Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence

Size: px
Start display at page:

Download "Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence"

Transcription

1 Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence Gaetano Zimbardo S. Perri, P. Pommois, and P. Veltri Universita della Calabria, Cosenza, Italy Workshop on Nonlinear dynamics and structure formation in complex systems, Frascati, September 2009

2 Plan of presentation: Overview of diffusive and anomalous transport regimes Numerical simulation of particle transport in the presence of magnetic turbulence Evidence of superdiffusion from analysis of energetic particle profiles Application to particle propagation upstream of the termination shock Scherzo

3 Transport regimes Understanding the transport of energetic particles in the presence of magnetic turbulence is relevant both to cosmic ray acceleration and transport and to space weather predictions. Two regimes are usually considered: Normal diffusion: Ballistic transport: Are there transport regimes intermediate between normal diffusion and scatter-free propagation? Both sudiffusive and superdiffusive regimes can be found.

4 Superdiffusive transport Superdiffusive transport is related to a broad distribution of jump lengths, with powerlaw tails: The second order moment of the free path lengths, i.e., the mean free path, is diverging: This implies that the Central Limit Theorem does not apply, and a non-gaussian statistics is involved. Superdiffusion is essentially related to long range correlations and non Markovian memory effects, here described as Levy random walks

5 Gaussian vs Levy random walk

6 Subdiffusive transport Subdiffusion is related to the presence of dynamic traps and antipersistent behaviour, like tracing back the trajectory as in compound diffusion: Subdiffusion is characterized by a broad distribution of waiting, i.e., trapping times. A very wide range of systems exhibits non-gaussian behaviour, including magnetic turbulence fluctuations in the solar wind, solar flare waiting time distributions, and more (e.g., Klafter et al., PRA, 1987; Metzler and Klafter, Phys. Rep., 2000).

7 Energetic particle transport in the Heliosphere: Is anomalous transport possible for particle propagating in the solar wind turbulence? Two approachs are presented here: Numerical simulation of particle transport in models of magnetic turbulence. Analysis of energetic particle profiles measured by spacecraft

8 Numerical Simulation The magnetic field is represented as a superposition of a constant field and a fluctuating field where with

9 Numerical Simulation Wave vectors on a cubic lattice 128x128x128 Anisotropic power law spectrum: Band spectrum: Here N min = 4, N max = 16. Future simulations with longer spectrum.

10 Anisotropy in physical and phase space Quasi-slab Quasi-2D

11 We can study the structure of magnetic flux tubes for different anisotropies: From Isichenko, PPCF, 1991

12 Magnetic flux tube cross section for axisymmetric anisotropies and δb/b = 0.5 at 1 AU (Zimbardo et al., JGR 2004) Quasi-2D Quasi-slab

13 Quasi-slab Injecting particles with different Larmor radii ρ... (Pommois et al., Ph.Pl. 2007; Zimbardo et al., IEEE Trans. Plasma Sci., 2008) Quasi-2D

14 This simulation matches the observations of solar energetic particle dropouts in the solar wind (Mazur et al., ApJ 2000)

15 Anomalous transport depends on the turbulence anisotropy: (from Zimbardo et al., ApJL, 2006) Quasi-slab z Quasi-2D x,y

16 Perpendicular subdiffusion considered by Qin, Matthaeus, and Bieber by computing the running diffusion coefficients: Slab turbulence, perpendicular subdiffusion (Qin et al., GRL, 2002) Composite turbulence (mostly 2D), recovery of diffusion (Qin et al., ApJL, 2002)

17 A useful parameter is the Kubo number R = (db/b)(l z /l x) From Pommois et al., Phys. Plasmas, 2007

18 The transport regime also depends on the ratio ρ/ λ((pommois et al., Ph. Pl., 2007)

19 Parallel superdiffusion and perpendicular subdiffusion considered by Shalchi and Kourakis, Astr. Astroph, 2007

20 Summary of numerical simulations Parallel superdiffusion is found for small ρ / λ and /or quasi-slab turbulence. Superdiffusion also for small turbulence levels. Wave-particle interactions are present, but not so strong as to correspond to a non-gaussian statistics. Rather, the changes in parallel velocity correspond to a Lévy random walk. Perpendicular subdiffusion is possible, especially for quasi-slab turbulence, when particles can trace back their trajectory, as in compound diffusion (e.g., Kota and Jokipii, ApJL, 2000). A number of different regimes can be obtained (look for field line separation )

21 Superdiffusion from analysis of energetic particle profiles measured by spacecraft The flux of energetic particle can be expressed by means of the probability of propagation from (x, t ) to (x, t): We consider particles emitted at an infinite planar shock moving with velocity V_sh:

22 Normal diffusion, Gaussian propagator At some distance from the shock the turbulence level and the diffusion coefficient can be assumed to be constant; integration over the propagator yields: (e.g., Fisk and Lee, ApJ, 1980; Lee, JGR, 1983)

23 Superdiffusion, power-law propagator (Zumofen and Klafter, PRE, 1993) A similar approach was considered by del- Castillo-Negrete, Carreras, and Lynch, 2004, 2005

24 Inserting the power-law propagator into the integral At some distance upstream of the shock: Power-law particle profile with α = 4 µ = 2 γ (Perri and Zimbardo, ApJL 2007, JGR 2008)

25 Scatter-free propagation, δ function propagator (e.g., Webb, Zank, Kaghashvili, le Roux, ApJ 2006) When inserted in the expression for f, a constant level is obtained

26 Fast and slow streams in the solar wind

27 We performed analyses of Ulysses data at CIRs and of Voyager 2 data at the Termination Shock Ulysses observed a series of Corotating Interaction Regions in ; both protons and electrons are accelerated at CIR shocks:

28 Energetic particle profiles seen at CIRs shocks:

29 Electrons superdiffusion detected by Ulysees Power law J=A(Δt) - γ Exponential J=K exp(-γδt) Δt= t-t sh χ 2 =χ 2 /ν reduced chi-square Energy (kev) χ PL 2 χ EXP 2 γ ± ± ± 0.03

30 A further event observed by Ulysses Ulysses observed a series of Corotating Interaction Regions in ; both protons and electrons are accelerated at CIR shocks: (data from CDAweb, thanks to Lancaster and Tranquille, PI D. McComas, L. Lanzerotti)

31 ± 0.08 Electron superdiffusive transport at the reverse shock of May 10, 1993, with α = 2 γ (from Perri and Zimbardo, ApJL 2007) Energy (kev) χ PL 2 χ EXP 2 γ ± ± 0.07 More events are shown in Perri and Zimbardo, Adv. Space Res ± 0.08

32

33 Voyager 2 at the termination shock: data from PLS and LECP

34 We considered a number of ion energy channels upstream of the termination shock (PLS data from space.mit.edu/pub/plasma/vgr/v2/daily LECP data from sd-

35 Fit of particle fluxes: power-law versus exponential The power-law fits better than the exponential for all energy channels, with γ = Corresponding to superdiffusion: See Perri and Zimbardo, Astrophys. J., 693, L118 (2009)

36 These observations show that many of the standard assumptions of the Diffusive Shock Acceleration (DSA) are not satisfied: for instance, the so called Parker equation assumes both isotropic particle distribtion function f, and normal diffusion; both these assumptions are not verified at the Termination Shock. A fractional transport equation in velocity space was proposed by Milovanov and Zelenyi, PRE, 2001: Strange Fermi process: Turbulent acceleration phenomena due to fractal time accelerations and velocity space Levy flights

37 The spectral index of energetic particles, 1.25, requires, according to DSA, a compression ratio of 3, while about 2 is observed; we do not really understand energetic particle acceleration at the TS! From Decker et al., Nature, 2008.

38 Summary of data analysis Electron superdiffusive transport from Ulysses data Ion superdiffusive transport from Voyager 2 data A wide range of anomalous diffusion exponents α is found, including nearly scatter free regimes Transport tends to become normal for increasing gyroradius, in agreement with numerical simulations Ion superdiffusion at the Termination Shock is consistent with the observations that anomalous cosmic rays do not exhibit the features expected from diffusive shock acceleration (DSA). Superdiffusion allows a quicker escape from the shock region, decreasing the efficiency of DSA. Look for other acceleration mechanisms!

39 Scherzo just a joke!

40

41

42 From asymmetric diffusion to subdiffusion Normal diffusion and standard Fick s law give a linear density profile Look for Fractional Fick s Law! My suggestion for α>2 :

43 Conclusions We have illustrated theoretical descriptions of anomalous diffusion and Levy random walks. Numerical simulations yield, for proper values of the system parameters, parallel superdiffusion and perpendicular subdiffusion. Analysis of Ulysses and Voyager 2 data gives superdiffusion both for electrons and ions. Ion superdiffusion at the termination shock is consistent with the departures of anomalous cosmic rays from diffusive shock acceleration, and with the strongly anisotropic particle fluxes observed by LECP.

44 That s all, folks!

Evidence for superdiffusive shock acceleration at interplanetary shock waves

Evidence for superdiffusive shock acceleration at interplanetary shock waves Journal of Physics: Conference Series PAPER Evidence for superdiffusive shock acceleration at interplanetary shock waves To cite this article: S Perri and G Zimbardo 2015 J. Phys.: Conf. Ser. 642 012020

More information

Cosmic rays propagation in Galaxy: A fractional approach

Cosmic rays propagation in Galaxy: A fractional approach A workshop on the occasion of the retirement of Francesco Mainardi Bilbao Basque Country Spain 6 8 November 2013 Cosmic rays propagation in Galaxy: A fractional approach Vladimir Uchaikin and Renat Sibatov

More information

THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS

THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS Joe Giacalone Lunary & Planetary Laboratory, University of Arizona, Tucson, AZ, 8572, USA ABSTRACT Using analytic theory, test-particle simulations,

More information

Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay in time asymptotic transport

Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay in time asymptotic transport Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L17105, doi:10.1029/2007gl030672, 2007 Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay

More information

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907 3ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING Acceleration of energetic particles by compressible plasma s of arbitrary scale sizes MING ZHANG Department of Physics and Space Sciences, Florida Institute

More information

arxiv: v1 [astro-ph.sr] 29 May 2015

arxiv: v1 [astro-ph.sr] 29 May 2015 Astronomy & Astrophysics manuscript no. Perri etal aa205 c ESO 205 June, 205 Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks arxiv:505.07980v [astro-ph.sr]

More information

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift G.M. Webb, J. A. le Roux, G. P. Zank, E. Kh. Kaghashvili and G. Li Institute of Geophysics and Planetary Physics,

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays

Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays Available online at www.sciencedirect.com Advances in Space Research 49 (1) 1643 165 www.elsevier.com/locate/asr Numerical investigation of the influence of large turbulence scales on the parallel and

More information

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/809/2/177 SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 Gang Qin

More information

Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport

Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport, a T. Jitsuk, a T. Pianpanit, a A. P. Snodin, b W. H. Matthaeus, c P. Chuychai d a Mahidol University,

More information

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail Paolo Desiati 1,2 & Alexander Lazarian 2 1 IceCube Research Center 2 Department of Astronomy University of Wisconsin -

More information

THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK

THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK G.P. Zank, I. Kryukov, N. Pogorelov, S. Borovikov, Dastgeer Shaikh, and X. Ao CSPAR, University of Alabama in Huntsville Heliospheric observations

More information

Relativistic Solar Electrons - where and how are they formed?

Relativistic Solar Electrons - where and how are they formed? Relativistic Solar Electrons - where and how are they formed? Ilan Roth Space Sciences, UC Berkeley Nonlinear Processes in Astrophysical Plasmas Kavli Institute for Theoretical Physics Santa Barbara September

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21112, doi:10.1029/2006gl027578, 2006 Correlation between energetic ion enhancements and heliospheric current sheet crossings in the

More information

The Two Sources of Solar Energetic Particles

The Two Sources of Solar Energetic Particles The Two Sources of Solar Energetic Particles Don Reames IPST, Univ. of Maryland, College Park and NASA Goddard Space Flight Center (emeritus) 2012 Hale lecture A Brief History of Two SEP Sources 1860 Carrington

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Recent Particle Measurements from Voyagers 1 and 2

Recent Particle Measurements from Voyagers 1 and 2 Journal of Physics: Conference Series OPEN ACCESS Recent Particle Measurements from Voyagers 1 and 2 To cite this article: R B Decker et al 2015 J. Phys.: Conf. Ser. 577 012006 View the article online

More information

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS

STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS STATISTICAL PROPERTIES OF FAST FORWARD TRANSIENT INTERPLANETARY SHOCKS AND ASSOCIATED ENERGETIC PARTICLE EVENTS: ACE OBSERVATIONS D. Lario (1), Q. Hu (2), G. C. Ho (1), R. B. Decker (1), E. C. Roelof (1),

More information

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium Annales Geophysicae (2004) 22: 3063 3072 SRef-ID: 1432-0576/ag/2004-22-3063 European Geosciences Union 2004 Annales Geophysicae Effects of the solar wind termination shock and heliosheath on the heliospheric

More information

Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch

Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch K. Gustafson, I. Broemstrup, D. del-castillo-negrete, W. Dorland and M. Barnes Department of Physics, CSCAMM, University

More information

Solar energetic particles and cosmic rays

Solar energetic particles and cosmic rays Solar energetic particles and cosmic rays Energetic particles in the heliosphere Solar energetic particles and cosmic rays Energy spectra and acceleration Particle propagation and transport Pick-up ions,

More information

Solar Wind Turbulence

Solar Wind Turbulence Solar Wind Turbulence Presentation to the Solar and Heliospheric Survey Panel W H Matthaeus Bartol Research Institute, University of Delaware 2 June 2001 Overview Context and SH Themes Scientific status

More information

Cosmic Rays in the Heliosphere. J. R. Jokipii University of Arizona

Cosmic Rays in the Heliosphere. J. R. Jokipii University of Arizona Cosmic Rays in the Heliosphere J. R. Jokipii University of Arizona Presentation at the 2011 Heliophysics Summer School, Boulder, July 29, 2011 Outline of Lecture Brief introduction to the heliosphere.

More information

Fractional Derivatives on Cosmic Scales

Fractional Derivatives on Cosmic Scales A Workshop on Future Directions in Fractional Calculus Research and Applications October, 2016 Fractional Derivatives on Cosmic Scales Renat T. Sibatov in collaboration with Vladimir V.Uchaikin Ulyanovsk

More information

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012207, 2007 Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere W. R.

More information

Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons

Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010158, 2004 Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons U. W. Langner and M. S. Potgieter

More information

Voyager observations of galactic and anomalous cosmic rays in the helioshealth

Voyager observations of galactic and anomalous cosmic rays in the helioshealth Voyager observations of galactic and anomalous cosmic rays in the helioshealth F.B. McDonald 1, W.R. Webber 2, E.C. Stone 3, A.C. Cummings 3, B.C. Heikkila 4 and N. Lal 4 1 Institute for Physical Science

More information

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University Science Questions from inside 150AU Heliosheath/Heliopause Merav Opher Boston University The heliosphere as test-bed for other astrospheres WISE bow shock image, PIA13455 Closeup of IRS8, resolving the

More information

particle acceleration in reconnection regions and cosmic ray excess from the heliotail

particle acceleration in reconnection regions and cosmic ray excess from the heliotail particle acceleration in reconnection regions and cosmic ray excess from the heliotail Paolo Desiati 1,2 & Alexander Lazarian 2 1 IceCube Research Center 2 Department of Astronomy University of Wisconsin

More information

The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra 2017. The American Astronomical Society. All rights reserved. doi:10.3847/1538-4357/836/1/31 The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra Lulu Zhao,

More information

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Institute for Astronomy, University of Hawai i Solar and Heliospheric Influences on the Geospace Bucharest, 1-5 Oct 2012

More information

Cosmic Rays & Magnetic Fields

Cosmic Rays & Magnetic Fields Cosmic Rays & Magnetic Fields Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic Self-Organization in Laboratory and Astrophysical

More information

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Philip A. Isenberg a, Sean Oughton b, Charles W. Smith a and William H. Matthaeus c a Inst. for Study of Earth, Oceans and

More information

Cosmic Rays in the Dynamic Heliosphere

Cosmic Rays in the Dynamic Heliosphere J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Cosmic Rays in the Dynamic Heliosphere Marius S. POTGIETER Unit for Space Physics, North-West University, 2520 Potchefstroom, South Africa (Received: 27 August

More information

COMPRESSION ACCELERATION IN ASTROPHYSICAL PLASMAS AND THE PRODUCTION OF f (v) v 5 SPECTRA IN THE HELIOSPHERE

COMPRESSION ACCELERATION IN ASTROPHYSICAL PLASMAS AND THE PRODUCTION OF f (v) v 5 SPECTRA IN THE HELIOSPHERE The Astrophysical Journal, 713:475 483, 2010 April 10 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/713/1/475 COMPRESSION ACCELERATION IN ASTROPHYSICAL

More information

What is New in the Outer Heliosphere?: Voyager and IBEX

What is New in the Outer Heliosphere?: Voyager and IBEX What is New in the Outer Heliosphere?: Voyager and IBEX Marty Lee Durham, New Hampshire USA 1 Our Local Interstellar Environment From E. Möbius Pogorelov et al., 2008 Plasma & Neutral Parameters R = 1

More information

LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR WIND

LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR WIND The Astrophysical Journal, 653:1493Y1498, 006 December 0 # 006. The American Astronomical Society. All rights reserved. Printed in U.S.A. LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR

More information

Kinetic and Small Scale Solar Wind Physics

Kinetic and Small Scale Solar Wind Physics Chapter 11 Kinetic and Small Scale Solar Wind Physics Thus far the origin, evolution, and large scale characteristics of the solar wind have been addressed using MHD theory and observations. In this lecture

More information

Space Physics / Plasma Physics at BRI

Space Physics / Plasma Physics at BRI Observational Theoretical Experimental Space Physics / Plasma Physics at BRI Solar Heliospheric/solar wind Cosmic rays, modulation Scattering and transport theory Turbulence MHD: magnetic reconnection,

More information

Diffusive Particle Acceleration (DSA) in Relativistic Shocks

Diffusive Particle Acceleration (DSA) in Relativistic Shocks Diffusive Particle Acceleration (DSA) in Relativistic Shocks Don Ellison & Don Warren (NCSU), Andrei Bykov (Ioffe Institute) 1) Monte Carlo simulation of Diffusive Shock Acceleration (DSA) in collisionless

More information

Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations

Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations Pickup Proton Instabilities and Scattering in the Distant Solar Wind and the Outer Heliosheath: Hybrid Simulations Kaijun Liu 1,2, Eberhard Möbius 2,3, S. P. Gary 2,4, Dan Winske 2 1 Auburn University,

More information

MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH

MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH B.T. Tsurutani 1, F.L. Guarnieri 2, E.E. Echer 3, G.S. Lakhina 4 and O.P. Verkhoglyadova 1,5 1 Jet Propulsion

More information

Caltech, 2 Washington University, 3 Jet Propulsion Laboratory 4. Goddard Space Flight Center

Caltech, 2 Washington University, 3 Jet Propulsion Laboratory 4. Goddard Space Flight Center R. A. Mewaldt 1, A. J. Davis 1, K. A. Lave 2, R. A. Leske 1, E. C. Stone 1, M. E. Wiedenbeck 3, W. R. Binns 2, E. R. ChrisCan 4, A. C. Cummings 1, G. A. de Nolfo 4, M. H. Israel 2, A. W. Labrador 1, and

More information

Monte Carlo simulations of intensity profiles for energetic particle propagation ABSTRACT

Monte Carlo simulations of intensity profiles for energetic particle propagation ABSTRACT A&A 586, A8 (6) DOI:.5/4-636/5755 c ESO 6 Astronomy & Astrophysics Monte Carlo simulations of intensity profiles for energetic particle propagation R. C. Tautz, J. Bolte, and A. Shalchi Zentrum für Astronomie

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

Particle Acceleration in Cosmic Plasmas

Particle Acceleration in Cosmic Plasmas Particle Acceleration in Cosmic Plasmas G.P. Zank Institute of Geophysics and Planetary Physics (IGPP) University of California, Riverside Gang Li, Vladimir Florinski, Olga Verkhoglyadova Nick Pogorelov,

More information

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Steven R. Cranmer University of Colorado Boulder, LASP A. Schiff, S. Van Kooten, C. Gilbert, L. N. Woolsey, A. A. van Ballegooijen,

More information

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications 3D Reconnection of Weakly Stochastic Magnetic Field and its Implications Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration:

More information

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong. Collisionless Shocks in 12 minutes or less Don Ellison, North Carolina State Univ. Andrei Bykov, Ioffe Institute, St. Petersburg Don Warren, RIKEN, Tokyo Strong collisionless shocks are important sources

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1

Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011156, 2005 Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1 J. D. Richardson,

More information

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange A Multi-ion Model of the Heliosphere with Secondary Charge Exchange Matthew Bedford, University of Alabama in Huntsville, Department of Space Science Nikolai Pogorelov, faculty advisor The heliosphere

More information

Kinetic Alfvén waves in space plasmas

Kinetic Alfvén waves in space plasmas Kinetic Alfvén waves in space plasmas Yuriy Voitenko Belgian Institute for Space Aeronomy, Brussels, Belgium Solar-Terrestrial Center of Excellence, Space Pole, Belgium Recent results obtained in collaboration

More information

Effects of Anomalous Cosmic Rays on the Structure of the Outer Heliosphere

Effects of Anomalous Cosmic Rays on the Structure of the Outer Heliosphere 2018. The American Astronomical Society. https://doi.org/10.3847/1538-4357/aabf42 Effects of Anomalous Cosmic Rays on the Structure of the Outer Heliosphere Xiaocheng Guo 1,2, Vladimir Florinski 3, and

More information

arxiv: v1 [astro-ph.he] 30 Sep 2013

arxiv: v1 [astro-ph.he] 30 Sep 2013 Astronomy & Astrophysics manuscript no. numdmu8 c ESO 8 September 4, 8 Pitch-angle scattering in magnetostatic turbulence I. Test-particle simulations and the validity of analytical results R. C. Tautz,

More information

Insights on Shock Acceleration from Solar Energetic Particles

Insights on Shock Acceleration from Solar Energetic Particles Insights on Shock Acceleration from Solar Energetic Particles aka Reading Shakespeare letter-by-letter (J. Vink, 04-01-2015) Allan J. Tylka Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771

More information

8.2.2 Rudiments of the acceleration of particles

8.2.2 Rudiments of the acceleration of particles 430 The solar wind in the Universe intergalactic magnetic fields that these fields should not perturb them. Their arrival directions should thus point back to their sources in the sky, which does not appear

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T.

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. Heliosphere Overview Heliopause: boundary of LIC and SW plasma He H Termination

More information

Particle acceleration during 2D and 3D magnetic reconnection

Particle acceleration during 2D and 3D magnetic reconnection Particle acceleration during 2D and 3D magnetic reconnection J. Dahlin University of Maryland J. F. Drake University of Maryland M. Swisdak University of Maryland Astrophysical reconnection Solar and stellar

More information

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC BEHAVIOR JUSTIN C. KASPER HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS GYPW01, Isaac Newton Institute, July 2010

More information

CSPAR-UAH. Heliosphere. G.P. Zank. Research (CSPAR) University of Alabama in Huntsville

CSPAR-UAH. Heliosphere. G.P. Zank. Research (CSPAR) University of Alabama in Huntsville Shocks in the Heliosphere G.P. Zank Center for Space and Aeronomic Research (CSPAR) University of Alabama in Huntsville Three topics of discussion: 1) Particle acceleration at interplanetary shocks 2)

More information

Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves

Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves MNRAS 444, 676 684 (014) doi:10.1093/mnras/stu1595 Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves M. Hussein and A. Shalchi Department of Physics

More information

Cosmic-ray Acceleration and Current-Driven Instabilities

Cosmic-ray Acceleration and Current-Driven Instabilities Cosmic-ray Acceleration and Current-Driven Instabilities B. Reville Max-Planck-Institut für Kernphysik, Heidelberg Sep 17 2009, KITP J.G. Kirk, P. Duffy, S.O Sullivan, Y. Ohira, F. Takahara Outline Analysis

More information

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Article Drift induced deceleration of Solar Energetic Particles Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Available at http://clok.uclan.ac.uk/12041/ Dalla, Silvia, Marsh, Michael and

More information

Real shocks: the Earth s bow shock

Real shocks: the Earth s bow shock Real shocks: the Earth s bow shock Quasi-perpendicular shocks Real shock normals/speeds Substructure within the ramp Shock variability Source of ions beams upstream Quasi-parallel shocks Ion acceleration

More information

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion Lecture notes for 12.086/12.586, Modeling Environmental Complexity D. H. Rothman, MIT September 24, 2014 Contents 1 Anomalous diffusion 1 1.1 Beyond the central limit theorem................ 2 1.2 Large

More information

Detection and analysis of turbulent structures using the Partial Variance of Increments method

Detection and analysis of turbulent structures using the Partial Variance of Increments method Detection and analysis of turbulent structures using the Partial Variance of Increments method Collaborations: Antonella Greco W. H. Matthaeus, Bartol Research Institute, Delaware, USA K. T. Osman, University

More information

DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS? The Astrophysical Journal, 711:980 989, 2010 March 10 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/711/2/980 DROPOUTS IN SOLAR ENERGETIC PARTICLES:

More information

Modelling cosmic ray intensities along the Ulysses trajectory

Modelling cosmic ray intensities along the Ulysses trajectory Annales Geophysicae,, 6 7, 5 SRef-ID: -576/ag/5--6 European Geosciences Union 5 Annales Geophysicae Modelling cosmic ray intensities along the Ulysses trajectory D. C. Ndiitwani, S. E. S. Ferreira, M.

More information

PoS(Extremesky 2011)056

PoS(Extremesky 2011)056 Stochastic acceleration and the evolution of spectral distributions in SSC sources: A self consistent modeling of blazars flares ISDC, University of Geneva, Chemin d Ecogia 16, Versoix, CH-1290, Switzerland

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

When do particles follow field lines?

When do particles follow field lines? JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:1.19/8ja13349, 9 When do particles follow field lines? J. Minnie, 1 W. H. Matthaeus, 1 J. W. Bieber, 1 D. Ruffolo, and R. A. Burger 3 Received 8 April 8;

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE: A STOCHASTIC PARTICLE APPROACH

GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE: A STOCHASTIC PARTICLE APPROACH The Astrophysical Journal, 634:1116 1125, 2005 December 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE:

More information

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations 1 2 Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster Observations 3 4 5 S. Y. Huang 1, F. Sahraoui 2, X. H. Deng 1,3, J. S. He 4, Z. G. Yuan 1, M. Zhou 3, Y. Pang 3, H. S. Fu 5 6 1 School of

More information

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes Richard M. Thorne Department of Atmospheric and Oceanic Sciences, UCLA Electron (left) and Proton (right) Radiation Belt Models

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle S. R. Cranmer, J. L. Kohl, M. P. Miralles, & A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics Extended Coronal

More information

Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model

Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1328, doi:10.1029/2002ja009379, 2002 Speed f luctuations near 60 AU on scales from 1 day to 1 year: Observations and model L. F. Burlaga Laboratory for

More information

Diffusive cosmic ray acceleration at shock waves of arbitrary speed

Diffusive cosmic ray acceleration at shock waves of arbitrary speed Diffusive cosmic ray acceleration at shock waves of arbitrary speed Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-4478 Bochum, Germany E-mail: rsch@tp4.rub.de

More information

Interstellar Medium V1

Interstellar Medium V1 Interstellar Medium V1 Heliosheath Termina/on Shock V2 which can be used to distinguish spatial and temporal effects. The V2 flows derived from the energetic particles using the Compton-Getting effect

More information

O 5+ at a heliocentric distance of about 2.5 R.

O 5+ at a heliocentric distance of about 2.5 R. EFFECT OF THE LINE-OF-SIGHT INTEGRATION ON THE PROFILES OF CORONAL LINES N.-E. Raouafi and S. K. Solanki Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany E-mail: Raouafi@linmpi.mpg.de;

More information

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS Ralph L. McNutt, Jr. The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 USA Launched in August and

More information

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Dr. Simon R. Thomas & Prof. Silvia Dalla University of Central Lancashire Thanks to: Markus Battarbee, Timo Laitinen,

More information

Open magnetic structures - Coronal holes and fast solar wind

Open magnetic structures - Coronal holes and fast solar wind Open magnetic structures - Coronal holes and fast solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal holes and fast solar wind Origin of solar wind in magnetic

More information

ASPECTS OF THE DIFFUSION OF ELECTRONS AND IONS IN TOKAMAK PLASMA

ASPECTS OF THE DIFFUSION OF ELECTRONS AND IONS IN TOKAMAK PLASMA Dedicated to Professor Oliviu Gherman s 8 th Anniversary ASPECTS OF THE DIFFUSION OF ELECTRONS AND IONS IN TOKAMAK PLASMA M. NEGREA 1,3,, I. PETRISOR 1,3, DANA CONSTANTINESCU,3 1 Department of Physics,

More information

arxiv: v1 [astro-ph.sr] 20 Sep 2016

arxiv: v1 [astro-ph.sr] 20 Sep 2016 Draft version September 26, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 INTERSTELLAR PICKUP ION PRODUCTION IN THE GLOBAL HELIOSPHERE AND arxiv:1609.05991v1 [astro-ph.sr] 20 Sep 2016 HELIOSHEATH

More information

Stochastic Particle Acceleration in Parallel Relativistic Shocks

Stochastic Particle Acceleration in Parallel Relativistic Shocks Stochastic Particle Acceleration in Parallel Relativistic Shocks Joni J. P. Virtanen Tuorla Observatory, Väisäläntie 20, FI-21500 Piikkiö, FINLAND Rami Vainio Department of Physical Sciences, P.O. Box

More information

The Energetic Particle Populations of the Distant Heliosphere

The Energetic Particle Populations of the Distant Heliosphere The Energetic Particle Populations of the Distant Heliosphere F. B. McDonald *, A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, and W. R. Webber * Institute for Physical Science and Technology, University

More information

arxiv: v3 [astro-ph.he] 20 Dec 2016

arxiv: v3 [astro-ph.he] 20 Dec 2016 Draft version November 1, 2018 Preprint typeset using L TEX style emulateapj v. 5/2/11 SUPERDIFFUSION OF COSMIC RYS: IMPLICTIONS FOR COSMIC RY CCELERTION. Lazarian Department of stronomy, University of

More information

CME linear-fit. 3. Data and Analysis. 1. Abstract

CME linear-fit. 3. Data and Analysis. 1. Abstract 3.11 High flux solar protons in coronal mass ejection Tak David Cheung, Donald E. Cotten*, and Paul J Marchese City University of New York Queensborough Community College 1. Abstract There were six events

More information

Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis

Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis Journal of Physics: Conference Series OPEN ACCESS Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis To cite this article: B M Randol and E R Christian

More information

Space Weather at 75 AU

Space Weather at 75 AU Space Weather at 75 AU R. A. Mewaldt California Institute of Technology, Pasadena, CA 91125, USA Abstract. Recent outer-heliosphere observations are reviewed from a space weather point of view by comparing

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Solar Resource: The Active Sun as a Source of Energy Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Sun: A Source of Energy Solar Structure Solar Wind Solar Cycle Solar Activity

More information