A Mathematical Model on Chikungunya Disease with Standard Incidence and Disease Induced Death Rate

Size: px
Start display at page:

Download "A Mathematical Model on Chikungunya Disease with Standard Incidence and Disease Induced Death Rate"

Transcription

1 A Matematical Model on Cikungunya Disease wit Standard ncidence and Disease nduced Deat Rate Meena Mandwariya, Vikram University, ndia, Pradeep Porwal, Vikram University, ndia, Sandeep Tiwari, Vikram University, ndia, Abstract- n tis paper, we extend te work of aowarat, Tongjaem and Tang by introducing te fact tat te model follows te disease related deats. Te model equation were solved and obtained equilibrium points of te system and analyzed for stability. t is sown tat te stability of te equilibrium points can be controlled by te basic reproduction number of te disease. Keywords- Matematical Modeling, Stability, Reproduction number, Equilibrium point, Cikungunya Disease.. TRODUCTO Cikungunya is an alpavirus tat infects umans troug bites from Aedes spp. mosquitoes. Symptoms are similar to tose of dengue fever during te acute pase and include ras and ig fever tat, in a small proportion of cases, can develop into a life-treatening aemorragic fever [7]. Additionally, joint pain tat is frequently associated wit infection can persist for over a year [9, 11] and is responsible for its name wic means tat wic bends in te Makonde language of Soutern Tanzania and ortern Mozambique. n 4, a major epidemic in Lamu, Kenya resulted in 13,5 cases [1]. Tis epidemic sparked a four-year period in wic te virus spread troug numerous islands of te ndian Ocean, ndia and parts of Souteast Asia. Cases were imported to Europe and ort America troug returning travellers, and subsequent autoctonous transmission events occurred due to te wide geograpical distribution of te vectors. Cikungunya is endemic in Asia causing several clinical cases and, sometimes, deats. Te principal vector of te Cikungunya is Aedes albopictus (sometimes called te Asian tiger because it originated from Asia and it is an aggressive mosquito), wic is also a prospective vector for Dengue transmission. Matematical models ave become te important tools for understanding te spread and control of disease. Many researcer give te study on infectious disease wit matematical modeling for te Cikungunya epidemic suc as Cabra and Mittal [3], Dubrulle et al.[4], Dumont et. al. [5], Martin et al.[6], Bacaer [], Moulay et al.[7], Anderson and May [1], Porwal and Badsa [1], Staples et. al.[13], Vazeille et. al. 7, 8 [14,15] and Woodruff et. al. [16]. n tis study, we are interested to study te Cikungunya diseases in te role of applying diseases induced deat on te dynamics of te disease. We present a matematical model and obtained a disease free and endemic equilibrium of te system and analyzed for stability. Te matematical model is based on [8]. 1

2 . THE MATHEMATCAL MODEL Te uman population is divided into te susceptible uman (S), te infected uman () and te recover uman population (R) compartment. Te mosquito population is divided into two compartments, te susceptible mosquito (S o ), te infected mosquito ( o ), te recovered mosquito does not exist. Let and denote te uman and mosquito population size. Te scematic description of model (.1) is in following fig.1. For mosquito: A S For Humans: B(1 p) S R 1 γ Fig.1: Flow cart for te Transmission of Cikungunya fever Te model equations are as follows: Human Population: ds dt d dt dr R dt B(1 p) 1 S 1S (.1) Mosquito Population: ds A S dt d S dt were B(µ) = Te birt (deat) rate of Human Population A = Te recruitment rate of Mosquito Population γ(b) = Te recovery (biting) rate of Human Population = Diseases induced deat rate = Te transmission rate of CHKV from infected mosquito to uman population = Te transmission rate of CHKV from infected uman to mosquito population µ = Te deat rate of Mosquito Population p = Te efficiency of mosquito repellent for protecting te mosquito in uman population

3 Reducing te model using normalizing te equation as: S R S S,, R and Sm, Ten te model (.1) becomes 1S A ds m B(1 p) S dt m 1S A d m ( ) dt dm Sm m (.) dt were R S and S EQULBRUM POTS Diseases free equilibrium points- Let E S,, m be te disease free equilibrium points of te system (.). Te disease free equilibrium points of te model (.) is obtained by equating te time derivative equals to zero, tat is ds d dm. dt dt dt B(1 p) S (Because ) We found tat te disease free equilibrium point B(1 p) E S,, m,, Endemic equilibrium point- Te endemic equilibrium of te model (.) is given by E S,, m By equation (.) S m m m M, were Again, By equation (.) B(1 p) S, MM 1 were M Finally, By equation (.) MM 1 B(1 p) ( ) ( ) MM 1 M 1 Sm 1A 3

4 Tus te disease endemic equilibrium point E1 S,, m were S B(1 p) MM 1 MM B(1 p) ( ) ( ) MM 1 1 m M 1 MM B(1 p) ( ) ( ) M 1 STABLTY OF THE MODEL To study te stability, system (.) can be written as 1S A m F1 B(1 p) S 1S A m F ( ) S m 3 m F Te Jacobian matrix of model (.) is given by 1mA 1SA 1mA 1SA J ( ) Sm Te Jacobian matrix at disease free equilibrium point M1S J ( ) MS 1 Sm Te eigen values of te Jacobian matrix are obtained by solving ( ) a1 a Clearly one Eigen values are negative and oter two Eigen values are given by te roots of te quadratic equation a1a were a1 SmM1S a ( ) t is clear tat all te coefficients of te caracteristics polynomial are positive if SmM1S R 1 ( ) 4

5 Ten by Rout-Hurwitz criterion te disease free equilibrium point E is locally asymptotically stable if R 1. Stability at endemic equilibrium point- Te Jacobian matrix at E1 S,, m M1m M1S 1 1 m ( ) 1 J M MS Sm its eigen value is obtained by solving 3 b1 b b3 were b M 1 1 m SmM1S b ( M1m )( ) ( ) SmM1S b3 ( M1m )( ) Te Eigen values of above caracteristics equation ave negative real part if tey satisfy te Rout-Hurwitz criteria. Tus, E 1 is local asymptotically stable for R >1 and satisfies te following conditions: 1) b 1 > ; ) b 3 > ; 3) b 1 b > b 3. COCLUSO n tis researc work, we consider te dynamics of Cikengunya epidemic model wit disease induced deat rate. Te resulting model equation were solved and analyzed. Te disease free and endemic equilibrium of te system was establised and analyzed for stability. t was found tat te disease free equilibrium to be locally asymptotically stable for R 1 and if R 1te endemic equilibrium exists and is locally asymptotically stable. REFERECES [1] Anderson, R.M. and R.M. May, nfectious Diseases of Humans: Dynamics and Control. 1st Edn., Oxford University Press, Oxford, SB: X, 199, pp: 768. [] Bacaer, Approximation of te basic reproduction number R for vector-borne diseases wit aperiodic vector population. Bull Mat Biol 69, 7, [3] Cabra M, Mittal V, Battacarya D, Rana U, Lal S, Cikungunya fever: a re emerging viral infection. ndian J Med Microbiol 6: 8, 5 1. [4] Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux A-B, Cikungunya virus and Aedes mosquitoes: Saliva is infectious as soon as two days after oral infection. PLoS One 4(6), 9. [5] Dumont Y, Ciroleu F, Domerg C, On a temporal model for te Cikungunya disease: modeling, teory and numerics. Mat Biosci 13: 8, [6] Martin E, Moutailler S, Madec Y, Failloux AB, Differential responses of te mosquito Aedes albopictus from te ndian Ocean region to two cikungunya isolates. BMC Ecol 1:8, 1. [7] Moulay, D., M.A. Aziz-Alaoui and M. Cadivel, Te Cikungunya disease: Modeling, vector and transmission global dynamics. Mat. Biosci., 9: 11, PMD: [8] aowarat, S, Tongjaem, P and Tang M., Effect of Mosquito Repellent on te Transmission Model of Cikungunya Fever, American Journal of Applied Sciences 9 (4): 1, [9] Queyriaux B, Simon F, Grandadam M, Micel R, Tolou H, et al., Clinical burden of cikungunya virus infection. Lancet nfectious Diseases 8: 8, 3 [1] Porwal P and Badsa V. H., Dynamical Study of an Sirs Epidemic Model wit Vaccinated Susceptibility, Canadian Journal of Basic and Applied Sciences (4), 14, 9-96 [11] Robillard PY, Boumani B, Gerardin P, Micault A, Fourmaintraux A, et al., Vertical maternal fetal transmission of te cikungunya virus. Ten cases among 84 pregnant women. Presse Medicale 35: 6, [1] Sergon K, juguna C, Kalani R, Ofula V, Onyango C, et al., Seroprevalence of Cikungunya Virus (CHKV) nfection on Lamu sland, Kenya, October 4. Te American Journal of Tropical Medicine and Hygiene 78: 8,

6 [13] Staples JE, Breiman RF, Powers AM, Cikungunya Fever: An Epidemiological Review of a Re-Emerging nfectious Disease. Clinical nfectious Diseases 49: 9, [14] Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Kun H, et al., Two Cikungunya solates from te Outbreak of La Reunion (ndian Ocean) Exibit Different Patterns of nfection in te Mosquito, Aedes albopictus. PLoS OE, 7. [15] Vazeille M, Jeannin C, Martin E, Scaffner F, Failloux AB, Cikungunya: a risk for Mediterranean countries? Acta Trop 15: 8,. [16] Woodruff AW, Bowen ET, Platt GS, Viral infections in travellers from tropical Africa. Br Med J 1: 1978,

Dynamical Transmission Model of Chikungunya in Thailand

Dynamical Transmission Model of Chikungunya in Thailand World Academy of cience ngineering and Tecnology nternational Journal of Matematical and Computational ciences Vol: o:8 00 Dynamical Transmission Model of Cikungunya in Tailand P Pongsumpun nternational

More information

Effect of Mosquito Repellent on the Transmission Model of Chikungunya Fever

Effect of Mosquito Repellent on the Transmission Model of Chikungunya Fever Aerican Journal of Applied Sciences 9 (4): 563-569, ISSN 546-939 Science Publications Effect of Mosquito Repellent on te Transission Model of Cikungunya Fever Surapol Naowarat, Prasit Tongjae and I. Ming

More information

A Mathematical Model of Malaria. and the Effectiveness of Drugs

A Mathematical Model of Malaria. and the Effectiveness of Drugs Applied Matematical Sciences, Vol. 7,, no. 6, 79-95 HIKARI Ltd, www.m-ikari.com A Matematical Model of Malaria and te Effectiveness of Drugs Moammed Baba Abdullai Scool of Matematical Sciences Universiti

More information

Mathematical Model on the Transmission of Dengue Fever

Mathematical Model on the Transmission of Dengue Fever Australian Journal of Basic Applied Sciences, 1(11) Special 216, Pages: 14-111 AUSTRALAN JOURNAL OF BASC AND APPLED SCENCES SSN:1991-8178 ESSN: 239-8414 Journal ome page: www.ajbasweb.com Matematical Model

More information

Simulation of Dengue Disease with Control

Simulation of Dengue Disease with Control nternational Journal of Scientific and nnovative atematical Researc (JSR) Volume 5, ssue 7, 7, PP 4-8 SSN 47-7X (Print) & SSN 47-4 (Online) DO: ttp://dx.doi.org/.4/47-4.57 www.arcjournals.org Simulation

More information

Analysis of an SEIR Epidemic Model with a General Feedback Vaccination Law

Analysis of an SEIR Epidemic Model with a General Feedback Vaccination Law Proceedings of te World Congress on Engineering 5 Vol WCE 5 July - 3 5 London U.K. Analysis of an ER Epidemic Model wit a General Feedback Vaccination Law M. De la en. Alonso-Quesada A.beas and R. Nistal

More information

Mathematical Modeling for Dengue Transmission with the Effect of Season

Mathematical Modeling for Dengue Transmission with the Effect of Season World Academy of cience, Engineering and ecnology 5 Matematical Modeling for Dengue ransmission wit te Effect of eason R. Kongnuy., and P. Pongsumpun Abstract Matematical models can be used to describe

More information

Mathematical Modeling of Malaria

Mathematical Modeling of Malaria Matematical Modeling of Malaria - Metods for Simulation of Epidemics Patrik Joansson patrijo@student.calmers.se Jacob Leander jaclea@student.calmers.se Course: Matematical Modeling MVE160 Examiner: Alexei

More information

Local Stability Analysis for Age Structural Model of Chikungunya Disease

Local Stability Analysis for Age Structural Model of Chikungunya Disease . Basic. ppl. Sci. es. 3(3)3-3 3 3 Textoad Publication ISSN 9-434 ournal of Basic and pplied Scientific esearc www.textroad.com Local Stability nalysis for ge Structural odel of Cikungunya Disease Puntani

More information

Bifurcation Analysis of a Vaccination Model of Tuberculosis Infection

Bifurcation Analysis of a Vaccination Model of Tuberculosis Infection merican Journal of pplied and Industrial Cemistry 2017; 1(1): 5-9 ttp://www.sciencepublisinggroup.com/j/ajaic doi: 10.11648/j.ajaic.20170101.12 Bifurcation nalysis of a Vaccination Model of Tuberculosis

More information

ON THE GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DISTRIBUTED DELAYS. Yukihiko Nakata. Yoichi Enatsu. Yoshiaki Muroya

ON THE GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DISTRIBUTED DELAYS. Yukihiko Nakata. Yoichi Enatsu. Yoshiaki Muroya Manuscript submitted to AIMS Journals Volume X, Number X, XX 2X Website: ttp://aimsciences.org pp. X XX ON THE GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DISTRIBUTED DELAYS Yukiiko Nakata Basque Center

More information

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Journal of Physics: Conference Series PAPER OPEN ACCESS The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Related content - Anomalous ion conduction from toroidal

More information

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission

Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical Transmission International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Modeling the Existence of Basic Offspring Number on Basic Reproductive Ratio of Dengue without Vertical

More information

Optimal Control Applied to the Spread of Influenza A(H1N1)

Optimal Control Applied to the Spread of Influenza A(H1N1) Applied Matematical Sciences, Vol. 6, 2012, no. 82, 4057-4065 Optimal Control Applied to te Spread of Influenza AH11 M. El ia 1, O. Balatif 2, J. Bouyagroumni, E. Labriji, M. Racik Laboratoire d Analyse

More information

The SEIR Dynamical Transmission Model of Dengue Disease with and Without the Vertical Transmission of the Virus

The SEIR Dynamical Transmission Model of Dengue Disease with and Without the Vertical Transmission of the Virus American Journal of Applied Sciences Original Research Paper The SEIR Dynamical Transmission Model of Dengue Disease with and Without the ertical Transmission of the irus 1 Pratchaya Chanprasopchai, I.

More information

Geographical Information System (GIS)-based maps for monitoring of entomological risk factors affecting transmission of chikungunya in Sri Lanka

Geographical Information System (GIS)-based maps for monitoring of entomological risk factors affecting transmission of chikungunya in Sri Lanka Geographical Information System (GIS)-based maps for monitoring of entomological risk factors affecting transmission of chikungunya in Sri Lanka M.D. Hapugoda 1, N.K. Gunewardena 1, P.H.D. Kusumawathie

More information

Local and Global Stability of Host-Vector Disease Models

Local and Global Stability of Host-Vector Disease Models Local and Global Stability of Host-Vector Disease Models Marc 4, 2008 Cruz Vargas-De-León 1, Jorge Armando Castro Hernández Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, México and

More information

Research Article Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus

Research Article Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus Computational and Mathematical Methods in Medicine Volume 26 Article ID 43254 3 pages http://dx.doi.org/.55/26/43254 Research Article Mathematical Model of Three Age-Structured Transmission Dynamics of

More information

On Stability Equilibrium Analysis of Endemic Malaria

On Stability Equilibrium Analysis of Endemic Malaria IOSR Journal of Applied Pysics (IOSR-JAP) e-iss: 78-486.Volume 5, Issue (o. - Dec. ), PP 7- On Stability Equilibrium Analysis of Endemic Malaria I.I Raji, A.A.Abdullai and M.O Ibraim Department of Matematics

More information

Mathematical Model of Dengue Disease Transmission with Severe DHF Compartment

Mathematical Model of Dengue Disease Transmission with Severe DHF Compartment BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 143 157 Mathematical Model of Dengue Disease Transmission with Severe

More information

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A Australian Journal of Basic and Applied Sciences, 9(13) Special 15, Pages: 67-73 ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Effect of Personal Hygiene

More information

Research Article Transmission Dynamics and Optimal Control of Malaria in Kenya

Research Article Transmission Dynamics and Optimal Control of Malaria in Kenya Hindawi Publising Corporation Discrete Dynamics in Nature and Society Volume 216 Article ID 813574 27 pages ttp://dx.doi.org/1.1155/216/813574 Researc Article Transmission Dynamics and Optimal Control

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

Cervical Cancer and HIV Diseases Co-dynamics with Optimal Control and Cost Effectiveness

Cervical Cancer and HIV Diseases Co-dynamics with Optimal Control and Cost Effectiveness Pure and Applied Matematics Journal 017; 6(4: 14-136 ttp://www.scienceblisinggroup.com/j/pamj doi: 10.11648/j.pamj.0170604.14 ISS: 36-9790 (Print; ISS: 36-981 (Online Cervical Cancer and HIV Diseases Co-dynamics

More information

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL Hor Ming An, PM. Dr. Yudariah Mohammad Yusof Abstract The establishment and spread of dengue fever is a complex phenomenon with many factors that

More information

Research Article Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection

Research Article Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection Computational and Matematical Metods in Medicine Volume 15, Article ID 6131, 14 pages ttp://dx.doi.org/1.1155/15/6131 Researc Article Estimation of te Basic Reproductive Ratio for Dengue Fever at te Take-Off

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

VECTOR CONTROL FOR THE CHIKUNGUNYA DISEASE. Yves Dumont. Frederic Chiroleu. (Communicated by Abba Gumel)

VECTOR CONTROL FOR THE CHIKUNGUNYA DISEASE. Yves Dumont. Frederic Chiroleu. (Communicated by Abba Gumel) MATHEMATCAL BOSCENCES doi:10.3934/mbe.10.7.313 AND ENGNEERNG Volume 7, Number 2, April 10 pp. 313 345 VECTOR CONTROL FOR THE CHKUNGUNYA DSEASE Yves Dumont CRAD, Umr AMAP, Montpellier, F-300, France Frederic

More information

Dynamical models of HIV-AIDS e ect on population growth

Dynamical models of HIV-AIDS e ect on population growth Dynamical models of HV-ADS e ect on population growth David Gurarie May 11, 2005 Abstract We review some known dynamical models of epidemics, given by coupled systems of di erential equations, and propose

More information

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar

Accepted Manuscript. Backward Bifurcations in Dengue Transmission Dynamics. S.M. Garba, A.B. Gumel, M.R. Abu Bakar Accepted Manuscript Backward Bifurcations in Dengue Transmission Dynamics S.M. Garba, A.B. Gumel, M.R. Abu Bakar PII: S0025-5564(08)00073-4 DOI: 10.1016/j.mbs.2008.05.002 Reference: MBS 6860 To appear

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

BioSystems 111 (2013) Contents lists available at SciVerse ScienceDirect. BioSystems

BioSystems 111 (2013) Contents lists available at SciVerse ScienceDirect. BioSystems BioSystems 111 (213) 83 11 Contents lists available at SciVerse ScienceDirect BioSystems journa l o me pa g e: www.elsevier.com/locate/biosystems Optimal control strategies and cost-effectiveness analysis

More information

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures

Mathematical Model of Dengue Disease Transmission Dynamics with Control Measures Journal of Advances in Mathematics and Computer Science 23(3): 1-12, 2017; Article no.jamcs.33955 Previously known as British Journal of Mathematics & Computer Science ISSN: 2231-0851 Mathematical Model

More information

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com ffect of ducation Campaign on Transmission Model of Conjunctivitis Suratchata Sangthongjeen, Anake Sudchumnong

More information

Analysis of an SEIR-SEI four-strain epidemic dengue model with primary and secondary infections

Analysis of an SEIR-SEI four-strain epidemic dengue model with primary and secondary infections CITATION. Raúl Isea. Reista Electrónica Conocimiento Libre y Licenciamiento (CLIC). Vol. 7 (201) 3-7 ISSN: 22-723 Analysis of an SEIR-SEI four-strain epidemic dengue model with primary and secondary infections

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A SIR Transmission Model of Political Figure Fever 1 Benny Yong and 2 Nor Azah Samat 1

More information

A Preliminary Mathematical Model for the Dynamic Transmission of Dengue, Chikungunya and Zika

A Preliminary Mathematical Model for the Dynamic Transmission of Dengue, Chikungunya and Zika American Journal of Modern Physics and Application 206; 3(2): -5 http://www.openscienceonline.com/journal/ajmpa A Preliminary Mathematical Model for the Dynamic Transmission of Dengue, Chikungunya and

More information

Bifurcations in an SEIQR Model for Childhood Diseases

Bifurcations in an SEIQR Model for Childhood Diseases Bifurcations in an SEIQR Model for Childhood Diseases David J. Gerberry Purdue University, West Lafayette, IN, USA, 47907 Conference on Computational and Mathematical Population Dynamics Campinas, Brazil

More information

Advances in Environmental Biology

Advances in Environmental Biology Adances in Enironmental Biology, 9() Special 5, Pages: 6- AENSI Journals Adances in Enironmental Biology ISSN-995-756 EISSN-998-66 Journal home page: http://www.aensiweb.com/aeb/ Mathematical Model for

More information

Mathematical modelling and controlling the dynamics of infectious diseases

Mathematical modelling and controlling the dynamics of infectious diseases Mathematical modelling and controlling the dynamics of infectious diseases Musa Mammadov Centre for Informatics and Applied Optimisation Federation University Australia 25 August 2017, School of Science,

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population International Mathematical Forum, Vol. 7, 2012, no. 50, 2481-2492 A Note on the Spread of Infectious Diseases in a Large Susceptible Population B. Barnes Department of Mathematics Kwame Nkrumah University

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

Modeling approach to assess the transmission dynamics of Hepatitis B infection in Africa

Modeling approach to assess the transmission dynamics of Hepatitis B infection in Africa Int. J. Adv. Appl. Math. Mech. 6(3) (2019) 51 61 (ISSN: 2347-2529) IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics Mechanics Modeling approach to assess

More information

Analysis of a dengue disease transmission model with clinical diagnosis in Thailand

Analysis of a dengue disease transmission model with clinical diagnosis in Thailand TEATOAL JOUAL OF MATEMATCAL MODELS AD METODS APPLED SCECES Analysis of a dengue disease transmission model with clinical diagnosis in Thailand. Kongnuy. E. aowanich, and P. Pongsumpun Corresponding author

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Temporal and Spatial Autocorrelation Statistics of Dengue Fever

Temporal and Spatial Autocorrelation Statistics of Dengue Fever Temporal and Spatial Autocorrelation Statistics of Dengue Fever Kanchana Nakhapakorn a and Supet Jirakajohnkool b a Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhonpathom

More information

An Eco-Epidemiological Predator-Prey Model where Predators Distinguish Between Susceptible and Infected Prey

An Eco-Epidemiological Predator-Prey Model where Predators Distinguish Between Susceptible and Infected Prey An Eco-Epidemiological Predator-Prey Model were Predators Distinguis Between Susceptible and Infected Prey David Greenalg 1, Qamar J. A. Kan 2 and Josep S. Pettigrew 1 1 Department of Matematics and Statistics,

More information

Smoking as Epidemic: Modeling and Simulation Study

Smoking as Epidemic: Modeling and Simulation Study American Journal of Applied Mathematics 2017; 5(1): 31-38 http://www.sciencepublishinggroup.com/j/ajam doi: 10.11648/j.ajam.20170501.14 ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) Smoking as Epidemic:

More information

Key words: HIV, prison system, epidemic model, equilibrium point, Newton s method, screening policy, quarantine policy.

Key words: HIV, prison system, epidemic model, equilibrium point, Newton s method, screening policy, quarantine policy. COMMUICATIOS I IFORMATIO AD SYSTEMS c 27 International Press Vol. 7, o. 4, pp. 313-336, 27 1 O OPTIMAL SCREEIG AD QUARATIIG POLICY I A ETWORK OF PRISOS WAI-KI CHIG, YAG COG, ZHEG-JIA BAI, AD TUE-WAI G

More information

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Ruzhang Zhao, Lijun Yang Department of Mathematical Science, Tsinghua University, China. Corresponding author. Email: lyang@math.tsinghua.edu.cn,

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Modelling the dynamics of dengue real epidemics

Modelling the dynamics of dengue real epidemics Modelling the dynamics of dengue real epidemics Claudia P. Ferreira Depto de Bioestatística, IB, UNESP E-mail: pio@ibb.unesp.br Suani T.R. Pinho Instituto de Física, Universidade Federal da Bahia E-mail:

More information

Hepatitis C Mathematical Model

Hepatitis C Mathematical Model Hepatitis C Mathematical Model Syed Ali Raza May 18, 2012 1 Introduction Hepatitis C is an infectious disease that really harms the liver. It is caused by the hepatitis C virus. The infection leads to

More information

A survey of mathematical models of Dengue fever

A survey of mathematical models of Dengue fever Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2015 A survey of mathematical models of Dengue fever

More information

Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate

Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate Dongmei Xiao Department of Mathematics, Shanghai Jiaotong University, Shanghai 00030, China E-mail: xiaodm@sjtu.edu.cn and Shigui Ruan

More information

Stability Analysis of a Model with Integrated Control for Population Growth of the Aedes Aegypti Mosquito

Stability Analysis of a Model with Integrated Control for Population Growth of the Aedes Aegypti Mosquito Appl. Mat. Inf. Sci. 11, No. 5, 139-1316 217) 139 Applied Matematics & Information Sciences An International Journal ttp://dx.doi.org/1.18576/amis/1158 Staility Analysis of a Model wit Integrated Control

More information

DENGUE TRANSMISSION MODEL WITH THE DIFFERENT INCUBATION RATE FOR EACH SEASON

DENGUE TRANSMISSION MODEL WITH THE DIFFERENT INCUBATION RATE FOR EACH SEASON DNGU TRNSMSSON MODL WTH TH DFFRNT NCUBTON RT FOR CH SSON R. Sungcasit an P. Pongsumpun Department of Matematics, Faculty of Science, King Mongkut s nstitute of Tecnology Lakrabang, Bangkok 1050,Tailan

More information

Modelling evolution in structured populations involving multiplayer interactions

Modelling evolution in structured populations involving multiplayer interactions Modelling evolution in structured populations involving multiplayer interactions Mark Broom City University London Complex Systems: Modelling, Emergence and Control City University London London June 8-9

More information

THE STABILITY AND HOPF BIFURCATION OF THE DENGUE FEVER MODEL WITH TIME DELAY 1

THE STABILITY AND HOPF BIFURCATION OF THE DENGUE FEVER MODEL WITH TIME DELAY 1 italian journal of pure and applied mathematics n. 37 2017 (139 156) 139 THE STABILITY AND HOPF BIFURCATION OF THE DENGUE FEVER MODEL WITH TIME DELAY 1 Jinlan Guan 2 Basic Courses Department Guangdong

More information

Research Article Mathematical Analysis of a Malaria Model with Partial Immunity to Reinfection

Research Article Mathematical Analysis of a Malaria Model with Partial Immunity to Reinfection Abstract and Applied Analysis Volume 2013, Article ID 405258, 17 pages ttp://dx.doi.org/10.1155/2013/405258 Researc Article Matematical Analysis of a Malaria Model wit Partial Immunity to Reinfection Li-Ming

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Available online at Commun. Math. Biol. Neurosci. 2014, 2014:5 ISSN:

Available online at   Commun. Math. Biol. Neurosci. 2014, 2014:5 ISSN: Available online at http://scik.org Commun. Math. Biol. Neurosci. 2014, 2014:5 ISSN: 2052-2541 REPRODUCTION NUMBER FOR YELLOW FEVER DYNAMICS BETWEEN PRIMATES AND HUMAN BEINGS MONICA KUNG ARO 1,, LIVINGSTONE

More information

Quasiperiodic phenomena in the Van der Pol - Mathieu equation

Quasiperiodic phenomena in the Van der Pol - Mathieu equation Quasiperiodic penomena in te Van der Pol - Matieu equation F. Veerman and F. Verulst Department of Matematics, Utrect University P.O. Box 80.010, 3508 TA Utrect Te Neterlands April 8, 009 Abstract Te Van

More information

A Simulation Model for the Chikungunya with Vectorial Capacity

A Simulation Model for the Chikungunya with Vectorial Capacity Applied Mathematical Sciences, Vol. 9, 2015, no. 140, 6953-6960 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.59585 A Simulation Model for the Chikungunya with Vectorial Capacity Steven

More information

SIR Epidemic Model with total Population size

SIR Epidemic Model with total Population size Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 7, Number 1 (2016), pp. 33-39 International Research Publication House http://www.irphouse.com SIR Epidemic Model with total Population

More information

Development and Validation of. Statistical and Deterministic Models. Used to Predict Dengue Fever in. Mexico

Development and Validation of. Statistical and Deterministic Models. Used to Predict Dengue Fever in. Mexico Development and Validation of Statistical and Deterministic Models Used to Predict Dengue Fever in Mexico A thesis presented by Aditi Hota to the Applied Mathematics Department in partial fulfillment of

More information

A New Mathematical Approach for. Rabies Endemy

A New Mathematical Approach for. Rabies Endemy Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 59-67 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39525 A New Mathematical Approach for Rabies Endemy Elif Demirci Ankara University

More information

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity

Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Analysis of a model for hepatitis C virus transmission that includes the effects of vaccination and waning immunity Daniah Tahir Uppsala University Department of Mathematics 7516 Uppsala Sweden daniahtahir@gmailcom

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

(mathematical epidemiology)

(mathematical epidemiology) 1. 30 (mathematical epidemiology) 2. 1927 10) * Anderson and May 1), Diekmann and Heesterbeek 3) 7) 14) NO. 538, APRIL 2008 1 S(t), I(t), R(t) (susceptibles ) (infectives ) (recovered/removed = βs(t)i(t)

More information

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment

Dynamical Analysis of Plant Disease Model with Roguing, Replanting and Preventive Treatment 4 th ICRIEMS Proceedings Published by The Faculty Of Mathematics And Natural Sciences Yogyakarta State University, ISBN 978-62-74529-2-3 Dynamical Analysis of Plant Disease Model with Roguing, Replanting

More information

Behavior Stability in two SIR-Style. Models for HIV

Behavior Stability in two SIR-Style. Models for HIV Int. Journal of Math. Analysis, Vol. 4, 2010, no. 9, 427-434 Behavior Stability in two SIR-Style Models for HIV S. Seddighi Chaharborj 2,1, M. R. Abu Bakar 2, I. Fudziah 2 I. Noor Akma 2, A. H. Malik 2,

More information

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 541-551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412403 A Model on the Impact of Treating Typhoid with Anti-malarial:

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants

Analysis of SIR Mathematical Model for Malaria disease with the inclusion of Infected Immigrants IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 14, Issue 5 Ver. I (Sep - Oct 218), PP 1-21 www.iosrjournals.org Analysis of SIR Mathematical Model for Malaria disease

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Mathematical Modelling of Endemic Malaria Transmission

Mathematical Modelling of Endemic Malaria Transmission American Journal of Applied Mathematics 2015; 3(2): 36-46 Published online February 12, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150302.12 ISSN: 2330-0043 (Print); ISSN:

More information

Stability Analysis of Deterministic Mathematical Model for Zika Virus

Stability Analysis of Deterministic Mathematical Model for Zika Virus British Journal of Mathematics & Computer Science 19(4: 1-10, 2016; Article no.bjmcs.29834 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Stability Analysis of Deterministic Mathematical

More information

Simple Mathematical Model for Malaria Transmission

Simple Mathematical Model for Malaria Transmission Journal of Advances in Mathematics and Computer Science 25(6): 1-24, 217; Article no.jamcs.37843 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-851) Simple

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information

Fixed Point Analysis of Kermack Mckendrick SIR Model

Fixed Point Analysis of Kermack Mckendrick SIR Model Kalpa Publications in Computing Volume, 17, Pages 13 19 ICRISET17. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Computing Fixed Point Analysis

More information

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY L.Hu, J.Deng, F.Deng, H.Lin, C.Yan, Y.Li, H.Liu, W.Cao (Cina University of Petroleum) Sale gas formations

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Thursday. Threshold and Sensitivity Analysis

Thursday. Threshold and Sensitivity Analysis Thursday Threshold and Sensitivity Analysis SIR Model without Demography ds dt di dt dr dt = βsi (2.1) = βsi γi (2.2) = γi (2.3) With initial conditions S(0) > 0, I(0) > 0, and R(0) = 0. This model can

More information

Effect of Time Delay on the Transmission of Dengue Fever

Effect of Time Delay on the Transmission of Dengue Fever World Academy of Science, Engineering Technology International Journal of Mathematical Computational Sciences Effect of Time Delay on the Transmission of Dengue Fever K. Patanarapelert I.M. Tang International

More information

Threshold Conditions in SIR STD Models

Threshold Conditions in SIR STD Models Applied Mathematical Sciences, Vol. 3, 2009, no. 7, 333-349 Threshold Conditions in SIR STD Models S. Seddighi Chaharborj 1,, M. R. Abu Bakar 1, V. Alli 2 and A. H. Malik 1 1 Department of Mathematics,

More information

Modeling the Spread of Epidemic Cholera: an Age-Structured Model

Modeling the Spread of Epidemic Cholera: an Age-Structured Model Modeling the Spread of Epidemic Cholera: an Age-Structured Model Alen Agheksanterian Matthias K. Gobbert November 20, 2007 Abstract Occasional outbreaks of cholera epidemics across the world demonstrate

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

APPLICATION OF OPTIMAL CONTROL TO THE EPIDEMIOLOGY OF MALARIA

APPLICATION OF OPTIMAL CONTROL TO THE EPIDEMIOLOGY OF MALARIA Electronic Journal of Differential Equations, Vol. 212 (212, No. 81, pp. 1 22. ISSN: 172-6691. URL: ttp://ejde.mat.txstate.edu or ttp://ejde.mat.unt.edu ftp ejde.mat.txstate.edu APPLICATION OF OPTIMAL

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section.1 Derivatives and Rates of Cange 2016 Kiryl Tsiscanka Derivatives and Rates of Cange Measuring te Rate of Increase of Blood Alcool Concentration Biomedical scientists ave studied te cemical and

More information

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population

Mathematical Model of Tuberculosis Spread within Two Groups of Infected Population Applied Mathematical Sciences, Vol. 10, 2016, no. 43, 2131-2140 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.63130 Mathematical Model of Tuberculosis Spread within Two Groups of Infected

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

arxiv: v1 [math.dg] 4 Feb 2015

arxiv: v1 [math.dg] 4 Feb 2015 CENTROID OF TRIANGLES ASSOCIATED WITH A CURVE arxiv:1502.01205v1 [mat.dg] 4 Feb 2015 Dong-Soo Kim and Dong Seo Kim Abstract. Arcimedes sowed tat te area between a parabola and any cord AB on te parabola

More information