (x 0 ) + G(x 0 ) C) is C-complete (i.e. (a n ) n X with a 0 = x 0 s.t. (F + G)(a n+1 ) C (F + G)(a n ) n 0 a X: (F + G)(a) C (F + G)(a n ) n 0) then x n x WE(VP). 10 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

11 Proof steps the strong convexity of the scalarized intermediate problems guarantees the existence of new iterates descent lemma for (z F ) (convex and Fréchet differentiable with an L z -Lipschitz continuous gradient z C ) existence of a weak cluster point of (x n ) n that is weakly efficient to (VP) Opial s Lemma guarantees the weak convergence of (x n ) n to a point of {x X : F (x) C F (x n ) n 0} uniqueness of the weak cluster point of (x n ) n main challenges the necessity of using constrained intermediate vector optimization problems the considered function changes at each step we deal with two vector functions with different properties 11 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

12 Alternative hypotheses/stopping rule/inexact version imposing the condition (cf. [Alvares & Attouch]) + k=1 β k x k x k 1 2 < + (β n ) n needs not be nondecreasing and β [0, 1[ considering instead of 2 if x n WE(VP): STOP the following stopping rule 2 if x n+1 = x n = x n 1 : STOP or replacing 3 with 3 find x n+1 X such that 0 εn ( zn, G( ) + L 2 x n β n (x n x n 1 ) + 1 L (z n F )(x n ) 2 e n + δ Ωn ( ))(x n+1 ) with (ε n ) n fulfilling e.g. n 1 ε n < +, the converge statement remains valid 12 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

13 Forward-backward proximal algorithm choose x 0 X, (z n) n C \ {0}: z n = 1 e n int C n 0: z n, e n = 1 n 0 If 1 let n = 1 2 if x n WE(VP): STOP 3 find { x n+1 WE G(x)+ L 2 x ( x n 1 L (z nf)(x n ) ) 2 } e n : x Ω n 4 let n := n + 1 and go to 2 F and G are C-convex G is positively C-lsc (F + G)(X) (F (x 0 ) + G(x 0 ) C) is C-complete z n = z C \ {0} n 1 then for any n 0 and x Ω = n 0 Ω n one has z, F (x n ) + G(x n ) F ( x) G( x) L x x n 13 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

14 Second inertial forward-backward proximal algorithm choose x 0, x 1 X 0 β n β R n 0: (β n ) n is nondecreasing (z n) n C \ {0}: z n = 1 e n int C n 0: z n, e n = 1 n 0 If 1 let n = 1 2 if x n WE(VP): { STOP 3 find x n+1 WE G(x) + L 2 x ( x n + β n (x n x n 1 ) 1 L (z nf)(x n + β n (x n x n 1 )) ) 2 } e n : x Ω n 4 let n := n + 1 and go to 2 β < 1 9 F and G are C-convex G is positively C-lsc (F + G)(X) (F (x 0 ) + G(x 0 ) C) is C-complete then x n x WE(VP). 14 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

15 Convergence rate If F and G are C-convex G is positively C-lsc (F + G)(X) (F (x 0 ) + G(x 0 ) C) is C-complete z n = z C \ {0} n 1 β n = tn 1 t n, where t 1 = 1, t n = tn 2 2 n 0 then for any n 0 and x Ω one has z, F (x n ) + G(x n ) F ( x) G( x) 2 L x x 0 2 (n + 1) 2. Open problems derive convergence rates without taking (zn) n constant alternative hypotheses to the C-completeness avoid using Ω n without losing the convergence 15 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

16 Numerical experiments The portfolio vector optimization problem ( x (EP) WMin u x=(x 1,...,x d ) R d + d, x Vx x i =1 i=1 where u R d and V R d d is symmetric positive semidefinite, can be recast as a special case of (VP) by taking X = R d, Y = R 2, C = R 2 +, F (x) = ( x u, x Vx) and G(x) = (δ R d + T (x), δ R d + T (x)), where T = {x = (x 1,..., x d ) R d + : d i=1 x i = 1}. x - portfolio vector for d given assets short sales are excluded: x R d + expected return: x u variance of the portfolio: x Vx ), 16 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

17 Matlab implementation real data collected in [Duan, 2007] stocks: IBM, Microsoft, Apple, Quest Diagnostics, and Bank of America, between 02/01/ /01/2007 d = 5, u = (0.4, 0.513, 4.085, 1.006, 1.236) and V = z n = (1/ 2, 1/ 2), e n = (1, 1) n 0 x 0 = (0.25, 0.25, 0, 0.25, 0.25), x 1 = (0.15, 0.25, 0.25, 0.2, 0.15) stopping rule: x n+1 x n ε = x n x n 1 the intermediate scalar problems solved with fmincon (interior point methods) approximate weakly efficient solution x = ( , , , , ) 17 Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems.

18 β n iterations time (s) / / / / / / / /10 1/10n /10 1/(n + 10) /15 1/n /20 1/(n + 20) /30 1/(n + 30) /50 1/(n + 50) Sorin-Mihai Grad An inertial forward-backward proximal point method for solving vector optimization problems

Inertial forward-backward methods for solving vector optimization problems

Inertial forward-backward methods for solving vector optimization problems Inertial forward-backward methods for solving vector optimization problems Radu Ioan Boţ Sorin-Mihai Grad Dedicated to Johannes Jahn on the occasion of his 65th birthday Abstract. We propose two forward-backward

More information

On the acceleration of the double smoothing technique for unconstrained convex optimization problems

On the acceleration of the double smoothing technique for unconstrained convex optimization problems On the acceleration of the double smoothing technique for unconstrained convex optimization problems Radu Ioan Boţ Christopher Hendrich October 10, 01 Abstract. In this article we investigate the possibilities

More information

Approaching monotone inclusion problems via second order dynamical systems with linear and anisotropic damping

Approaching monotone inclusion problems via second order dynamical systems with linear and anisotropic damping March 0, 206 3:4 WSPC Proceedings - 9in x 6in secondorderanisotropicdamping206030 page Approaching monotone inclusion problems via second order dynamical systems with linear and anisotropic damping Radu

More information

A Brøndsted-Rockafellar Theorem for Diagonal Subdifferential Operators

A Brøndsted-Rockafellar Theorem for Diagonal Subdifferential Operators A Brøndsted-Rockafellar Theorem for Diagonal Subdifferential Operators Radu Ioan Boţ Ernö Robert Csetnek April 23, 2012 Dedicated to Jon Borwein on the occasion of his 60th birthday Abstract. In this note

More information

arxiv: v1 [math.fa] 16 Jun 2011

arxiv: v1 [math.fa] 16 Jun 2011 arxiv:1106.3342v1 [math.fa] 16 Jun 2011 Gauge functions for convex cones B. F. Svaiter August 20, 2018 Abstract We analyze a class of sublinear functionals which characterize the interior and the exterior

More information

1 Introduction and preliminaries

1 Introduction and preliminaries Proximal Methods for a Class of Relaxed Nonlinear Variational Inclusions Abdellatif Moudafi Université des Antilles et de la Guyane, Grimaag B.P. 7209, 97275 Schoelcher, Martinique abdellatif.moudafi@martinique.univ-ag.fr

More information

Complexity of gradient descent for multiobjective optimization

Complexity of gradient descent for multiobjective optimization Complexity of gradient descent for multiobjective optimization J. Fliege A. I. F. Vaz L. N. Vicente July 18, 2018 Abstract A number of first-order methods have been proposed for smooth multiobjective optimization

More information

Almost Convex Functions: Conjugacy and Duality

Almost Convex Functions: Conjugacy and Duality Almost Convex Functions: Conjugacy and Duality Radu Ioan Boţ 1, Sorin-Mihai Grad 2, and Gert Wanka 3 1 Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany radu.bot@mathematik.tu-chemnitz.de

More information

ADMM for monotone operators: convergence analysis and rates

ADMM for monotone operators: convergence analysis and rates ADMM for monotone operators: convergence analysis and rates Radu Ioan Boţ Ernö Robert Csetne May 4, 07 Abstract. We propose in this paper a unifying scheme for several algorithms from the literature dedicated

More information

Second order forward-backward dynamical systems for monotone inclusion problems

Second order forward-backward dynamical systems for monotone inclusion problems Second order forward-backward dynamical systems for monotone inclusion problems Radu Ioan Boţ Ernö Robert Csetnek March 6, 25 Abstract. We begin by considering second order dynamical systems of the from

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Inertial Douglas-Rachford splitting for monotone inclusion problems

Inertial Douglas-Rachford splitting for monotone inclusion problems Inertial Douglas-Rachford splitting for monotone inclusion problems Radu Ioan Boţ Ernö Robert Csetnek Christopher Hendrich January 5, 2015 Abstract. We propose an inertial Douglas-Rachford splitting algorithm

More information

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION Peter Ochs University of Freiburg Germany 17.01.2017 joint work with: Thomas Brox and Thomas Pock c 2017 Peter Ochs ipiano c 1

More information

An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions

An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions Radu Ioan Boţ Ernö Robert Csetnek Szilárd Csaba László October, 1 Abstract. We propose a forward-backward

More information

On Gap Functions for Equilibrium Problems via Fenchel Duality

On Gap Functions for Equilibrium Problems via Fenchel Duality On Gap Functions for Equilibrium Problems via Fenchel Duality Lkhamsuren Altangerel 1 Radu Ioan Boţ 2 Gert Wanka 3 Abstract: In this paper we deal with the construction of gap functions for equilibrium

More information

Victoria Martín-Márquez

Victoria Martín-Márquez A NEW APPROACH FOR THE CONVEX FEASIBILITY PROBLEM VIA MONOTROPIC PROGRAMMING Victoria Martín-Márquez Dep. of Mathematical Analysis University of Seville Spain XIII Encuentro Red de Análisis Funcional y

More information

A convergence result for an Outer Approximation Scheme

A convergence result for an Outer Approximation Scheme A convergence result for an Outer Approximation Scheme R. S. Burachik Engenharia de Sistemas e Computação, COPPE-UFRJ, CP 68511, Rio de Janeiro, RJ, CEP 21941-972, Brazil regi@cos.ufrj.br J. O. Lopes Departamento

More information

Sequential convex programming,: value function and convergence

Sequential convex programming,: value function and convergence Sequential convex programming,: value function and convergence Edouard Pauwels joint work with Jérôme Bolte Journées MODE Toulouse March 23 2016 1 / 16 Introduction Local search methods for finite dimensional

More information

Existence and Approximation of Fixed Points of. Bregman Nonexpansive Operators. Banach Spaces

Existence and Approximation of Fixed Points of. Bregman Nonexpansive Operators. Banach Spaces Existence and Approximation of Fixed Points of in Reflexive Banach Spaces Department of Mathematics The Technion Israel Institute of Technology Haifa 22.07.2010 Joint work with Prof. Simeon Reich General

More information

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 016, 4478 4488 Research Article Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert

More information

arxiv: v3 [math.oc] 18 Apr 2012

arxiv: v3 [math.oc] 18 Apr 2012 A class of Fejér convergent algorithms, approximate resolvents and the Hybrid Proximal-Extragradient method B. F. Svaiter arxiv:1204.1353v3 [math.oc] 18 Apr 2012 Abstract A new framework for analyzing

More information

On nonexpansive and accretive operators in Banach spaces

On nonexpansive and accretive operators in Banach spaces Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 3437 3446 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa On nonexpansive and accretive

More information

arxiv: v1 [math.oc] 2 Apr 2015

arxiv: v1 [math.oc] 2 Apr 2015 arxiv:1504.00424v1 [math.oc] 2 Apr 2015 Proximal point method for a special class of nonconvex multiobjective optimization problem G. C. Bento O. P. Ferreira V. L. Sousa Junior March 31, 2015 Abstract

More information

On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems

On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems Radu Ioan Boţ Ernö Robert Csetnek August 5, 014 Abstract. In this paper we analyze the

More information

Sequential Pareto Subdifferential Sum Rule And Sequential Effi ciency

Sequential Pareto Subdifferential Sum Rule And Sequential Effi ciency Applied Mathematics E-Notes, 16(2016), 133-143 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Sequential Pareto Subdifferential Sum Rule And Sequential Effi ciency

More information

Hessian Riemannian Gradient Flows in Convex Programming

Hessian Riemannian Gradient Flows in Convex Programming Hessian Riemannian Gradient Flows in Convex Programming Felipe Alvarez, Jérôme Bolte, Olivier Brahic INTERNATIONAL CONFERENCE ON MODELING AND OPTIMIZATION MODOPT 2004 Universidad de La Frontera, Temuco,

More information

BISTA: a Bregmanian proximal gradient method without the global Lipschitz continuity assumption

BISTA: a Bregmanian proximal gradient method without the global Lipschitz continuity assumption BISTA: a Bregmanian proximal gradient method without the global Lipschitz continuity assumption Daniel Reem (joint work with Simeon Reich and Alvaro De Pierro) Department of Mathematics, The Technion,

More information

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods Renato D.C. Monteiro B. F. Svaiter May 10, 011 Revised: May 4, 01) Abstract This

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE Fixed Point Theory, Volume 6, No. 1, 2005, 59-69 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.htm WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE YASUNORI KIMURA Department

More information

Second order forward-backward dynamical systems for monotone inclusion problems

Second order forward-backward dynamical systems for monotone inclusion problems Second order forward-backward dynamical systems for monotone inclusion problems Radu Ioan Boţ Ernö Robert Csetnek March 2, 26 Abstract. We begin by considering second order dynamical systems of the from

More information

From error bounds to the complexity of first-order descent methods for convex functions

From error bounds to the complexity of first-order descent methods for convex functions From error bounds to the complexity of first-order descent methods for convex functions Nguyen Trong Phong-TSE Joint work with Jérôme Bolte, Juan Peypouquet, Bruce Suter. Toulouse, 23-25, March, 2016 Journées

More information

Proximal-like contraction methods for monotone variational inequalities in a unified framework

Proximal-like contraction methods for monotone variational inequalities in a unified framework Proximal-like contraction methods for monotone variational inequalities in a unified framework Bingsheng He 1 Li-Zhi Liao 2 Xiang Wang Department of Mathematics, Nanjing University, Nanjing, 210093, China

More information

Iterative regularization of nonlinear ill-posed problems in Banach space

Iterative regularization of nonlinear ill-posed problems in Banach space Iterative regularization of nonlinear ill-posed problems in Banach space Barbara Kaltenbacher, University of Klagenfurt joint work with Bernd Hofmann, Technical University of Chemnitz, Frank Schöpfer and

More information

SOME REMARKS ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS

SOME REMARKS ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS Applied Mathematics E-Notes, 5(2005), 150-156 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ SOME REMARKS ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS Mohamed Laghdir

More information

The Subdifferential of Convex Deviation Measures and Risk Functions

The Subdifferential of Convex Deviation Measures and Risk Functions The Subdifferential of Convex Deviation Measures and Risk Functions Nicole Lorenz Gert Wanka In this paper we give subdifferential formulas of some convex deviation measures using their conjugate functions

More information

Constraint qualifications for convex inequality systems with applications in constrained optimization

Constraint qualifications for convex inequality systems with applications in constrained optimization Constraint qualifications for convex inequality systems with applications in constrained optimization Chong Li, K. F. Ng and T. K. Pong Abstract. For an inequality system defined by an infinite family

More information

Classical linear vector optimization duality revisited

Classical linear vector optimization duality revisited Optim Lett DOI 10.1007/s11590-010-0263-1 ORIGINAL PAPER Classical linear vector optimization duality revisited Radu Ioan Boţ Sorin-Mihai Grad Gert Wanka Received: 6 May 2010 / Accepted: 8 November 2010

More information

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space Mathematica Moravica Vol. 19-1 (2015), 95 105 Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space M.R. Yadav Abstract. In this paper, we introduce a new two-step iteration process to approximate

More information

Tight Rates and Equivalence Results of Operator Splitting Schemes

Tight Rates and Equivalence Results of Operator Splitting Schemes Tight Rates and Equivalence Results of Operator Splitting Schemes Wotao Yin (UCLA Math) Workshop on Optimization for Modern Computing Joint w Damek Davis and Ming Yan UCLA CAM 14-51, 14-58, and 14-59 1

More information

A generalized forward-backward method for solving split equality quasi inclusion problems in Banach spaces

A generalized forward-backward method for solving split equality quasi inclusion problems in Banach spaces Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 4890 4900 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa A generalized forward-backward

More information

Maximal monotonicity for the precomposition with a linear operator

Maximal monotonicity for the precomposition with a linear operator Maximal monotonicity for the precomposition with a linear operator Radu Ioan Boţ Sorin-Mihai Grad Gert Wanka July 19, 2005 Abstract. We give the weakest constraint qualification known to us that assures

More information

On the iterate convergence of descent methods for convex optimization

On the iterate convergence of descent methods for convex optimization On the iterate convergence of descent methods for convex optimization Clovis C. Gonzaga March 1, 2014 Abstract We study the iterate convergence of strong descent algorithms applied to convex functions.

More information

Convergence rate estimates for the gradient differential inclusion

Convergence rate estimates for the gradient differential inclusion Convergence rate estimates for the gradient differential inclusion Osman Güler November 23 Abstract Let f : H R { } be a proper, lower semi continuous, convex function in a Hilbert space H. The gradient

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces

Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces Int. Journal of Math. Analysis, Vol. 3, 2009, no. 12, 549-561 Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces Nguyen Buong Vietnamse Academy of Science

More information

CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS

CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS Abstract. The aim of this paper is to characterize in terms of classical (quasi)convexity of extended real-valued functions the set-valued maps which are

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

Convergence of Fixed-Point Iterations

Convergence of Fixed-Point Iterations Convergence of Fixed-Point Iterations Instructor: Wotao Yin (UCLA Math) July 2016 1 / 30 Why study fixed-point iterations? Abstract many existing algorithms in optimization, numerical linear algebra, and

More information

On the convergence properties of the projected gradient method for convex optimization

On the convergence properties of the projected gradient method for convex optimization Computational and Applied Mathematics Vol. 22, N. 1, pp. 37 52, 2003 Copyright 2003 SBMAC On the convergence properties of the projected gradient method for convex optimization A. N. IUSEM* Instituto de

More information

for all u C, where F : X X, X is a Banach space with its dual X and C X

for all u C, where F : X X, X is a Banach space with its dual X and C X ROMAI J., 6, 1(2010), 41 45 PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITIES INVOLVING REGULAR MAPPINGS Corina L. Chiriac Department of Mathematics, Bioterra University, Bucharest, Romania corinalchiriac@yahoo.com

More information

On the Brézis - Haraux - type approximation in nonreflexive Banach spaces

On the Brézis - Haraux - type approximation in nonreflexive Banach spaces On the Brézis - Haraux - type approximation in nonreflexive Banach spaces Radu Ioan Boţ Sorin - Mihai Grad Gert Wanka Abstract. We give Brézis - Haraux - type approximation results for the range of the

More information

A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration

A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration E. Chouzenoux, A. Jezierska, J.-C. Pesquet and H. Talbot Université Paris-Est Lab. d Informatique Gaspard

More information

STRONG AND CONVERSE FENCHEL DUALITY FOR VECTOR OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES

STRONG AND CONVERSE FENCHEL DUALITY FOR VECTOR OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIV, Number 3, September 2009 STRONG AND CONVERSE FENCHEL DUALITY FOR VECTOR OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES Abstract. In relation to the vector

More information

Visco-penalization of the sum of two monotone operators

Visco-penalization of the sum of two monotone operators Visco-penalization of the sum of two monotone operators Patrick L. Combettes a and Sever A. Hirstoaga b a Laboratoire Jacques-Louis Lions, Faculté de Mathématiques, Université Pierre et Marie Curie Paris

More information

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1 Int. Journal of Math. Analysis, Vol. 1, 2007, no. 4, 175-186 Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1 Haiyun Zhou Institute

More information

LEARNING IN CONCAVE GAMES

LEARNING IN CONCAVE GAMES LEARNING IN CONCAVE GAMES P. Mertikopoulos French National Center for Scientific Research (CNRS) Laboratoire d Informatique de Grenoble GSBE ETBC seminar Maastricht, October 22, 2015 Motivation and Preliminaries

More information

A New Look at First Order Methods Lifting the Lipschitz Gradient Continuity Restriction

A New Look at First Order Methods Lifting the Lipschitz Gradient Continuity Restriction A New Look at First Order Methods Lifting the Lipschitz Gradient Continuity Restriction Marc Teboulle School of Mathematical Sciences Tel Aviv University Joint work with H. Bauschke and J. Bolte Optimization

More information

An Interior Proximal Method in Vector Optimization

An Interior Proximal Method in Vector Optimization An Interior Proximal Method in Vector Optimization Kely D. V. Villacorta and Paulo Roberto Oliveira August 13, 2009 Abstract This paper studies the vector optimization problem of finding weakly efficient

More information

Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization

Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization Radu Ioan Boţ Christopher Hendrich November 7, 202 Abstract. In this paper we

More information

An inexact strategy for the projected gradient algorithm in vector optimization problems on variable ordered spaces

An inexact strategy for the projected gradient algorithm in vector optimization problems on variable ordered spaces An inexact strategy for the projected gradient algorithm in vector optimization problems on variable ordered spaces J.Y. Bello-Cruz G. Bouza Allende November, 018 Abstract The variable order structures

More information

Dedicated to Michel Théra in honor of his 70th birthday

Dedicated to Michel Théra in honor of his 70th birthday VARIATIONAL GEOMETRIC APPROACH TO GENERALIZED DIFFERENTIAL AND CONJUGATE CALCULI IN CONVEX ANALYSIS B. S. MORDUKHOVICH 1, N. M. NAM 2, R. B. RECTOR 3 and T. TRAN 4. Dedicated to Michel Théra in honor of

More information

Steepest descent method on a Riemannian manifold: the convex case

Steepest descent method on a Riemannian manifold: the convex case Steepest descent method on a Riemannian manifold: the convex case Julien Munier Abstract. In this paper we are interested in the asymptotic behavior of the trajectories of the famous steepest descent evolution

More information

A New Fenchel Dual Problem in Vector Optimization

A New Fenchel Dual Problem in Vector Optimization A New Fenchel Dual Problem in Vector Optimization Radu Ioan Boţ Anca Dumitru Gert Wanka Abstract We introduce a new Fenchel dual for vector optimization problems inspired by the form of the Fenchel dual

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Roger Behling a, Clovis Gonzaga b and Gabriel Haeser c March 21, 2013 a Department

More information

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization

This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization This can be 2 lectures! still need: Examples: non-convex problems applications for matrix factorization x = prox_f(x)+prox_{f^*}(x) use to get prox of norms! PROXIMAL METHODS WHY PROXIMAL METHODS Smooth

More information

A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems

A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems arxiv:1712.03005v2 [math.oc] 11 Dec 2017 Bennet Gebken 1, Sebastian Peitz 1, and Michael Dellnitz 1 1 Department

More information

A Unified Approach to Proximal Algorithms using Bregman Distance

A Unified Approach to Proximal Algorithms using Bregman Distance A Unified Approach to Proximal Algorithms using Bregman Distance Yi Zhou a,, Yingbin Liang a, Lixin Shen b a Department of Electrical Engineering and Computer Science, Syracuse University b Department

More information

A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces

A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces This article was downloaded by: [IMPA Inst de Matematica Pura & Aplicada] On: 11 November 2011, At: 05:10 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 3, No., pp. 109 115 c 013 Society for Industrial and Applied Mathematics AN ACCELERATED HYBRID PROXIMAL EXTRAGRADIENT METHOD FOR CONVEX OPTIMIZATION AND ITS IMPLICATIONS TO SECOND-ORDER

More information

Brézis - Haraux - type approximation of the range of a monotone operator composed with a linear mapping

Brézis - Haraux - type approximation of the range of a monotone operator composed with a linear mapping Brézis - Haraux - type approximation of the range of a monotone operator composed with a linear mapping Radu Ioan Boţ, Sorin-Mihai Grad and Gert Wanka Faculty of Mathematics Chemnitz University of Technology

More information

Maximal Monotone Operators with a Unique Extension to the Bidual

Maximal Monotone Operators with a Unique Extension to the Bidual Journal of Convex Analysis Volume 16 (2009), No. 2, 409 421 Maximal Monotone Operators with a Unique Extension to the Bidual M. Marques Alves IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro,

More information

A user s guide to Lojasiewicz/KL inequalities

A user s guide to Lojasiewicz/KL inequalities Other A user s guide to Lojasiewicz/KL inequalities Toulouse School of Economics, Université Toulouse I SLRA, Grenoble, 2015 Motivations behind KL f : R n R smooth ẋ(t) = f (x(t)) or x k+1 = x k λ k f

More information

SHORT COMMUNICATION. Communicated by Igor Konnov

SHORT COMMUNICATION. Communicated by Igor Konnov On Some Erroneous Statements in the Paper Optimality Conditions for Extended Ky Fan Inequality with Cone and Affine Constraints and Their Applications by A. Capătă SHORT COMMUNICATION R.I. Boţ 1 and E.R.

More information

On Total Convexity, Bregman Projections and Stability in Banach Spaces

On Total Convexity, Bregman Projections and Stability in Banach Spaces Journal of Convex Analysis Volume 11 (2004), No. 1, 1 16 On Total Convexity, Bregman Projections and Stability in Banach Spaces Elena Resmerita Department of Mathematics, University of Haifa, 31905 Haifa,

More information

BENSOLVE - a solver for multi-objective linear programs

BENSOLVE - a solver for multi-objective linear programs BENSOLVE - a solver for multi-objective linear programs Andreas Löhne Martin-Luther-Universität Halle-Wittenberg, Germany ISMP 2012 Berlin, August 19-24, 2012 BENSOLVE is a solver project based on Benson's

More information

TECHNICAL REPORT Nonmonotonicity and Quasiconvexity on Equilibrium Problems

TECHNICAL REPORT Nonmonotonicity and Quasiconvexity on Equilibrium Problems TECHNICAL REPORT Nonmonotonicity and Quasiconvexity on Equilibrium Problems Lennin Mallma-Ramirez Systems Engineering and Computer Science Program (PESC) Graduate School of Enginnering (COPPE) Federal

More information

Conditions for zero duality gap in convex programming

Conditions for zero duality gap in convex programming Conditions for zero duality gap in convex programming Jonathan M. Borwein, Regina S. Burachik, and Liangjin Yao April 14, revision, 2013 Abstract We introduce and study a new dual condition which characterizes

More information

Continuous Primal-Dual Methods in Image Processing

Continuous Primal-Dual Methods in Image Processing Continuous Primal-Dual Methods in Image Processing Michael Goldman CMAP, Polytechnique August 2012 Introduction Maximal monotone operators Application to the initial problem Numerical illustration Introduction

More information

Active sets, steepest descent, and smooth approximation of functions

Active sets, steepest descent, and smooth approximation of functions Active sets, steepest descent, and smooth approximation of functions Dmitriy Drusvyatskiy School of ORIE, Cornell University Joint work with Alex D. Ioffe (Technion), Martin Larsson (EPFL), and Adrian

More information

A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces

A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces A continuous gradient-like dynamical approach to Pareto-optimization in Hilbert spaces Hedy Attouch, Xavier Goudou To cite this version: Hedy Attouch, Xavier Goudou. A continuous gradient-like dynamical

More information

A double projection method for solving variational inequalities without monotonicity

A double projection method for solving variational inequalities without monotonicity A double projection method for solving variational inequalities without monotonicity Minglu Ye Yiran He Accepted by Computational Optimization and Applications, DOI: 10.1007/s10589-014-9659-7,Apr 05, 2014

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM Georgian Mathematical Journal Volume 9 (2002), Number 3, 591 600 NONEXPANSIVE MAPPINGS AND ITERATIVE METHODS IN UNIFORMLY CONVEX BANACH SPACES HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

More information

ZERO DUALITY GAP FOR CONVEX PROGRAMS: A GENERAL RESULT

ZERO DUALITY GAP FOR CONVEX PROGRAMS: A GENERAL RESULT ZERO DUALITY GAP FOR CONVEX PROGRAMS: A GENERAL RESULT EMIL ERNST AND MICHEL VOLLE Abstract. This article addresses a general criterion providing a zero duality gap for convex programs in the setting of

More information

Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms

Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms Peter Ochs, Jalal Fadili, and Thomas Brox Saarland University, Saarbrücken, Germany Normandie Univ, ENSICAEN, CNRS, GREYC, France

More information

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces Introduction to Optimization Techniques Nonlinear Optimization in Function Spaces X : T : Gateaux and Fréchet Differentials Gateaux and Fréchet Differentials a vector space, Y : a normed space transformation

More information

Inexact projected gradient method for vector optimization

Inexact projected gradient method for vector optimization Inexact projected gradient method for vector optimization Ellen H. Fukuda L. M. Graña Drummond Abstract In this work, we propose an inexact projected gradient-like method for solving smooth constrained

More information

On the relations between different duals assigned to composed optimization problems

On the relations between different duals assigned to composed optimization problems manuscript No. will be inserted by the editor) On the relations between different duals assigned to composed optimization problems Gert Wanka 1, Radu Ioan Boţ 2, Emese Vargyas 3 1 Faculty of Mathematics,

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

arxiv: v1 [math.oc] 12 Mar 2013

arxiv: v1 [math.oc] 12 Mar 2013 On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems arxiv:303.875v [math.oc] Mar 03 Radu Ioan Boţ Ernö Robert Csetnek André Heinrich February

More information

Near Equality, Near Convexity, Sums of Maximally Monotone Operators, and Averages of Firmly Nonexpansive Mappings

Near Equality, Near Convexity, Sums of Maximally Monotone Operators, and Averages of Firmly Nonexpansive Mappings Mathematical Programming manuscript No. (will be inserted by the editor) Near Equality, Near Convexity, Sums of Maximally Monotone Operators, and Averages of Firmly Nonexpansive Mappings Heinz H. Bauschke

More information

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean Renato D.C. Monteiro B. F. Svaiter March 17, 2009 Abstract In this paper we analyze the iteration-complexity

More information

A general iterative algorithm for equilibrium problems and strict pseudo-contractions in Hilbert spaces

A general iterative algorithm for equilibrium problems and strict pseudo-contractions in Hilbert spaces A general iterative algorithm for equilibrium problems and strict pseudo-contractions in Hilbert spaces MING TIAN College of Science Civil Aviation University of China Tianjin 300300, China P. R. CHINA

More information

Duality for almost convex optimization problems via the perturbation approach

Duality for almost convex optimization problems via the perturbation approach Duality for almost convex optimization problems via the perturbation approach Radu Ioan Boţ Gábor Kassay Gert Wanka Abstract. We deal with duality for almost convex finite dimensional optimization problems

More information

A semi-algebraic look at first-order methods

A semi-algebraic look at first-order methods splitting A semi-algebraic look at first-order Université de Toulouse / TSE Nesterov s 60th birthday, Les Houches, 2016 in large-scale first-order optimization splitting Start with a reasonable FOM (some

More information