Vague and Uncertain Entailment: Some Conceptual Clarifications

Size: px
Start display at page:

Download "Vague and Uncertain Entailment: Some Conceptual Clarifications"

Transcription

1 Conditionals, Counterfactuals, and Causes in Uncertain Environments Düsseldorf, May 2011 Vague and Uncertain Entailment: Some Conceptual Clarifications Chris Fermüller TU Wien, Austria

2 Overview How does Fuzzy Logic fit in? What is uncertainty? and how to measure it? Vagueness and degrees of truth how to understand Fuzzy Logic? Deductive (t-norm based) Fuzzy Logic degree based notions of entailment A case study Giles s game justifying degrees of truth via uncertainty Uncertainty about degrees of truth interval based logics and their problems Rescue from Giles? justifying truth functions over intervals

3 Models of reasoning in uncertain environments NB: Fuzzy Logic researchers use the term uncertainty in a very brood sense but always connected to mathematical models Baoding Liu: Uncertainty Theory Some chapter titles: probability theory credibility theory trust theory fuzzy random theory random fuzzy theory bifuzzy theory rough fuzzy theory Klir/Wiermann: Uncertainty-Based Information Some chapter titles: probability theory fuzzy set theory fuzzy measure theory evidence theory possibility theory

4 Stanford Encyclopedia of Philosophy: James Hawthorne (from the Inductive Logic article) Some Prominent Approaches for Representing Uncertain Inferences :

5 Vagueness and Fuzzy Logic NB: Zadeh distinguished fuzziness from vagueness: Fuzziness: gradedness of predication (membership) and truth Vagueness: fuzziness + unspecificity The following tenets of a FL based approach to vagueness are widely but by no means universally accepted by now: FL is not a theory of vagueness, but a component of one FL is not a poor man s Ersatz for probability, DS-theory, etc. FL provides a mathematical toolkit for many applications truth degrees do not necessarily entail truth functionality rich and growing literature on deriving FL from first principles one should distinguish between FLw and FLn

6 Interlude Is there a logic of vagueness?

7 Interlude Is there a logic of vagueness? I claim: no!

8 Interlude Is there a logic of vagueness? I claim: no! Or rather: the problem is ill-posed.

9 Interlude Is there a logic of vagueness? I claim: no! Or rather: the problem is ill-posed. One can define all kinds of logics that in principle are candidates for modeling (aspects of) reasoning under vagueness. Judging the adequateness and usefulness of these models is not a matter of comparing (theory) neutral data with predictions. Modeling may mean different things. I take (fuzzy) logicians to emphasize the aspect of constructing formal structures that support robust reasoning. NB: It is unreasonable to expect unique solutions to this task.

10 Interlude Is there a logic of vagueness? I claim: no! Or rather: the problem is ill-posed. One can define all kinds of logics that in principle are candidates for modeling (aspects of) reasoning under vagueness. Judging the adequateness and usefulness of these models is not a matter of comparing (theory) neutral data with predictions. Modeling may mean different things. I take (fuzzy) logicians to emphasize the aspect of constructing formal structures that support robust reasoning. NB: It is unreasonable to expect unique solutions to this task. As to the potential relevance for philosophy and psychology: Compare Keith Stenning & Michiel van Lambalgen s concept of reasoning to an interpretation.

11 Deductive Fuzzy Logic (FLn) Hájek s design choices 1. [0, 1] as set of truth values 2. truth functionality 3. conjunction is modeled by a continuous t-norm : [0, 1] 2 [0, 1]: (x y) z = x (y z) (associative) x y = y z (commutative) x 1 = x (unit element) x y implies x z y z (non-decreasing) 4. implication is the (unique!) residuum of : x y = def sup{z x z y} 5. negation: x = def x 0

12 A rich and well behaved Meta-Mathematics of Fuzzy Logic results from these design choices (cf. [Petr Hájek 98]). Three fundamental continuous t-norms and their residua: Logic L( ) x y x y, for x > y Lukasiewicz L: max(0, x + y 1) 1 x + y Gödel G: min(x, y) y Product P: x y y/x All continuous t-norms are ordinal sums of these three. L is the only logic of type L( ), where is continuous. Entailment (F 1,..., F n = G) can be defined in different ways! v(g) = 1 whenever v(f i ) = 1 for all 1 i n inf 1 i n v(f i ) v(g) v(f 1 )... v(f n ) v(g) Graded entailment: (e.g.) degree(f 1,..., F n = G) = inf 1 i n v(f i ) v(g)

13 Giles s dialogue foundations for approximate reasoning Meaning of connectives specified by dialogue rules (Lorenzen): Let X/Y stand for me/you or for you/me X asserts attack by Y answer by X A B A B A B? A or B (X chooses) A B l? or r? (Y chooses) A or B (accordingly) A & B? A and B Note: A abbreviates A. where is indefensible Answer ( quit ) is allowed! (= Giles s principle of limited liability only relevant for &) Dialogue states: [A 1,..., A m B 1,..., B n ] (multisets) To obtain a logic we additionally need winning conditions for atomic states regulations defining admissible runs of a game

14 ad: winning conditions Let the players bet on the truth of their (atomic) claims! (Yes/no-)experiments that may be dispersive decide. I pay 1 to you for each of my false atomic assertions, if you agree to do the same for your atomic assertions A final states [p 1,..., p m q 1,..., q n ] results in a pay-off of ( m n ) p i q j for me i=1 j=1 p... risk value = (subjective) probability of no as result for p ad: regulations Constraints on runs of a dialogue like the following suffice: (R ) if you attack my assertion of A B by claiming A, then I have to assert also B at some state Each formula is attacked at most once. No particular regulation for the order of moves is required!

15 Giles s Theorem: F 1,..., F n = L G iff for every risk value assignment I have a strategy for avoiding expected loss in dialogues starting with my assertion of G and your s of F 1,..., F n. F 1,..., F n = L G... v(f 1 ) L... L v(f n ) v(g) for all v Beyond Giles: generalizations of the game to G, P, and CHL close connections to analytic proof systems: logical rules can be seen as dialogue rules in particular: proofs in a uniform hypersequent calculus for L, G, P correspond to success strategies

16 Modeling imprecise knowledge of truth degrees Esteva, Garcia-Calvés, Godo [IMPU 92, IJUFKS 1(94)]: This kind of imprecision can be handled by means of an interval-based calculus: the more imprecision there is, the larger intervals are. = bilattice structures Int(L),,, N (here always: L = [0, 1]) Int(L)... set of closed intervals over L + the empty interval truth ordering : [a, b] [c, d] iff a c and b d imprecision ordering : subinterval relation N... involutative negator, antitone w.r.t. both orderings EGG define t-norm based truth functions for logical connectives: Let v(a) = [a l, a h ], v(b) = [b l, b h ] t-norm based strong conjunction: v(a&b) = [a l b l, a h b h ] similar for (weak) lattice conjunction and lattice disjunction implication: v(a B) = [a h b l, a l b h ]

17 Problems (1) The truth function for is no longer a residuum of the truth function for & = Cornelis, Deschrijver, Kerre (and others) define: v(a B) = [(a l b l ) (a h b h ), a h b h ] This results in a residuated lattice, containing the original lattice as a substructure. But a different undesired feature arises with this implication [Hajek, unpublished]: Sharpenings don t preserve (graded) truth!

18 Problems (2) The involved impreciseness is explicitly declared to arise from an incompleteness of knowledge of the real degree of truth. At his point EGG follow like many others Belnap [1977]. However (cf. similar criticism by Didier Dubois): Belnap s interpretation of bilattice based truth functions is incoherent! Consider Belnap s bilattice FOUR= {0,,, 1}, t, k, N Intended interpretation: 0 / 1... (definitely) false / true (={}) / (={0, 1})... no / inconsistent information truth ordering : 0 t [ / ] t 1 knowledge ordering : k [0 / 1] k = no coherent truth functions over {0,,, 1} are possible, if,, are to retain their usual (classical) meaning! E.g., consider A A and B A, where the semantic status (knowledge) of A and B is equal, namely empty: {} (or {0, 1}).

19 (Like for probability:) partial knowledge about degrees of truth cannot be propagated truth functionally from atomic propositions to disjunctions and conjunctions! = The interval v(f ) calculated via truth functions does not reflect our best knowledge about the real value of F, given the partial information about atoms that is coded in the interval assignment v. Example: No knowledge about the real value of atom p. Consequently: v(p) = [0, 1], and also v( p) = [0, 1]. According to EEG: v(p p) = [max(0, 0), max(1, 1)] = [0, 1] But the real value of p p can never be below 0.5! Observation by Godo and Esteva: At least v(f ) provides valid (but sub-optimal) lower and upper bounds for the unknown real value of F. Can we say more about the Godo/Esteva bounds?

20 (a) We use a Giles/Lorenzen-style dialogue game to reduce our logically complex assertions to atomic ones. (b) For each of assertion of atom p we have to pay between 1 h(p) and 1 l(p), where v = [l(p), h(p)]. Possible interpretation: [l(p), h(p)] is the range of plausible answers of competent speakers to questions about the degree of truth of p. We have to pay for the falsity of an assertion of p following these answers. Note: different answers are expected for each occurrence of p. Claim: Given v, F evaluates to [l, h] according to EGG implies: An optimal strategy for F w.r.t. some v-compatible risk value assignment, results in an expected loss of at most 1-l, but at least 1-h.

21 Can we do better? Cautious vs. bold reasoning Let the intervals v(p) = [l(p), h(p)] represent plausible ranges of truth degrees for atomic propositions. Evaluating final state [p 1,..., p m q 1,..., q n ] for me in : w.r.t. ( average loss (assuming centered distributions): n i=1 1 (h(q m ) i) l(q i ))/2) ( i=1 1 (h(p i) l(p i ))/2 ( n optimistic: i=1 i)) ( 1 h(q m ) i=1 1 l(p i) ( n pessimistic: i=1 i)) ( 1 l(q m ) i=1 1 h(p i) Strategies minimizing average loss lead back to the Giles s original characterization of Lukasiewicz logic. Definition: W.r.t. interval assignment v, I play v-cautiously(v-boldly) if I minimize my pessimistically (optimistically) calculated loss.

22 Characterization via dialogue strategies Claim. The following are equivalent: Given v, F evaluates to [l, h] according to EGG. Optimal strategies for playing v-cautiously bound my maximum loss by 1-h and optimal strategies for v-boldly bound my minimum loss by 1-l. Moreover, these bounds are optimal. In other words: the sketched Giles-style dialogue + betting is an adequate evaluation game for the logic defined by EGG. Note: Like in (e.g.) Kleene s 3-valued logic there are no tautologies (without truth constants) if [1, 1] is taken as designated truth value for interval logics. However, a non-trivial entailment relation is characterized by the game!

23 Conclusions Vagueness can be seen as a particular form of uncertainty. But this does not entail an epistemic theory of vagueness. Fuzzy Logic provides different entailment relations based on degrees of truth. Resulting models of reasoning are formal constructions, intended as tools, rather than images of coherent reasoning with vague predicates and propositions. Giles s game is an example of a model that justifies or it least elucidates degree based, truth functional connectives. Giles s game may also help to correct misguided interpretations of truth value intervals as representing epistemic uncertainty about an ill-known degree of truth, A rich research agenda is attached to our case study : other versions of interval based logics relation to (e.g.) Shapiro s Vagueness in Context winning strategies as analytic proofs...

Analyzing fuzzy and contextual approaches to vagueness by semantic games

Analyzing fuzzy and contextual approaches to vagueness by semantic games Analyzing fuzzy and contextual approaches to vagueness by semantic games PhD Thesis Christoph Roschger Institute of Computer Languages Theory and Logic Group November 27, 2014 Motivation Vagueness ubiquitous

More information

A Fuzzy Formal Logic for Interval-valued Residuated Lattices

A Fuzzy Formal Logic for Interval-valued Residuated Lattices A Fuzzy Formal Logic for Interval-valued Residuated Lattices B. Van Gasse Bart.VanGasse@UGent.be C. Cornelis Chris.Cornelis@UGent.be G. Deschrijver Glad.Deschrijver@UGent.be E.E. Kerre Etienne.Kerre@UGent.be

More information

Uniform Rules and Dialogue Games for Fuzzy Logics

Uniform Rules and Dialogue Games for Fuzzy Logics Uniform Rules and Dialogue Games for Fuzzy Logics A. Ciabattoni, C.G. Fermüller, and G. Metcalfe Technische Universität Wien, A-1040 Vienna, Austria {agata,chrisf,metcalfe}@logic.at Abstract. We provide

More information

Game Semantical Rules for Vague Proportional Semi-Fuzzy Quantifiers

Game Semantical Rules for Vague Proportional Semi-Fuzzy Quantifiers Game Semantical Rules for Vague Proportional Semi-Fuzzy Quantifiers Matthias F.J. Hofer Vienna University of Technology Vague quantifier expressions like about half or almost all, and their semantics,

More information

Nonclassical logics (Nichtklassische Logiken)

Nonclassical logics (Nichtklassische Logiken) Nonclassical logics (Nichtklassische Logiken) VU 185.249 (lecture + exercises) http://www.logic.at/lvas/ncl/ Chris Fermüller Technische Universität Wien www.logic.at/people/chrisf/ chrisf@logic.at Winter

More information

REVISITING GILES S GAME Reconciling Fuzzy Logic and Supervaluation

REVISITING GILES S GAME Reconciling Fuzzy Logic and Supervaluation REVISITING GILES S GAME Reconciling Fuzzy Logic and Supervaluation Christian G. Fermüller Technische Universität Wien chrisf@logic.at Abstract We explain Giles s characterization of Lukasiewicz logic via

More information

Exploring Dialogue Games as Foundation of Fuzzy Logic

Exploring Dialogue Games as Foundation of Fuzzy Logic Exploring Dialogue Games as Foundation of Fuzzy Logic Christian G. Fermüller Theory and Logic Group 185.2 Technische Universität Wien chrisf@logic.at Abstract A dialogue game based approach to the problem

More information

A note on fuzzy predicate logic. Petr H jek 1. Academy of Sciences of the Czech Republic

A note on fuzzy predicate logic. Petr H jek 1. Academy of Sciences of the Czech Republic A note on fuzzy predicate logic Petr H jek 1 Institute of Computer Science, Academy of Sciences of the Czech Republic Pod vod renskou v 2, 182 07 Prague. Abstract. Recent development of mathematical fuzzy

More information

Fleas and fuzzy logic a survey

Fleas and fuzzy logic a survey Fleas and fuzzy logic a survey Petr Hájek Institute of Computer Science AS CR Prague hajek@cs.cas.cz Dedicated to Professor Gert H. Müller on the occasion of his 80 th birthday Keywords: mathematical fuzzy

More information

Non-classical Logics: Theory, Applications and Tools

Non-classical Logics: Theory, Applications and Tools Non-classical Logics: Theory, Applications and Tools Agata Ciabattoni Vienna University of Technology (TUV) Joint work with (TUV): M. Baaz, P. Baldi, B. Lellmann, R. Ramanayake,... N. Galatos (US), G.

More information

Propositional logic (revision) & semantic entailment. p. 1/34

Propositional logic (revision) & semantic entailment. p. 1/34 Propositional logic (revision) & semantic entailment p. 1/34 Reading The background reading for propositional logic is Chapter 1 of Huth/Ryan. (This will cover approximately the first three lectures.)

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Introduction to Fuzzy Sets and Fuzzy Logic

Introduction to Fuzzy Sets and Fuzzy Logic Introduction to Fuzzy Sets and Fuzzy Logic Luca Spada Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada REASONPARK. Foligno, 17-19 September 2009 1/

More information

Fuzzy Logic in Narrow Sense with Hedges

Fuzzy Logic in Narrow Sense with Hedges Fuzzy Logic in Narrow Sense with Hedges ABSTRACT Van-Hung Le Faculty of Information Technology Hanoi University of Mining and Geology, Vietnam levanhung@humg.edu.vn arxiv:1608.08033v1 [cs.ai] 29 Aug 2016

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

First-Degree Entailment

First-Degree Entailment March 5, 2013 Relevance Logics Relevance logics are non-classical logics that try to avoid the paradoxes of material and strict implication: p (q p) p (p q) (p q) (q r) (p p) q p (q q) p (q q) Counterintuitive?

More information

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 1 - Propositional logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018

More information

Many-Valued Semantics for Vague Counterfactuals

Many-Valued Semantics for Vague Counterfactuals Many-Valued Semantics for Vague Counterfactuals MARCO CERAMI AND PERE PARDO 1 1 Introduction This paper is an attempt to provide a formal semantics to counterfactual propositions that involve vague sentences

More information

Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS

Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS REPORTS ON MATHEMATICAL LOGIC 39 (2005), 127 131 Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS 1. Three-valued logics We consider propositional logic. Three-valued logics are old: the first one

More information

Introduction to Metalogic

Introduction to Metalogic Philosophy 135 Spring 2008 Tony Martin Introduction to Metalogic 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: Remarks: (i) sentence letters p 0, p 1, p 2,... (ii)

More information

Fuzzy Does Not Lie! Can BAŞKENT. 20 January 2006 Akçay, Göttingen, Amsterdam Student No:

Fuzzy Does Not Lie! Can BAŞKENT. 20 January 2006 Akçay, Göttingen, Amsterdam   Student No: Fuzzy Does Not Lie! Can BAŞKENT 20 January 2006 Akçay, Göttingen, Amsterdam canbaskent@yahoo.com, www.geocities.com/canbaskent Student No: 0534390 Three-valued logic, end of the critical rationality. Imre

More information

Residuated fuzzy logics with an involutive negation

Residuated fuzzy logics with an involutive negation Arch. Math. Logic (2000) 39: 103 124 c Springer-Verlag 2000 Residuated fuzzy logics with an involutive negation Francesc Esteva 1, Lluís Godo 1, Petr Hájek 2, Mirko Navara 3 1 Artificial Intelligence Research

More information

Some Critical Remarks on Incompatibility Semantics

Some Critical Remarks on Incompatibility Semantics Some Critical Remarks on Incompatibility Semantics Christian G. Fermüller 1 Introduction In his fifth Locke Lecture (2006) 1 Robert Brandom has presented a new type of semantics for propositional classical

More information

On Semantic Games for Lukasiewicz Logic

On Semantic Games for Lukasiewicz Logic On Semantic Games for Lukasiewicz Logic Christian G. Fermüller Ondrej Majer November 28, 2013 Abstract We explore different ways to generalize Hintikka s classic game theoretic semantic to a many-valued

More information

Extending the Monoidal T-norm Based Logic with an Independent Involutive Negation

Extending the Monoidal T-norm Based Logic with an Independent Involutive Negation Extending the Monoidal T-norm Based Logic with an Independent Involutive Negation Tommaso Flaminio Dipartimento di Matematica Università di Siena Pian dei Mantellini 44 53100 Siena (Italy) flaminio@unisi.it

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Some consequences of compactness in Lukasiewicz Predicate Logic

Some consequences of compactness in Lukasiewicz Predicate Logic Some consequences of compactness in Lukasiewicz Predicate Logic Luca Spada Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada 7 th Panhellenic Logic

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

On Urquhart s C Logic

On Urquhart s C Logic On Urquhart s C Logic Agata Ciabattoni Dipartimento di Informatica Via Comelico, 39 20135 Milano, Italy ciabatto@dsiunimiit Abstract In this paper we investigate the basic many-valued logics introduced

More information

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic 1 1 Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic E. Turunen, P.O. Box 553, 33101 Tampere, Finland M. Öztürk Artois, F 62307 Lens, France, A. Tsoukias 75775, Paris, France. May 26,

More information

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof.

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Overview I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Propositional formulas Grammar: ::= p j (:) j ( ^ )

More information

Applied Logics - A Review and Some New Results

Applied Logics - A Review and Some New Results Applied Logics - A Review and Some New Results ICLA 2009 Esko Turunen Tampere University of Technology Finland January 10, 2009 Google Maps Introduction http://maps.google.fi/maps?f=d&utm_campaign=fi&utm_source=fi-ha-...

More information

Fuzzy Logics Interpreted as Logics of Resources

Fuzzy Logics Interpreted as Logics of Resources Fuzzy Logics Interpreted as Logics of Resources Libor Běhounek Girard s linear logic (1987) is often interpreted as the logic of resources, while formal fuzzy logics (see esp. Hájek, 1998) are usually

More information

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions Fernando Bobillo Miguel Delgado Juan Gómez-Romero Department of Computer Science and Artificial Intelligence University

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Chapter I: Introduction to Mathematical Fuzzy Logic

Chapter I: Introduction to Mathematical Fuzzy Logic Chapter I: Introduction to Mathematical Fuzzy Logic LIBOR BĚHOUNEK, PETR CINTULA, AND PETR HÁJEK This chapter provides an introduction to the field of mathematical fuzzy logic, giving an overview of its

More information

Philosophy 220. Truth-Functional Equivalence and Consistency

Philosophy 220. Truth-Functional Equivalence and Consistency Philosophy 220 Truth-Functional Equivalence and Consistency Review Logical equivalency: The members of a pair of sentences [of natural language] are logically equivalent if and only if it is not [logically]

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Неклассическая логика Non-classical Logic. Game Theoretical Semantic for Relevant Logic 1

Неклассическая логика Non-classical Logic. Game Theoretical Semantic for Relevant Logic 1 Логические исследования Logical Investigations 2015. Т. 21. 2. С. 42 52 2015, vol. 21, no 2, pp. 42 52 УДК 510.649 Неклассическая логика Non-classical Logic V.L. Vasukov Game Theoretical Semantic for Relevant

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

Chapter 2: Introduction to Propositional Logic

Chapter 2: Introduction to Propositional Logic Chapter 2: Introduction to Propositional Logic PART ONE: History and Motivation Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus. Modern Origins:

More information

Classical Propositional Logic

Classical Propositional Logic The Language of A Henkin-style Proof for Natural Deduction January 16, 2013 The Language of A Henkin-style Proof for Natural Deduction Logic Logic is the science of inference. Given a body of information,

More information

Logic. Propositional Logic: Syntax. Wffs

Logic. Propositional Logic: Syntax. Wffs Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

A Semantics for Counterfactuals Based on Fuzzy Logic

A Semantics for Counterfactuals Based on Fuzzy Logic A Semantics for Counterfactuals Based on Fuzzy Logic In M. Peliš, V. Punčochář (eds.): The Logica Yearbook 2010, pp. 25 41, College Publications, 2011. Libor Běhounek Ondrej Majer Abstract Lewis Stalnaker

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

Natural Deduction for Propositional Logic

Natural Deduction for Propositional Logic Natural Deduction for Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 10, 2018 Bow-Yaw Wang (Academia Sinica) Natural Deduction for Propositional Logic

More information

Propositional Logic: Syntax

Propositional Logic: Syntax Logic Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and programs) epistemic

More information

(Algebraic) Proof Theory for Substructural Logics and Applications

(Algebraic) Proof Theory for Substructural Logics and Applications (Algebraic) Proof Theory for Substructural Logics and Applications Agata Ciabattoni Vienna University of Technology agata@logic.at (Algebraic) Proof Theory for Substructural Logics and Applications p.1/59

More information

Fuzzy Answer Set semantics for Residuated Logic programs

Fuzzy Answer Set semantics for Residuated Logic programs semantics for Logic Nicolás Madrid & Universidad de Málaga September 23, 2009 Aims of this paper We are studying the introduction of two kinds of negations into residuated : Default negation: This negation

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

Gödel Negation Makes Unwitnessed Consistency Crisp

Gödel Negation Makes Unwitnessed Consistency Crisp Gödel Negation Makes Unwitnessed Consistency Crisp Stefan Borgwardt, Felix Distel, and Rafael Peñaloza Faculty of Computer Science TU Dresden, Dresden, Germany [stefborg,felix,penaloza]@tcs.inf.tu-dresden.de

More information

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Typeset September 23, 2005 1 Statements or propositions Defn: A statement is an assertion

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Intelligent Systems. Propositional Logic. Dieter Fensel and Dumitru Roman. Copyright 2008 STI INNSBRUCK

Intelligent Systems. Propositional Logic. Dieter Fensel and Dumitru Roman. Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic Dieter Fensel and Dumitru Roman www.sti-innsbruck.at Copyright 2008 STI INNSBRUCK www.sti-innsbruck.at Where are we? # Title 1 Introduction 2 Propositional Logic

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) First Lecture Today (Tue 21 Jun) Read Chapters 1 and 2 Second Lecture Today (Tue 21 Jun) Read Chapter 7.1-7.4 Next Lecture (Thu 23 Jun) Read Chapters 7.5 (optional:

More information

Propositional Logic: Review

Propositional Logic: Review Propositional Logic: Review Propositional logic Logical constants: true, false Propositional symbols: P, Q, S,... (atomic sentences) Wrapping parentheses: ( ) Sentences are combined by connectives:...and...or

More information

INF3170 Logikk Spring Homework #8 For Friday, March 18

INF3170 Logikk Spring Homework #8 For Friday, March 18 INF3170 Logikk Spring 2011 Homework #8 For Friday, March 18 Problems 2 6 have to do with a more explicit proof of the restricted version of the completeness theorem: if = ϕ, then ϕ. Note that, other than

More information

Bounded Lukasiewicz Logics

Bounded Lukasiewicz Logics Bounded Lukasiewicz Logics Agata Ciabattoni 1 and George Metcalfe 2 1 Institut für Algebra und Computermathematik, Technische Universität Wien Wiedner Haupstrasse 8-10/118, A-1040 Wien, Austria agata@logic.at

More information

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION KRIPKE S THEORY OF TRUTH RICHARD G HECK, JR 1. INTRODUCTION The purpose of this note is to give a simple, easily accessible proof of the existence of the minimal fixed point, and of various maximal fixed

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer Artificial Intelligence Propositional Logic Copyright 2011 Dieter Fensel and Florian Fischer 1 Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Reasoning 5 Search Methods

More information

What is mathematical fuzzy logic

What is mathematical fuzzy logic Fuzzy Sets and Systems 157 (2006) 597 603 www.elsevier.com/locate/fss What is mathematical fuzzy logic Petr Hájek Institute of Computer Science, Academy of Sciences of the Czech Republic, 182 07 Prague,

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Propositional logic. First order logic. Alexander Clark. Autumn 2014

Propositional logic. First order logic. Alexander Clark. Autumn 2014 Propositional logic First order logic Alexander Clark Autumn 2014 Formal Logic Logical arguments are valid because of their form. Formal languages are devised to express exactly that relevant form and

More information

Hintikka-style semantic games for fuzzy logics

Hintikka-style semantic games for fuzzy logics Hintikka-style semantic games for fuzzy logics Christian G. Fermüller Theory and Logic Group Vienna University of Technology Abstract. Various types of semantics games for deductive fuzzy logics, most

More information

Towards Formal Theory of Measure on Clans of Fuzzy Sets

Towards Formal Theory of Measure on Clans of Fuzzy Sets Towards Formal Theory of Measure on Clans of Fuzzy Sets Tomáš Kroupa Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodárenskou věží 4 182 08 Prague 8 Czech

More information

KLEENE LOGIC AND INFERENCE

KLEENE LOGIC AND INFERENCE Bulletin of the Section of Logic Volume 4:1/2 (2014), pp. 4 2 Grzegorz Malinowski KLEENE LOGIC AND INFERENCE Abstract In the paper a distinguished three-valued construction by Kleene [2] is analyzed. The

More information

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1 Přednáška 12 Důkazové kalkuly Kalkul Hilbertova typu 11/29/2006 Hilbertův kalkul 1 Formal systems, Proof calculi A proof calculus (of a theory) is given by: A. a language B. a set of axioms C. a set of

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Gödel Logics a short survey

Gödel Logics a short survey Gödel Logics a short survey Norbert Preining 1 Colloquium Logicum 2016 September 2016, Hamburg 1 norbert@preining.info Today s program Development of many-valued logics t-norm based logics Gödel logics

More information

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC Iranian Journal of Fuzzy Systems Vol. 9, No. 6, (2012) pp. 31-41 31 AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC E. ESLAMI Abstract. In this paper we extend the notion of degrees of membership

More information

Fuzzy Ontologies over Lattices with T-norms

Fuzzy Ontologies over Lattices with T-norms Fuzzy Ontologies over Lattices with T-norms Stefan Borgwardt and Rafael Peñaloza Theoretical Computer Science, TU Dresden, Germany {stefborg,penaloza}@tcs.inf.tu-dresden.de 1 Introduction In some knowledge

More information

Display calculi in non-classical logics

Display calculi in non-classical logics Display calculi in non-classical logics Revantha Ramanayake Vienna University of Technology (TU Wien) Prague seminar of substructural logics March 28 29, 2014 Revantha Ramanayake (TU Wien) Display calculi

More information

Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models

Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models Agata Ciabattoni Mauro Ferrari Abstract In this paper we define cut-free hypersequent calculi for some intermediate logics semantically

More information

Where are we? Operations on fuzzy sets (cont.) Fuzzy Logic. Motivation. Crisp and fuzzy sets. Examples

Where are we? Operations on fuzzy sets (cont.) Fuzzy Logic. Motivation. Crisp and fuzzy sets. Examples Operations on fuzzy sets (cont.) G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, chapters -5 Where are we? Motivation Crisp and fuzzy sets alpha-cuts, support,

More information

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz 1 Formal systems, Proof calculi A proof calculus (of a theory) is given by: 1. a language 2. a set of axioms 3. a set of deduction rules ad 1. The definition of a language

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

arxiv: v1 [math.pr] 20 Mar 2013

arxiv: v1 [math.pr] 20 Mar 2013 Quasi Conjunction, Quasi Disjunction, T-norms and T-conorms: Probabilistic Aspects Angelo Gilio a, Giuseppe Sanfilippo b, a Dipartimento di Scienze di Base e Applicate per l Ingegneria, University of Rome

More information

Epistemic Modals and Informational Consequence

Epistemic Modals and Informational Consequence Epistemic Modals and Informational Consequence [This is a penultimate draft. Please quote only from the published version. The paper is already available through Online First at http://www.springerlink.com/content/0039-7857]

More information

3 The Semantics of the Propositional Calculus

3 The Semantics of the Propositional Calculus 3 The Semantics of the Propositional Calculus 1. Interpretations Formulas of the propositional calculus express statement forms. In chapter two, we gave informal descriptions of the meanings of the logical

More information

Applied Logic. Lecture 3 part 1 - Fuzzy logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 3 part 1 - Fuzzy logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 3 part 1 - Fuzzy logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018 1

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Left-continuous t-norms in Fuzzy Logic: an Overview

Left-continuous t-norms in Fuzzy Logic: an Overview Left-continuous t-norms in Fuzzy Logic: an Overview János Fodor Dept. of Biomathematics and Informatics, Faculty of Veterinary Sci. Szent István University, István u. 2, H-1078 Budapest, Hungary E-mail:

More information

Uninorm Based Logic As An Extension of Substructural Logics FL e

Uninorm Based Logic As An Extension of Substructural Logics FL e Uninorm Based Logic As An Extension of Substructural Logics FL e Osamu WATARI Hokkaido Automotive Engineering College Sapporo 062-0922, JAPAN watari@haec.ac.jp Mayuka F. KAWAGUCHI Division of Computer

More information

Propositional natural deduction

Propositional natural deduction Propositional natural deduction COMP2600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2016 Major proof techniques 1 / 25 Three major styles of proof in logic and mathematics Model

More information

Propositional Logic: Part II - Syntax & Proofs 0-0

Propositional Logic: Part II - Syntax & Proofs 0-0 Propositional Logic: Part II - Syntax & Proofs 0-0 Outline Syntax of Propositional Formulas Motivating Proofs Syntactic Entailment and Proofs Proof Rules for Natural Deduction Axioms, theories and theorems

More information

From Fuzzy- to Bipolar- Datalog

From Fuzzy- to Bipolar- Datalog From Fuzzy- to Bipolar- Datalog Ágnes Achs Department of Computer Science, Faculty of Engineering, University of Pécs, Pécs, Boszorkány u. 2, Hungary achs@witch.pmmf.hu Abstract Abstract. In this work

More information

Fuzzy Modal Like Approximation Operations Based on Residuated Lattices

Fuzzy Modal Like Approximation Operations Based on Residuated Lattices Fuzzy Modal Like Approximation Operations Based on Residuated Lattices Anna Maria Radzikowska Faculty of Mathematics and Information Science Warsaw University of Technology Plac Politechniki 1, 00 661

More information

General Patterns for Nonmonotonic Reasoning: From Basic Entailments to Plausible Relations

General Patterns for Nonmonotonic Reasoning: From Basic Entailments to Plausible Relations General Patterns for Nonmonotonic Reasoning: From Basic Entailments to Plausible Relations OFER ARIELI AND ARNON AVRON, Department of Computer Science, School of Mathematical Sciences, Tel-Aviv University,

More information

Argumentation and rules with exceptions

Argumentation and rules with exceptions Argumentation and rules with exceptions Bart VERHEIJ Artificial Intelligence, University of Groningen Abstract. Models of argumentation often take a given set of rules or conditionals as a starting point.

More information

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR Last time Expert Systems and Ontologies oday Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof theory Natural

More information

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Salem Benferhat CRIL-CNRS, Université d Artois rue Jean Souvraz 62307 Lens Cedex France benferhat@criluniv-artoisfr

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

References A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC. The Starting Point. Goals of foundational programmes for logic:

References A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC. The Starting Point. Goals of foundational programmes for logic: A CONSTRUCTIVE INTRODUCTION TO FIRST ORDER LOGIC Goals of foundational programmes for logic: Supply an operational semantic basis for extant logic calculi (ex post) Rational reconstruction of the practice

More information

Introduction to Intuitionistic Logic

Introduction to Intuitionistic Logic Introduction to Intuitionistic Logic August 31, 2016 We deal exclusively with propositional intuitionistic logic. The language is defined as follows. φ := p φ ψ φ ψ φ ψ φ := φ and φ ψ := (φ ψ) (ψ φ). A

More information

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic E. Turunen Tampere Univ. of Technology, P.O. Box 553, 33101 Tampere, Finland, M. Öztürk CRIL, Univ. d Artois, F 62307 Lens, France, A.

More information

Comparison of Rough-set and Interval-set Models for Uncertain Reasoning

Comparison of Rough-set and Interval-set Models for Uncertain Reasoning Yao, Y.Y. and Li, X. Comparison of rough-set and interval-set models for uncertain reasoning Fundamenta Informaticae, Vol. 27, No. 2-3, pp. 289-298, 1996. Comparison of Rough-set and Interval-set Models

More information

On the set of intermediate logics between the truth and degree preserving Lukasiewicz logics

On the set of intermediate logics between the truth and degree preserving Lukasiewicz logics On the set of intermediate logics between the truth and degree preserving Lukasiewicz logics Marcelo Coniglio 1 Francesc Esteva 2 Lluís Godo 2 1 CLE and Department of Philosophy State University of Campinas

More information