ON SOME EQUIVALENCE RELATION ρ IN THE CLASS OF BOUNDED SEQUENCES OF POSITIVE REAL NUMBERS

Size: px
Start display at page:

Download "ON SOME EQUIVALENCE RELATION ρ IN THE CLASS OF BOUNDED SEQUENCES OF POSITIVE REAL NUMBERS"

Transcription

1 International Journal of Pure and Applied Mathematics Volume 94 No , ISSN: (printed version); ISSN: (on-line version) url: doi: PAijpam.eu ON SOME EQUIVALENCE RELATION ρ IN THE CLASS OF BOUNDED SEQUENCES OF POSITIVE REAL NUMBERS Micha l Różańsi 1, Damian S lota 2 Marcin Szweda 3, Roman Witu la 4 1,2,3,4 Institute of Mathematics Silesian University of Technology Kaszubsa 23, Gliwice, POLAND Abstract: In this paper some equivalence relation in the class of bounded sequences of positive numbers is discussed. This relation enables to understand better the permutations preserving divergence of the same rate, introduced by Johnston. It also gives the possibility to prove, in ew way, the combinatoric characterization of these permutations. AMS Subject Classification: 40A05, 05A05 Key Words: ivergence of series at the same rate, permutation preserving divergence of the same rate 1. Introduction Motivation for preparing this paper was Johnston s paper [3] and the rearrangements that preserve rates of divergence discussed in it. Let us recall, after Johnston, some notation. Received: May 4, 2014 Correspondence author c 2014 Academic Publications, Ltd. url:

2 252 M. Różańsi, D. S lota, M. Szweda, R. Witu la Definition 1. Let a and b bethe divergent series of positive terms. We say that a and b diverge at the same rate if 0 < α = liminf n a limsup n b a = β <. (1) b If α = β = 1 in the above relation, then we say that these series are asymptotic and we write a b. Definition 2. A permutation p on N is called the permutation preserving divergence of the same rate if for each divergent series a, with positive and bounded sequence of terms, both series a and its p-rearrangement a p() diverge at the same rate. Johnston observed that the family of all permutations on N preserving divergence of the same rate forms a group and it is not the normal subgroup of the group of all permutations on N. Furthermore, he proved the following combinatoric characterization of these permutations. Theorem 3. Let p be a permutation on N. Then p is a permutation preserving divergence of the same rate if and only if there exists N = N(p) N such that card(i \p(i)) N (2) for every finite interval I N. In this paper we introduce some equivalence relation ρ, defined in the family of bounded sequences of positive numbers, which gives us the possibility to investigate more carefully the permutations preserving divergence of the same rate, presented and discussed by E. Johnston. This relation enables also to obtain easily the Johnston characterization (see Theorem 3 from above) shedding some new light on condition (2) (see Corollary 10 at the end of this paper). 2. Equivalence Relation ρ Let d denote the class of bounded sequences of positive real numbers. We introduce in class d relation ρ defined in the following way: { }ρ{ } for every increasing sequence {n i } of natural

3 ON SOME EQUIVALENCE RELATION ρ IN numbers both series i and i are simultaneously either convergent or divergent, for every { },{ } d. One can easily verify that ρ is the equivalence relation in d. Let { },{ } d. If { ani = + and bni < + for some increasing sequence {n i } N, (3) then sequences { } and { } belong certainly to different equivalence classes with respect to relation ρ and vice versa. It appears that condition (3) is equivalent with the existence of increasing sequence {n i } N such that ani = + and lim i i = + (see Theorem 4). It can be also shown (see Theorem 6) that if sequences { },{ } d belong to the same equivalence class with respect to relation ρ, then there exist the constants m,m > 0, m M, such that >M < + and <m < +, (if the set of subscripts is empty then we tae the sum as equal to 0), from which we get easily that 0 < liminf and limsup < + (4) (see Theorem 7). We note that the above characterization is not sufficient for belongingness of sequences { } and { } from d to the same equivalence class with respect to relation ρ (see Remar 9). Whereas if { },{ } d and liminf = 0 or limsup = +, then from (4) it follows that sequences { } and { } belong to different equivalence classes with respect to relation ρ. We present now the theorems mentioned above.

4 254 M. Różańsi, D. S lota, M. Szweda, R. Witu la Theorem 4. Let{ },{ } d. For existenceofanincreasingsequenceof positive integers {n i }, such that i = + and i < +, it is necessary and sufficient that there exists an increasing sequence {n i } N such that ani = + and lim an i i = +. Proof. Let c n,d n > 0,n 1. We show that if c n = + and d n < + then there exists an increasing sequence {n i } N such that cni = + and lim c n i d ni = +. (5) First of all, let us notice that then, for each M > 0, if {n i } = {n N c n Md n } then cni = +. By this property we define now two auxiliary sets of indices {t n } and { n }. Let In general N 1 = {n N c n d n }, 1 = minn 1, { } t 1 = min t N 1 c n 1. 1 n t, n N 1 N s = {n N n > t s 1 i c n sd n }, s = minn s, { } t s = min t N s c n 1, for every s N, s > 1. s n t, n N s One can easily verify that the increasing sequence {n i } of all elements of the following set {n N there exists s N such that s n t s and n N s } fulfils conditions (5). Now, let us assume that there exists an increasing sequence {n i } N such that i = + and lim an i i = + and i,i 1, i 1. Let s = min{ N i 2 s i for every i }, s 1. We form two auxiliary sequences {t s } and {l s }: l 1 = 1, { t 1 = min t N t l 1 and t } i 1, i=l 1

5 ON SOME EQUIVALENCE RELATION ρ IN l s = max{t s 1 +1, s }, { t s = min t N t l s and t } i 1, i=l s for every s N, s > 1. Let {n i } i=1 be the increasing sequence of all elements of set {n i l s i t s }. Then we have bn an s N = i i s 1 i=l s s 1 t s = t s i 1 = +, i s 1 i=l s s 1 ( 1 ts ) 2 s i i=l s s s = 2 < +. Corollary 5. Let, > 0, lim = 0. If = +, then there exists an increasing sequence {n i } N such that ani = + and ani i < +. Proof. Itisenoughtonoticethat = + andlim an = lim 1 = +, and to apply Theorem 4. Theorem 6. Let { },{ } d, = = +. If sequences { } and { } belong to the same equivalence class with respect to relation ρ, then there exists M > 0 such that < + (if {n N > M } =, >M then := 0). >M Proof. Let us suppose that for each M > 0 >M = +. (6) For simplicity we assume that 1, n 1. We form two auxiliary sequences { s } and {t s } of positive integers 1 = min{ N a > b },

6 256 M. Różańsi, D. S lota, M. Szweda, R. Witu la { t 1 = min t N t 1 and } 1, 1 n t s = min{ N > t s 1 and a > 2 s 1 b }, { } t s = min t N t s and 1, s n t >2 s 1 for every s > 1. Let {n i } be the increasing sequence of all elements of set {n N s n t s and > 2 s 1 }. s N We can easily chec that i = + and i < +. Indeed, we have ani = s 1 s n t s >2 s 1 s 11 = +, bni = s 1 s n t s >2 s 1 s s 1 s n t s >2 s 1 s 1 2 = 4 < +. 2s 1 Thus the sequences { } and { } belong to the different equivalence classes with respect to relation ρ which contradicts the assumption. Theorem 7. Let { },{ } d. If sequences { } and { } belong to the same equivalence class with respect to relation ρ, then 0 < liminf limsup < +. Proof. It is sufficient to confine the considerations to the case = bn = +. Let M > 0 be such as in Theorem 6. Let us put 0 if {n N 1 n and > M } =, := otherwise, 1 n >M

7 ON SOME EQUIVALENCE RELATION ρ IN and similarly 0 if {n N 1 n and > M } =, := otherwise. 1 n >M Since n 1 < +, therefore = + must hold and from this, for M sufficiently large N we get = + 1 n M + 1 n M + 1 n M 1 n M M + n 1 1 n M But condition = + implies that also = +, thus M M ( )/( lim ) = 0, which gives the boundedness of sequence 1 n M {( )/( )} n. Analogically we prove that sequence b. is bounded as well. {( )/( )} Corollary 8. Let { },{ } d. If the one of the following conditions hold lim inf = 0 or limsup = +, then the sequences { } and { } belong to the different equivalence classes with respect to relation ρ. ( )/( ) In other words, if limsup = +, then there exist the positive integers {n i } such that ani = + and bni < +.

8 258 M. Różańsi, D. S lota, M. Szweda, R. Witu la Remar 9. Theorem 7 cannot be inverted. More precisely, there exist sequences { },{ } d satisfying condition (1) and belonging to the different equivalence classes with respect to relation ρ. For this purpose let us set for every n N. = n 1, { 1 if n = 2, N, = 2 n if n is odd, ( )/( ) We easily chec that lim = 1 and, in spite of this, sequences { } and { } belong to the different equivalence classes with respect to relation ρ. Indeed, we have 2 1 = 1a = +, = 1b < +. 1 First we observe that if 3. Proof of Johnston s Theorem 3 sup{card(i \p(i))} =, where the supremum is taen over all finite intervals I in N, then there exists a sequence {I n } of finite intervals in N such that card(i n ) as n, I n p(i n ) =, and < l for any I n p(i n ), l I n+1 p(i n+1 ) and n N. Hence we get A p(a) =, where A := I n, and the set A is infinite. This implies that there exists a n N series a of positive terms such that a is divergent and simultaneously A

9 ON SOME EQUIVALENCE RELATION ρ IN the series a p() is convergent, which means that p is not a permutation on A N preserving divergence of the same rate. On the other hand, if M N and card(i \ p(i)) M, for every finite interval I in N, then for every n N there exist the disjoint sets A n,b n N such that p([1,n]) = ([1,n]\A n ) B n, card(a n B n ) = M. Next, if {a } is a bounded sequence of positive terms and the series a is divergent then a as n, a p() = a A n a + B n a, which implies that ( )/( ) n a p() a 1 and it means that p is the permutation preserving divergence of the same rate. Corollary 10. Let p be a permutation on N. If sup{card(i \p(i))} =, (7) where supremum is taen over all finite intervals I in N, then there exists a divergent series with { } d such that the sequences { } and {a p(n) } belong to the different equivalence classes with respect to relation ρ. We note that condition (7) could be replaced by the following strange condition: there exists an infinite set A N such that A p(a) =. Furthermore, if for every { } d the sequences { } and {a p(n) } belong to the same equivalence class with respect to relation ρ, then there exist N = N(p) N such that p(n) = n for every n N, n N.

10 260 M. Różańsi, D. S lota, M. Szweda, R. Witu la 4. Final Comments The subject matter using or referring to the quotients of the nth partial sums of series, discussed here, appears in many papers of various authors (see [1], [2], [4]). With no doubts, this subject represents a very useful technical tool and we thin that the results presented in this paper can contribute in consolidating this matter. Next, from Theorem 3 it follows that every permutation p on N preserving divergence of the same rate is simultaneously a convergent permutation, i.e. permutation satisfying the following condition: for every convergent real series an (either complex series or even vector series in complete normed space) the p-rearranged series a p(n) is also convergent. It is well now that the convergent permutations preserve also the sum of rearranged series (see [5], [6], [7]). We note that if q is a bijection of N onto some subset W of N with finite complement and the condition (2) holds, then q is a bijection preserving convergence in sense of definition of the convergent permutation p given above. But there is one spectacular difference between these, so called, convergent bijections and convergent permutations. Convergent bijections generally do not preserve the sum of rearranged series. References [1] E. Hensz-Ch adzyńsa, R. Jajte, A. Pasziewicz, Random stain, Probab. Math. Statist., 18, No. 1 (1988), [2] D. Holy, L. Matejica, L. Pinda, Some remars of faster convergent infinite series, Math. Slovaca, 62, No. 4 (2012), , doi: /s [3] E.H. Johnston, Rearrangements that preserve rates of divergence, Can. J. Math., 34, No. 4 (1982), , doi: /CJM [4] F. Prus-Wiśniowsi, On inclusion between Watermann classes and Chanturyia classes, Tatra Mt. Math. Publ., 19 (2000), [5] R. Witu la, Convergence preserving functions, Nieuw Arch. Wis. IV. Ser., 13, No. 1 (1995), [6] R. Witu la, Permutations preserving the sum of rearranged real series, Cent. Eur. J. Math., 11, No. 5 (2013), , doi: /s x.

11 ON SOME EQUIVALENCE RELATION ρ IN [7] R. Witu la, Permutations preserving the convergence or the sum of series a survey, in R. Witu la, D. S lota, W. Ho lubowsi (eds.), Monograph on the Occasion of 100 th Birthday Anniversary of Zygmunt Zahorsi, Wyd. Pol. Śl., Poland (2014), in press.

12 262

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 24, No. 3, pp. 1038 1045 c 2010 Society for Industrial and Applied Mathematics SET SYSTEMS WITHOUT A STRONG SIMPLEX TAO JIANG, OLEG PIKHURKO, AND ZELEALEM YILMA Abstract. A

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

Definitions & Theorems

Definitions & Theorems Definitions & Theorems Math 147, Fall 2009 December 19, 2010 Contents 1 Logic 2 1.1 Sets.................................................. 2 1.2 The Peano axioms..........................................

More information

AN IMPROVED POISSON TO APPROXIMATE THE NEGATIVE BINOMIAL DISTRIBUTION

AN IMPROVED POISSON TO APPROXIMATE THE NEGATIVE BINOMIAL DISTRIBUTION International Journal of Pure and Applied Mathematics Volume 9 No. 3 204, 369-373 ISSN: 3-8080 printed version); ISSN: 34-3395 on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/0.2732/ijpam.v9i3.9

More information

arxiv: v3 [math.ac] 29 Aug 2018

arxiv: v3 [math.ac] 29 Aug 2018 ON THE LOCAL K-ELASTICITIES OF PUISEUX MONOIDS MARLY GOTTI arxiv:1712.00837v3 [math.ac] 29 Aug 2018 Abstract. If M is an atomic monoid and x is a nonzero non-unit element of M, then the set of lengths

More information

Introduction to Real Analysis

Introduction to Real Analysis Christopher Heil Introduction to Real Analysis Chapter 0 Online Expanded Chapter on Notation and Preliminaries Last Updated: January 9, 2018 c 2018 by Christopher Heil Chapter 0 Notation and Preliminaries:

More information

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9 1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

General Notation. Exercises and Problems

General Notation. Exercises and Problems Exercises and Problems The text contains both Exercises and Problems. The exercises are incorporated into the development of the theory in each section. Additional Problems appear at the end of most sections.

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Lecture 8: Equivalence Relations

Lecture 8: Equivalence Relations Lecture 8: Equivalence Relations 1 Equivalence Relations Next interesting relation we will study is equivalence relation. Definition 1.1 (Equivalence Relation). Let A be a set and let be a relation on

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

n if n is even. f (n)=

n if n is even. f (n)= 6 2. PROBABILITY 4. Countable and uncountable Definition 32. An set Ω is said to be finite if there is an n N and a bijection from Ω onto [n]. An infinite set Ω is said to be countable if there is a bijection

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Tripotents: a class of strongly clean elements in rings

Tripotents: a class of strongly clean elements in rings DOI: 0.2478/auom-208-0003 An. Şt. Univ. Ovidius Constanţa Vol. 26(),208, 69 80 Tripotents: a class of strongly clean elements in rings Grigore Călugăreanu Abstract Periodic elements in a ring generate

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Banach Spaces II: Elementary Banach Space Theory

Banach Spaces II: Elementary Banach Space Theory BS II c Gabriel Nagy Banach Spaces II: Elementary Banach Space Theory Notes from the Functional Analysis Course (Fall 07 - Spring 08) In this section we introduce Banach spaces and examine some of their

More information

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION International Journal of Pure and Applied Mathematics Volume 92 No. 2 24, 69-79 ISSN: 3-88 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/.2732/ijpam.v92i2.3

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Introduction In this short article, we will describe some basic notions on cardinality of sets. Given two

More information

1. Introduction. Let the distribution of a non-negative integer-valued random variable X be defined as follows:

1. Introduction. Let the distribution of a non-negative integer-valued random variable X be defined as follows: International Journal of Pure and Applied Mathematics Volume 82 No. 5 2013, 737-745 ISSN: 1311-8080 (printed version); ISSN: 1314-335 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/.12732/ijpam.v82i5.7

More information

Uniform density u and corresponding I u - convergence

Uniform density u and corresponding I u - convergence Mathematical Communications (2006), -7 Uniform density u and corresponding I u - convergence Vladimir Baláž and Tibor Šalát Abstract. The concept of a uniform density of subsets A of the set N of positive

More information

APPROXIMATION OF GENERALIZED BINOMIAL BY POISSON DISTRIBUTION FUNCTION

APPROXIMATION OF GENERALIZED BINOMIAL BY POISSON DISTRIBUTION FUNCTION International Journal of Pure and Applied Mathematics Volume 86 No. 2 2013, 403-410 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v86i2.14

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Automorphism groups of wreath product digraphs

Automorphism groups of wreath product digraphs Automorphism groups of wreath product digraphs Edward Dobson Department of Mathematics and Statistics Mississippi State University PO Drawer MA Mississippi State, MS 39762 USA dobson@math.msstate.edu Joy

More information

BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP

BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP Trends in Mathematics Information Center for Mathematical Sciences Volume 4, Number 1, June 2001, Pages 71 75 BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP HI-JOON CHAE Abstract. A Bruhat-Tits building

More information

Math 430 Exam 2, Fall 2008

Math 430 Exam 2, Fall 2008 Do not distribute. IIT Dept. Applied Mathematics, February 16, 2009 1 PRINT Last name: Signature: First name: Student ID: Math 430 Exam 2, Fall 2008 These theorems may be cited at any time during the test

More information

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement.

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement. Math 421, Homework #6 Solutions (1) Let E R n Show that (Ē) c = (E c ) o, i.e. the complement of the closure is the interior of the complement. 1 Proof. Before giving the proof we recall characterizations

More information

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Yuval Filmus April 4, 2017 Abstract The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of

More information

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

More information

REVIEW FOR THIRD 3200 MIDTERM

REVIEW FOR THIRD 3200 MIDTERM REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =

More information

On the statistical type convergence and fundamentality in metric spaces

On the statistical type convergence and fundamentality in metric spaces Caspian Journal of Applied Mathematics, Ecology and Economics V. 2, No, 204, July ISSN 560-4055 On the statistical type convergence and fundamentality in metric spaces B.T. Bilalov, T.Y. Nazarova Abstract.

More information

1 Introduction. Σ 0 1 and Π 0 1 equivalence structures

1 Introduction. Σ 0 1 and Π 0 1 equivalence structures Σ 0 1 and Π 0 1 equivalence structures Douglas Cenzer, Department of Mathematics University of Florida, Gainesville, FL 32611 email: cenzer@math.ufl.edu Valentina Harizanov, Department of Mathematics George

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Disconjugate operators and related differential equations

Disconjugate operators and related differential equations Disconjugate operators and related differential equations Mariella Cecchi, Zuzana Došlá and Mauro Marini Dedicated to J. Vosmanský on occasion of his 65 th birthday Abstract: There are studied asymptotic

More information

Extremal I-Limit Points Of Double Sequences

Extremal I-Limit Points Of Double Sequences Applied Mathematics E-Notes, 8(2008), 131-137 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Extremal I-Limit Points Of Double Sequences Mehmet Gürdal, Ahmet Şahiner

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

BP -HOMOLOGY AND AN IMPLICATION FOR SYMMETRIC POLYNOMIALS. 1. Introduction and results

BP -HOMOLOGY AND AN IMPLICATION FOR SYMMETRIC POLYNOMIALS. 1. Introduction and results BP -HOMOLOGY AND AN IMPLICATION FOR SYMMETRIC POLYNOMIALS DONALD M. DAVIS Abstract. We determine the BP -module structure, mod higher filtration, of the main part of the BP -homology of elementary 2- groups.

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 22 (2006), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 22 (2006), ISSN Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 22 (2006), 27 235 www.emis.de/journals ISSN 786-009 LINKAGES BETWEEN THE GAUSS MAP AND THE STERN-BROCOT TREE BRUCE BATES, MARTIN BUNDER, AND KEITH

More information

On zero sum-partition of Abelian groups into three sets and group distance magic labeling

On zero sum-partition of Abelian groups into three sets and group distance magic labeling Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 13 (2017) 417 425 On zero sum-partition of Abelian groups into three

More information

Slow P -point Ultrafilters

Slow P -point Ultrafilters Slow P -point Ultrafilters Renling Jin College of Charleston jinr@cofc.edu Abstract We answer a question of Blass, Di Nasso, and Forti [2, 7] by proving, assuming Continuum Hypothesis or Martin s Axiom,

More information

GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES

GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES Journal of Applied Analysis Vol. 7, No. 1 (2001), pp. 131 150 GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES M. DINDOŠ Received September 7, 2000 and, in revised form, February

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

Solutions to Homework Problems

Solutions to Homework Problems Solutions to Homework Problems November 11, 2017 1 Problems II: Sets and Functions (Page 117-118) 11. Give a proof or a counterexample of the following statements: (vi) x R, y R, xy 0; (x) ( x R, y R,

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

L p +L and L p L are not isomorphic for all 1 p <, p 2

L p +L and L p L are not isomorphic for all 1 p <, p 2 L p +L and L p L are not isomorphic for all 1 p

More information

Chapter Generating Functions

Chapter Generating Functions Chapter 8.1.1-8.1.2. Generating Functions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 8. Generating Functions Math 184A / Fall 2017 1 / 63 Ordinary Generating Functions (OGF) Let a n (n = 0, 1,...)

More information

Study of some equivalence classes of primes

Study of some equivalence classes of primes Notes on Number Theory and Discrete Mathematics Print ISSN 3-532, Online ISSN 2367-8275 Vol 23, 27, No 2, 2 29 Study of some equivalence classes of primes Sadani Idir Department of Mathematics University

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Atomic effect algebras with compression bases

Atomic effect algebras with compression bases JOURNAL OF MATHEMATICAL PHYSICS 52, 013512 (2011) Atomic effect algebras with compression bases Dan Caragheorgheopol 1, Josef Tkadlec 2 1 Department of Mathematics and Informatics, Technical University

More information

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.

More information

EXISTENCE RESULTS FOR AN ELLIPTIC DIRICHLET PROBLEM

EXISTENCE RESULTS FOR AN ELLIPTIC DIRICHLET PROBLEM LE MATEMATICHE Vol. LXVI (2) Fasc. I pp. 33 4 doi:.448/2.66..3 EXISTENCE RESULTS FOR AN ELLIPTIC DIRICHLET PROBLEM GIUSEPPINA D AGUÌ - GIOVANNI MOLICA BISCI The main purpose of this paper is to present

More information

ON SOME SUBCLASSES OF THE FAMILY OF DARBOUX BAIRE 1 FUNCTIONS. Gertruda Ivanova and Elżbieta Wagner-Bojakowska

ON SOME SUBCLASSES OF THE FAMILY OF DARBOUX BAIRE 1 FUNCTIONS. Gertruda Ivanova and Elżbieta Wagner-Bojakowska Opuscula Math. 34, no. 4 (014), 777 788 http://dx.doi.org/10.7494/opmath.014.34.4.777 Opuscula Mathematica This work is dedicated to Professor Leon Mikołajczyk on the occasion of his 85th birthday. ON

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 39 Chapter Summary The Basics

More information

MATH 426, TOPOLOGY. p 1.

MATH 426, TOPOLOGY. p 1. MATH 426, TOPOLOGY THE p-norms In this document we assume an extended real line, where is an element greater than all real numbers; the interval notation [1, ] will be used to mean [1, ) { }. 1. THE p

More information

U e = E (U\E) e E e + U\E e. (1.6)

U e = E (U\E) e E e + U\E e. (1.6) 12 1 Lebesgue Measure 1.2 Lebesgue Measure In Section 1.1 we defined the exterior Lebesgue measure of every subset of R d. Unfortunately, a major disadvantage of exterior measure is that it does not satisfy

More information

ASYMPTOTICALLY I 2 -LACUNARY STATISTICAL EQUIVALENCE OF DOUBLE SEQUENCES OF SETS

ASYMPTOTICALLY I 2 -LACUNARY STATISTICAL EQUIVALENCE OF DOUBLE SEQUENCES OF SETS Journal of Inequalities and Special Functions ISSN: 227-4303, URL: http://ilirias.com/jiasf Volume 7 Issue 2(206, Pages 44-56. ASYMPTOTICALLY I 2 -LACUNARY STATISTICAL EQUIVALENCE OF DOUBLE SEQUENCES OF

More information

INVERSE LIMITS AND PROFINITE GROUPS

INVERSE LIMITS AND PROFINITE GROUPS INVERSE LIMITS AND PROFINITE GROUPS BRIAN OSSERMAN We discuss the inverse limit construction, and consider the special case of inverse limits of finite groups, which should best be considered as topological

More information

MULTI-RESTRAINED STIRLING NUMBERS

MULTI-RESTRAINED STIRLING NUMBERS MULTI-RESTRAINED STIRLING NUMBERS JI YOUNG CHOI DEPARTMENT OF MATHEMATICS SHIPPENSBURG UNIVERSITY SHIPPENSBURG, PA 17257, U.S.A. Abstract. Given positive integers n, k, and m, the (n, k)-th m- restrained

More information

TWO TYPES OF ONTOLOGICAL STRUCTURE: Concepts Structures and Lattices of Elementary Situations

TWO TYPES OF ONTOLOGICAL STRUCTURE: Concepts Structures and Lattices of Elementary Situations Logic and Logical Philosophy Volume 21 (2012), 165 174 DOI: 10.12775/LLP.2012.009 Janusz Kaczmarek TWO TYPES OF ONTOLOGICAL STRUCTURE: Concepts Structures and Lattices of Elementary Situations Abstract.

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

Math 172 HW 1 Solutions

Math 172 HW 1 Solutions Math 172 HW 1 Solutions Joey Zou April 15, 2017 Problem 1: Prove that the Cantor set C constructed in the text is totally disconnected and perfect. In other words, given two distinct points x, y C, there

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

Ch6 Addition Proofs of Theorems on permutations.

Ch6 Addition Proofs of Theorems on permutations. Ch6 Addition Proofs of Theorems on permutations. Definition Two permutations ρ and π of a set A are disjoint if every element moved by ρ is fixed by π and every element moved by π is fixed by ρ. (In other

More information

From Calculus II: An infinite series is an expression of the form

From Calculus II: An infinite series is an expression of the form MATH 3333 INTERMEDIATE ANALYSIS BLECHER NOTES 75 8. Infinite series of numbers From Calculus II: An infinite series is an expression of the form = a m + a m+ + a m+2 + ( ) Let us call this expression (*).

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Small Forbidden Configurations III

Small Forbidden Configurations III Small Forbidden Configurations III R. P. Anstee and N. Kamoosi Mathematics Department The University of British Columbia Vancouver, B.C. Canada V6T Z anstee@math.ubc.ca Submitted: Nov, 005; Accepted: Nov

More information

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

PAijpam.eu ON SUBSPACE-TRANSITIVE OPERATORS

PAijpam.eu ON SUBSPACE-TRANSITIVE OPERATORS International Journal of Pure and Applied Mathematics Volume 84 No. 5 2013, 643-649 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i5.15

More information

BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS

BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS Discussiones Mathematicae Differential Inclusions, Control and Optimization 35 (2015) 197 207 doi:10.7151/dmdico.1173 BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS Micha l Kisielewicz Faculty of Mathematics,

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Appendix A. Sequences and series. A.1 Sequences. Definition A.1 A sequence is a function N R.

Appendix A. Sequences and series. A.1 Sequences. Definition A.1 A sequence is a function N R. Appendix A Sequences and series This course has for prerequisite a course (or two) of calculus. The purpose of this appendix is to review basic definitions and facts concerning sequences and series, which

More information

Section 7.5: Cardinality

Section 7.5: Cardinality Section 7: Cardinality In this section, we shall consider extend some of the ideas we have developed to infinite sets One interesting consequence of this discussion is that we shall see there are as many

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra 206/7 MA03 Introduction to Abstract Mathematics Second part, Analysis and Algebra Amol Sasane Revised by Jozef Skokan, Konrad Swanepoel, and Graham Brightwell Copyright c London School of Economics 206

More information

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem.

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. Limit of a sequence Definition. Sequence {x n } of real numbers is said to converge to a real number a if for

More information

Note: all spaces are assumed to be path connected and locally path connected.

Note: all spaces are assumed to be path connected and locally path connected. Homework 2 Note: all spaces are assumed to be path connected and locally path connected. 1: Let X be the figure 8 space. Precisely define a space X and a map p : X X which is the universal cover. Check

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE

APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE WILLIE WAI-YEUNG WONG. Introduction This set of notes is meant to describe some aspects of polynomial approximations to continuous

More information

NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS. 1. Introduction

NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS. 1. Introduction NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS A. AL-RAWASHDEH Page 1 of 10 Abstract. In purely infinite factors, P. de la Harpe proved that a normal subgroup of the unitary group

More information

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION International Journal of Pure and Applied Mathematics Volume 118 No. 3 018, 675-684 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i3.15

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

ANNIHILATOR IDEALS IN ALMOST SEMILATTICE

ANNIHILATOR IDEALS IN ALMOST SEMILATTICE BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 339-352 DOI: 10.7251/BIMVI1702339R Former BULLETIN

More information

MATH 310 Course Objectives

MATH 310 Course Objectives MATH 310 Course Objectives Upon successful completion of MATH 310, the student should be able to: Apply the addition, subtraction, multiplication, and division principles to solve counting problems. Apply

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

Batumi, GEORGIA 2 Department of Mathematics. Hacettepe University Beytepe, Ankara, TURKEY 3 Department of Mathematics

Batumi, GEORGIA 2 Department of Mathematics. Hacettepe University Beytepe, Ankara, TURKEY 3 Department of Mathematics International Journal of Pure and Applied Mathematics Volume 93 No. 4 2014, 549-566 ISSN: 1311-8080 printed version; ISSN: 1314-3395 on-line version url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v93i4.6

More information

Counting. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Counting. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Counting Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Counting Counting The art of counting is known as enumerative combinatorics. One tries to count the number of elements in a set (or,

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

NEW IDENTITIES FOR THE COMMON FACTORS OF BALANCING AND LUCAS-BALANCING NUMBERS

NEW IDENTITIES FOR THE COMMON FACTORS OF BALANCING AND LUCAS-BALANCING NUMBERS International Journal of Pure and Applied Mathematics Volume 85 No. 3 013, 487-494 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.173/ijpam.v85i3.5

More information