Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays

Size: px
Start display at page:

Download "Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays"

Transcription

1 Available online at Advances in Space Research 49 (1) Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays G. Qin a, A. Shalchi b, a State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 119, China b Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T N Received 3 November 11; received in revised form 7 January 1; accepted 8 February 1 Available online 6 March 1 Abstract In recent analytical investigations it has been demonstrated that the turbulence behavior at large scales has a very strong influence on the perpendicular diffusion coefficient of charged particles. In the present paper we use computer simulations to investigate numerically cross field transport and particle propagation along the mean magnetic field for different turbulence models at large scales. Our results are compared with quasilinear theory and nonlinear diffusion theories. We show that for different forms of the turbulence spectrum at large scales, the perpendicular mean free paths obtained numerically are in agreement with recent predictions made by analytical theory. It is also shown that the parallel diffusion coefficient contains always a strong nonlinear contribution which is, however, independent of the assumed spectrum at large scales. Ó 1 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Magnetic fields; Turbulence; Energetic particles 1. Introduction 1.1. Particle transport theory The investigation of cosmic ray transport remains an interesting field of research. Transport theory connects two important and fundamental fields of modern physics, namely the physics of turbulence and the propagation and acceleration of cosmic particles. E.g., the particle diffusion coefficients enter the cosmic ray transport equation which is used to model the propagation of particles in the Milky Way (see, e.g., Ptuskin et al., 6; Büsching and Potgieter, 8 and references therein). In the physics of the heliosphere the knowledge of the diffusion coefficients are crucial in solar modulation studies (see, e.g., Hitge and Burger, 1; Burger and Visser, 1; Manuel et al., 11; Strauss et al., 11). Last but not least, the diffusion coefficients of charged particles enter the equations which are used to Corresponding author. Tel.: ; fax: address: andreasm4@yahoo.com (A. Shalchi). describe the mechanism of diffusive shock acceleration (see, e.g., Zank et al.,, 7; Dosch and Shalchi, 9, 1, Li et al., 1). The latter mechanism is responsible for the origin of cosmic rays. The diffusion coefficients, on the other hand, are sensitively controlled by our understanding of turbulence (see, e.g., Schlickeiser, and Shalchi, 9 for reviews). As described above our understanding of particle diffusion is crucial for an improved description of different physical scenarios in space science and astrophysics. Furthermore, particle-turbulence interactions are important in the physics of fusion devices (see, e.g., Hauff et al., 9; Hauff and Jenko, 9). 1.. Tools in particle diffusion theory There are, in principle, two different tools which can be used to explore the scattering of energetic particles due to turbulence, namely, 1. Analytical theory: In the analytical description of particle-plasma interactions one has to specify the magnetic correlation tensor describing the turbulence. Then one /$36. Ó 1 COSPAR. Published by Elsevier Ltd. All rights reserved. doi:1.116/j.asr.1..35

2 1644 G. Qin, A. Shalchi / Advances in Space Research 49 (1) can try to compute the diffusion coefficients in the different directions by employing perturbation theory, extensions thereof, or full nonlinear theories (see again Schlickeiser, and Shalchi, 9 for reviews);. Computer simulations: In the recent years more and more test-particle codes were developed. In such simulations we still have to specify the turbulence structure. However, we can compute the diffusion coefficients by solving the Newton Lorentz equation without employing further approximations. Both approaches have their advantages and disadvantages. E.g., the simulations can only be easily performed for magnetostatic or undamped plasmawave turbulence models whereas analytical theories can be employed for arbitrary forms of the magnetic correlation tensor. For the applications discussed above (e.g., solar modulation, acceleration at shocks) one has to know analytical forms of the diffusion coefficients. Of course, such forms cannot be obtained from computer simulations. Analytical theories, however, are always based on assumptions. In quasilinear theory, for instance, one assumes unperturbed orbits which do not exist in reality. In nonlinear theories one has to employ different models and approximations (e.g., random phase approximation, diffusion approximation). Therefore, we believe that a complete understanding of transport phenomena can only be achieved if one uses a combination of numerical and analytical tools. Cosmic ray scattering has been investigated in numerous papers analytically (see, e.g., Jokipii, 1966; Völk, 1973; Bieber et al., 1994; Matthaeus et al., 3; Shalchi et al., 4; Shalchi and Kourakis, 7), see Shalchi, 9 for a review). The classical work of Jokipii (1966), for instance, employed a quasilinear theory (QLT) for particle transport. Matthaeus et al. (3) developed a nonlinear approach for cross field transport called the nonlinear guiding center (NLGC) theory. This approach was improved and extended later by Shalchi et al. (4), Shalchi (6b), Qin (7), Shalchi and Dosch (8), and Shalchi and Dosch (9). Shalchi (1) has developed an unified nonlinear transport (UNLT) theory for energetic particles and magnetic field lines. A compound diffusion model was used by Webb et al. (6) and later by Shalchi and Kourakis (7) to describe perpendicular scattering of charged particles. In this approach perpendicular diffusion is directly linked to the random walk of magnetic field lines. Numerical simulations were performed in the early years by Kaiser (1975), Kaiser et al. (1978) and later by Michałek et al. (1996), Giacalone and Jokipii (1999), Mace et al. (), Qin et al. (a,b, 6), Zimbardo et al. (6), Shalchi (7) and Tautz (9, 1) The influence of turbulence on the transport As described above, the turbulence structure influences the transport of energetic particles in the plasma. The most important transport mechanisms are diffusion of particles along and across the mean magnetic field, drifts, and stochastic acceleration. In the present paper we concentrate on the first two effects, namely parallel and perpendicular diffusion. Although the two effects are spatial diffusion effects, their physics is quite different The physics of parallel diffusion Parallel diffusion is strongly related to pitch-angle scattering via the famous relation (see, e.g., Jokipii, 1966; Hasselman and Wibberenz, 1968, Earl, 1974) k k ¼ 3j k v ¼ 3v 8 Z þ1 1 ð1 lþ dl D ll ðlþ : The latter formula is a consequence of a pitch-angle isotropization process as described by the cosmic ray Fokker Planck equation (see, e.g., Shalchi, 6a). The pitchangle Fokker Planck coefficient D ll ðlþ used here is mainly (but not only) controlled by gyro-resonant interactions lr L ¼ k 1 k. Here we used the parallel wavenumber of the turbulence k k, the pitch-angle cosine l ¼ v k =v, and the unperturbed Larmor radius R L (more details can be found in Shalchi, 9). The assumption of gyro-resonance, however, is only an approximation because real particles experience resonance-broadening due to the turbulence. In the recent years, resonance-broadening theories were developed to achieve more accurate description of parallel transport (see, e.g., Völk, 1973, 1975; Jones et al., 1973, 1978; Owens, 1974; Goldstein, 1976; Shalchi et al., 4; Shalchi, 5). Therefore, the statement above concerning gyro-resonance has to be extenuated: pitch-angle scattering is ð1þ mainly controlled by wavenumbers satisfying lr L k 1 k. Especially for particles with l, even this statement is no longer true The physics of perpendicular diffusion Whereas parallel transport can be described analytically by quasilinear theory and resonance-broadening theories, perpendicular transport has to be described by nonlinear theories. The perpendicular diffusion coefficient is strongly controlled by random walking magnetic field lines. The simplest description of transport across the mean magnetic field is, therefore, provided by the so-called Field Line Random Walk (FLRW) limit in which we have j? ¼ v j FL where we used the field line diffusion coefficient j FL. Within this model perpendicular diffusion is only caused by field line diffusion. However, Eq. () is only true if 1. Parallel scattering is suppressed;. The guiding centers of the particles are tied to a single magnetic field line. The first assumption is questionable, since we expect that pitch-angle scattering is a strong effect in real physical scenarios. Pitch-angle scattering and therewith parallel ðþ

3 G. Qin, A. Shalchi / Advances in Space Research 49 (1) diffusion, however, suppress perpendicular transport to a subdiffusive level (see, e.g., Shalchi, 9). In order to restore normal or Markovian diffusion, one has to allow the particle to scatter away from the magnetic field lines (see, e.g., Shalchi and Dosch, 8; Shalchi, 9; Dosch et al., 9) Scope of the present paper It is well-known that the perpendicular diffusion coefficient is mainly controlled by the largest scales of the turbulence (see, e.g., Shalchi, 1). However, it is not clear how important the largest scales are for parallel diffusion. The gyro-resonance model predicts that the largest scales should only influence parallel diffusion coefficients at very high energies. However, it is not clear how important the large scales are if parallel transport is nonlinear. For perpendicular transport we expect that the largest scales are important since this is a prediction of analytical theory. In the present paper we try to find an answer for the following two questions: 1. How strong is the nonlinear effect if the parallel diffusion coefficient is computed for different spectra at large scales?. Are the predictions made for j? by recent nonlinear diffusion theories for different spectra correct? The organization of the paper is as follows. In Section we discuss the turbulence model which is used in the present paper. In Section 3 we briefly discuss previous results provided by analytical theory and in Section 4 we discuss the simulation code used in the present paper and we show our new results. In Section 5 we summarize and conclude.. The turbulence model.1. The two-component model In the theory of field line random walk and charged particle transport one assumes that the total magnetic field is the superposition of a uniform mean field ~B ¼ B ~e z and fluctuations d~b. Here we have chosen a Cartesian system of coordinates so that the z-axis is aligned along the mean field. Such a configuration can be found in the solar wind or in the interstellar medium. In the first case the mean field has to be identified by the magnetic field of the Sun (e.g., B 4nT). For interplanetary studies, a common assumption is that the magnetic field fluctuations admit a strong component of nearly two-dimensional character with d~bð~xþ ¼d~Bðx; yþ, comprising perhaps 8 9% of the turbulent inertial range energy budget (see, e.g., Matthaeus et al., 199; Zank and Matthaeus, 1993; Bieber et al., 1996). The rest of the magnetic energy is contained in so-called slab modes with d~bð~xþ ¼d~BðzÞ. As a consequence the turbulent field can be written as d~bð~xþ ¼d~BðzÞþd~Bðx; yþ. In the literature this model is also known as slab/d composite or two-component model. The two-component model can be confirmed by using extensive analyses of solar wind data (see Matthaeus et al., 199). According to such observations magnetic correlations in the solar wind have the form of a so-called maltese cross. Similar measurements were done in the following years (see, e.g., Carbone et al., 1995; Bieber et al., 1996; Dasso et al., 5; Osman and Horbury, 7, 9a,b; Horbury et al., 8) which have confirmed this structure of interplanetary turbulence. A review of interplanetary turbulence can be found in Horbury et al. (5). Furthermore, numerical simulations suggest that two-dimensional dynamics is the leading order description of turbulence in the presence of a mean magnetic field (see, e.g., Oughton et al., 1994; Matthaeus et al., 1996; Shaikh and Zank, 7; Dmitruk and Matthaeus, 9). The theory of nearly incompressible MHD turbulence (see Zank and Matthaeus, 1993) predicts a collapse in dimensionality making turbulence in the solar wind a superposition of a dominant two-dimensional and a slab component. A more advanced discussion of this matter can be found in Hunana and Zank (1)... The spectrum of Shalchi and Weinhorst (9) For the composition model of pure slab and pure twodimensional modes, the magnetic correlation tensor in the wavevector space has the form P lm ¼ P slab lm þ P D lm. Here we have used the magnetic correlation tensor in the ~ k space which is defined as P lm ð ~ kþ¼hdb l ð ~ kþdb m ð~ kþi where h...i denotes the ensemble average. The tensor of the slab modes has the form P slab lm ð~ kþ¼g slab ðk k Þ dðk?þ d lm ; ð3þ k? with l; m ¼ x; y and the tensor of the two-dimensional modes has the form P D lm ð~ kþ¼g D ðk? Þ dðk kþ d lm k lk m ; ð4þ k? k with l; m ¼ x; y. Please note that tensor components with z are zero. For the slab modes the vanishing z-component results from the solenoidal constraint rd~bðzþ ¼. For the two-dimensional modes the vanishing parallel component is part of the model. For the two spectra g slab ðk k Þ and g D ðk? Þ we use the forms g slab ðk k Þ¼ CðsÞ p db slab l 1 slab h i s= ð5þ 1 þðk k l slab Þ and g D ðk? Þ¼ Dðs; qþ p db D l D h ðk? l D Þ q i ðsþqþ= : ð6þ 1 þðk? l D Þ

4 1646 G. Qin, A. Shalchi / Advances in Space Research 49 (1) The first model spectrum is in agreement with the one used by Bieber et al. (1994). The latter model for the two-dimensional spectrum has been developed by Shalchi and Weinhorst (9). For the inertial range spectral index s we assume the same values, namely s ¼ 5=3 corresponding to a Kolmogorov (1941) spectrum. For the energy range spectral index, however, we used different values. For the slab modes we employed a spectrum which is perfectly flat at large scales and for the two-dimensional modes we allow a general spectrum in the energy range which is controlled by the parameter q. The different physical consequences of the different values of q are discussed in Matthaeus et al. (7). In Eqs. (5) and (6) we have used the normalization functions Dðs; qþ ¼ and C s 1 C sþq CðsÞ Dðs; q ¼ Þ ¼ ð7þ C qþ1 C s p ffiffiffi : ð8þ p C s 1 Here we used the Gamma function p CðzÞ and we have employed the relation Cð1=Þ ¼ ffiffiffi p. The parameters used in the two spectra are listed in Table 1. The two spectra are correctly normalized for s > 1andq > Predictions of analytical theory In the present article we focus on numerical work to determine the parallel mean free path k k, the perpendicular mean free path k?, as well as the ratio k? =k k. However, we will frequently compare our numerical findings with different analytical results. In the following we briefly discuss results obtained by analytical theories Standard quasilinear theory Standard quasilinear theory can be used to compute the parallel mean free path. If one combines quasilinear theory with a magnetostatic slab/d model, we find for the pitchangle Fokker Planck coefficient D ll ¼ D slab ll þ DD ll. The parallel mean free path can then be computed by using the well-known formula (1). As shown in Shalchi et al. (8), however, there is no scattering contribution due Table 1 Turbulence parameters used in the present article. We have also shown the value of the corresponding parameter used in our simulations. Parameter Physical meaning Value s Inertial range spectral index 5/3 q D energy range spectral index Variable l slab Slab bendover scale Not used l D D bendover scale :1l slab db slab Magnetic energy of the slab modes :B db D Magnetic energy of the D modes :8B B Mean magnetic field Not used R Particle rigidity Variable to the two-dimensional modes in magnetostatic turbulence, i.e., D D ll ¼ and, thus, the quasilinear parallel mean free path is solely controlled by the slab modes. Therefore, there is no variation of the quasilinear parallel mean free path if we change the parameter (Shalchi et al., 8; Shalchi, 9) the quasilinear pitch-angle Fokker Planck coefficient is given by the formula D slab ll ¼ p X ð1 l Þ g slab k vjljb k ¼ X : ð9þ vjlj Here we have used the unperturbed gyro-frequency X ¼ v=r L. The other parameters are explained in the previous paragraphs. In combination with Eq. (1) we can easily compute the quasilinear parallel mean free path. Although a pure analytical solution can be derived (see, e.g., Shalchi, 9), we compute the parameter k k in the present paper by solving the l-integral in (1) numerically to obtain an accurate result. 3.. The FLRW limit The simplest theory for cross-field diffusion is the FLRW limit in which we assume that j? ¼ j FL v= where we used the diffusion coefficient of wandering magnetic field lines. In this limit the perpendicular mean free path is k? ¼ 3j FL =. Shalchi and Weinhorst (9) have computed the field line diffusion coefficient for the spectra defined above. They only found a finite diffusion coefficient for q > 1. In the other cases they found superdiffusive field line wandering which was later confirmed numerically by Shalchi and Qin (1). For the special case q > 1 the field line random walk limits yields sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3ðs 1Þ db D k? ¼ l D : ð1þ ðq 1Þ B For q < 1 the theory of field line wandering predicts superdiffusive transport and normal diffusion can no longer be described by the theory discussed here. The FLRW limit, however, provides a simplified description of the transport. Therefore, we don t compare this limit with numerical work Extended NLGC theory An important step in the analytical description of perpendicular transport has been achieved in Matthaeus et al. (3). In the latter paper a nonlinear integral equation has been derived which represent the so-called NLGC - see Eq. (7) of Matthaeus et al. (3). An extended version of the NLGC theory has been proposed by Shalchi (6b). Another important step has been made in Shalchi (1) who developed a unified nonlinear transport (UNLT) theory which can describe wandering magnetic field lines as well as perpendicular transport of energetic particles. For the slab/d model used in the present paper, however, the extended NLGC theory and the UNLT theory provide the same result. Analytical formulas have been

5 G. Qin, A. Shalchi / Advances in Space Research 49 (1) derived recently for the perpendicular mean free path (see Shalchi, 1). Those are based on the improved theory discussed above. According to Shalchi et al. (1) there are three different parameter regimes: k k k? 3l D and q < 1: k? ¼ 3 ðqþ1þ= a Dðs; qþ db D C 1 þ q B C 1 q l qþ1 D =ðqþ3þ =ðqþ3þ k ð1 qþ=ð3þqþ k ; ð11þ k k k? 3l D and q > 1: sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3ðs 1Þ db D k? ¼ al D ; ð1þ ðq 1Þ B k k k? 3l D and arbitrary q: k? ¼ a db D k B k : ð13þ The latter result is independent of the energy range spectral index q. Here we used the dimensionless parameter a which was introduced in the original paper of Matthaeus et al. (3). According to a comparison with numerical data the latter parameter is a ¼ 1=3 which is, however, in disagreement with some analytical work (see, Shalchi and Dosch, 8) where it was shown that a is in the order of unity The weakly nonlinear theory Since it has been discovered that quasilinear theory is sometimes not correct if the parallel mean free path is computed for a slab/d model, Shalchi et al. (4) have developed a weakly nonlinear theory (WNLT). The latter theory is a resonance broadening theory and was confirmed by le Roux and Webb (7). The broadening described in the theory comes due to perpendicular diffusion itself. Therefore, WNLT describes parallel and perpendicular diffusion as a coupled process. More details and the fundamental equations of WNLT can be found in Shalchi et al. (4) and Shalchi (9). The main result of WNLT is that the parallel mean free path is reduced compared to the quasilinear result. In the present paper we solve Eq. (73) of Shalchi et al. (4) numerically to get the WNTL result. 4. Computer simulations In the following we compare the analytical predictions discussed in the previous section with simulations to explore the validity of analytical theories and to test the accuracy of the different theories for cross field transport The test-particle code The simulation code which is used in the present article is a modification of the code that has been used previously (see, e.g., Mace et al., ; Qin et al., a,b, 6 for details). In our simulations, we use exactly the same magnetic field configuration as described in Section (slab/d composite model with the model spectrum proposed by Shalchi and Weinhorst, 9). In order to generate the magnetic turbulence d~bð~xþ, we use a Fourier analysis with the settings described in the following. To create the slab component a periodic box of size 1l slab and N z ¼ points are used. The two-dimensional component is created by a periodic box of size 1l slab 1l slab and N x N x ¼ points are used. In addition, the parallel correlation scale of the slab component, l slab, is set to be 1 times as the two-dimensional correlation scale, l D. With the magnetic fields ~B created, we solve the Newton Lorentz equation by a fourth-order Runge Kutta method with adaptive step size control (see, e.g., Press et al., 199). After getting the trajectories of each particle, we have computed the running diffusion coefficients by using standard methods of statistical physics. 4.. Our results In the following we compute the parameters k k =l slab ; k? =l slab, and k? =k k. We perform our simulations for different values of R ¼ R L =l slab to explore the rigidity dependence of the diffusion coefficients. We compute the corresponding parameters for different values of the energy range index q of the two-dimensional modes, namely q ¼ :5; q ¼, and q ¼ 1:5. Our results are summarized in Tables 4. The other parameters which enter our simulations are shown in Table 1. Figs. 1 3 show the running diffusion coefficients for the different values of q as obtained from the simulations. In the considered cases, parallel transport is at least nearly diffusive, whereas perpendicular transport is diffusive or weakly subdiffusive. The latter statement agrees with some other recent numerical work (see, e.g., Shalchi and Kourakis, 7; Tautz and Shalchi, 1) Results for the parallel mean free path In Fig. 4 we show the parallel mean free path as obtained numerically in comparison with quasilinear Table Our numerical results for different values of the rigidity R ¼ R L =l slab. For the energy range spectral index of the two-dimensional modes we used q ¼ :5. R k k =l slab k? =l slab k? =k k

6 1648 G. Qin, A. Shalchi / Advances in Space Research 49 (1) Table 3 Our numerical results for different values of the rigidity R ¼ R L =l slab. For the energy range spectral index of the two-dimensional modes we used q ¼. R k k =l slab k? =l slab k? =k k Table 4 Our numerical results for different values of the rigidity R ¼ R L =l slab. For the energy range spectral index of the two-dimensional modes we used q ¼ 1:5. R k k =l slab k? =l slab k? =k k κ xx /(l slab Ω) κ zz /(l slab Ω) κ xx /(l slab Ω) t Ω Fig.. The simulated parallel j zz (lower panel) and perpendicular j xx (upper panel) diffusion coefficients versus the time for q ¼ and R L =l slab ¼ 1. The quantities shown here are normalized to the gyrofrequency X and the slab bendover scale l slab. κ zz /(l slab Ω) κ xx /(l slab Ω) tω κ zz /(l slab Ω) 6 4 Fig. 3. The simulated parallel j zz (lower panel) and perpendicular j xx (upper panel) diffusion coefficients versus the time for q ¼ 1:5 and R L =l slab ¼ 1. The quantities shown here are normalized to the gyrofrequency X and the slab bendover scale l slab t Ω Fig. 1. The simulated parallel j zz (lower panel) and perpendicular j xx (upper panel) diffusion coefficients versus the time for q ¼ :5 and R L =l slab ¼ 1. The quantities shown here are normalized to the gyrofrequency X and the slab bendover scale l slab. theory. As already described by Shalchi et al. (4), the true parallel diffusion coefficient is reduced compared to the quasilinear result. Previously it was unclear how the discrepancy between the quasilinear curve and the simulations depends on the spectrum of the two-dimensional modes. As shown in Fig. 4 the energy range spectral index q does not have a strong influence on the parallel diffusion coefficient. In Fig. 5 we have calculated the parallel mean free path by using the weakly nonlinear transport theory. The latter theory provides a result similar to the simulations: The energy range spectral index q does not have a strong influence on the parallel diffusion coefficient. For all values of q, the weakly nonlinear theory agrees well with the

7 G. Qin, A. Shalchi / Advances in Space Research 49 (1) λ 1 R=R / l L slab Fig. 4. The simulated parallel mean free path k k normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for different values of the energy range spectral index q. Shown are the simulations for q ¼ :5 (stars), q ¼ (squares), and q ¼ 1:5 (dots). For comparison we have also shown the standard quasilinear parallel mean free path (dotted line) R=R L Fig. 6. The simulated perpendicular mean free path k? normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for different values of the energy range spectral index q. Shown are the simulations for q ¼ :5 (stars), q ¼ (squares), and q ¼ 1:5 (dots). paper agree perfectly with the simulations of Giacalone and Jokipii (1999). Physically, the nonlinear effect shown in Figs. 4 and 5 comes due to resonance broadening caused by perpendicular diffusion as described by the weakly nonlinear theory of Shalchi et al. (4). Since quasilinear theory only describes gyro-resonant interactions, a linear description of parallel diffusion is incomplete. λ 1 R=R / l L slab 4... Results for the perpendicular mean free path In Fig. 6 we show the perpendicular mean free paths obtained numerically. We can see that the perpendicular diffusion coefficient is strongly controlled by the energy range spectral index q. This is in agreement with the prediction made by analytical theory - see below. The smallest perpendicular diffusion coefficient is obtained for the q ¼ 1:5. The values obtained for q ¼ and q ¼ :5 are an order of magnitude larger, showing how important the parameter q is. Fig. 5. The parallel mean free path k k normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for different values of the energy range spectral index q. Shown is the standard quasilinear parallel mean free path (dotted line) and the results obtained by employing the weakly nonlinear theory. For the latter theory we have computed the parallel mean free path for q ¼ :5 (dashed line), q ¼ (dash-dotted line), and q ¼ 1:5 (solid line). simulations but is clearly in disagreement with quasilinear theory. Only for smaller rigidities we find that WNLT slightly overestimates the nonlinear effect. It has been shown previously that the bendover scale l D used in the model spectrum (6) has a strong influence on the strength of the nonlinear effect (see Shalchi, 7). For l D ¼ l slab, for instance, the nonlinear effect is weaker and the results provided by the code used in the current Other quantities In Figs. 7 and 8 we have computed the ratio k? =k k and the product k? k k =l D, respectively. The latter quantity is important since it controls the transport regime (see Section 3.3 of the present paper). As shown in the present paper, the ratio of perpendicular and parallel mean free path k? =k k depends strongly on the energy range of the turbulence spectrum. Therefore, we conclude, that the parameter q is a critical parameter in diffusion theory. We can also understand the latter results physically. It has been shown in previous work (see Shalchi and Weinhorst, 9) that the largest turbulence scales control the diffusion coefficient of wandering magnetic field lines. Field line wandering or meandering is one of the main contributors to the effect of particle diffusion across the mean magnetic

8 165 G. Qin, A. Shalchi / Advances in Space Research 49 (1) / λ R=R L Fig. 7. The simulated ratio k? =k k versus the magnetic rigidity R ¼ R L =l slab for different values of the energy range spectral index q. Shown are the simulations for q ¼ :5 (stars), q ¼ (squares), and q ¼ 1:5 (dots) R=R L Fig. 9. The simulated perpendicular mean free path k? normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for q ¼ :5 (stars). We have compared the simulations with the results obtained by employing the original NLGC theory (dotted line) and the ENLGC (solid line). We have also shown the analytical result of Eq. (11) which is represented by the dashed line. λ / l D R=R L Fig. 8. The product k? k k =l slab versus the magnetic rigidity R ¼ R L=l slab for different values of the energy range spectral index q. Shown are the simulations for q ¼ :5 (stars), q ¼ (squares), and q ¼ 1:5 (dots). For comparison we have also shown the value k? k k =l D ¼ 3 indicating the critical value for the turnover of the analytical solutions see Eqs. (11) (13). field. Therefore, it is not a surprise that the ratio k? =k k depends on q. Furthermore, the latter effect was predicted by analytical theory as shown by Shalchi et al. (1) Comparison with analytical theory In Figs we compare our simulations with different analytical theories for perpendicular diffusion. We have shown the results provided by the original NLGC theory of Matthaeus et al. (3), the extende Matthaeus et al. (3), Shalchi (6b), and the analytical forms provided by Eqs. (11) (13). The latter equations are based on the extended NLGC theory, too. To evaluate the latter equations we have to know the parallel mean free path. In the present paper we employ the parallel mean free paths from the simulations. This is the reason why the theoretical lines fluctuate slightly. As already discussed in the aforementioned papers, there is only a small discrepancy between the different theories for the turbulence model used here. The reason for the difference between the NLGC theory and it s extended version is that in the latter theory there is no contribution due to the slab modes. For full threedimensional turbulence or a two-component model with dominant slab modes, the different versions of the NLGC theory provide different results (see, e.g., Tautz and Shalchi, 11). According to Figs our computer simulation confirm the different nonlinear guiding center theories. Only for some cases there is a factor 1.5 between analytical theory and the numerical findings of the present paper. This small discrepancy is acceptable if one takes into account the high inaccuracy of solar wind data. 5. Summary and conclusion In the present paper we have revisited the problem of cosmic ray diffusion. By using a well-established test-particle code (see, e.g., Qin et al., b, 6; Shalchi, 7)we have computed the parallel and perpendicular diffusion coefficients versus the magnetic rigidity. We derived the following new results: If we change the energy range spectral index q of the two-dimensional spectrum, we only find a small variation of the parallel mean free path in the simulations.

9 G. Qin, A. Shalchi / Advances in Space Research 49 (1) R=R L Fig. 1. The simulated perpendicular mean free path k? normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for q ¼ (squares). We have compared the simulations with the results obtained by employing the original NLGC theory (dotted line) and the ENLGC (solid line). We have also shown the analytical result of Eq. (11) which is represented by the dashed line. 1 1 R=R / l L slab Fig. 11. The simulated perpendicular mean free path k? normalized to the slab bendover scale l slab versus the magnetic rigidity R ¼ R L =l slab for q ¼ 1:5 (dots). We have compared the simulations with the results obtained by employing the original NLGC theory (dotted line) and the ENLGC (solid line). We have also shown the analytical result of Eq. (1) which is represented by the dashed line. Quasilinear theory cannot reproduce the simulations due to it s inability to describe resonance broadening effects; The running parallel diffusion coefficients obtained for the different values of q, are at least nearly diffusive and not strongly sub- or superdiffusive. The weak superdiffusivity obtained by Shalchi and Kourakis (7) does not contradict the present results. The running perpendicular diffusion coefficients are weakly subdiffusive or diffusive in agreement with Shalchi and Kourakis (7). The predictions made by analytical theory concerning the influence of q are correct see Figs Improved analytical theories for perpendicular diffusion work very well, at least for the considered parameter regime. For high particle energies, the analytical theories slightly underestimate the perpendicular diffusion coefficient. The latter conclusion is in agreement with the numerical results obtained by Gao et al. (11). We conclude that the turbulence behavior in the energy range of the spectrum has a very strong influence on the perpendicular diffusion coefficient. This conclusion is in agreement with the predictions made by analytical theory (see Shalchi, 1). The intermediate scales of the inertial range of the spectrum are not important for diffusion across the mean magnetic field. Advanced nonlinear theories seem to agree very well with simulations apart from specific parameter regimes (e.g., very high energy particles). In the analytical work of Shalchi and Dosch (8), however, it was shown that the parameter a is increasing with increasing particle rigidity. The latter effects explains the difference discussed here. The parallel diffusion coefficient does not depend very much on the large scales. The latter result is new and has important implications for energetic particles in the solar wind: By choosing a specific value of q we cannot suppress the nonlinear effect. This conclusion is supported by the weakly nonlinear theory developed a few years ago (see Shalchi et al., 4). A certain problem in the context of this Shalchi and Dosch (8), Shalchi et al. (8) have shown that pitch-angle scattering in two-dimensional turbulence could be subdiffusive. Even for two-component turbulence there should not be a diffusive scattering contribution of the two-dimensional modes to the total pitchangle Fokker Planck coefficient. In order to compute the parallel diffusion coefficient, however, one has to rely in Eq. (1). This famous and very useful formula is based on the assumption of diffusive pitch-angle scattering and, therefore, it cannot be applied for subdiffusive cases. It has to be subject of future work to revisit the derivation of Eq. (1) for subdiffusive pitch-angle scattering. Then one can explore the relation between the present simulations, the weakly nonlinear transport theory, and the work done by Shalchi et al. (8). The problem discussed in the previous paragraph is also related to the so-called Palmer consensus (see, e.g., Bieber et al., 1994). In the latter paper it has been shown that quasilinear theory is able to reproduce observed interplanetary particle mean free path if a dynamical turbulence model is employed. In the present paper, however, we have shown that quasilinear theory is not correct in the general case. The only explanation for this problem could be that the two bendover scales l slab and l D are equal. In the latter case the nonlinear effect is suppressed if the parallel mean free path is computed (see Shalchi, 7).

10 165 G. Qin, A. Shalchi / Advances in Space Research 49 (1) Another question is whether there are parameter regimes for which nonlinear effects disagree with computer simulations. In the present paper we did not find such regimes apart from the small discrepancy found by Gao et al. (11). However, we expect that the nonlinear theories become invalid in the strong turbulence limit. E.g., the nonlinear theories are based on the assumption db z B if the perpendicular diffusion coefficient is calculated. Therefore, in the limit db z B, the theories discussed in the present paper are no longer reliable. Acknowledgements G. Qin acknowledges support by Grants NNSFC and NNSFC A. Shalchi acknowledges support by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The computations were performed by Numerical Forecast Modeling R&D and VR System of State Key Laboratory of Space Weather and Special HPC work stand of Chinese Meridian Project. References Büsching, I., Potgieter, M.S. Adv. Space Res. 4, 54, 8. Bieber, J.W., Matthaeus, W.H., Smith, C.W., Wanner, W., Kallenrode, M.-B., Wibberenz, G. ApJ 4, 94, Bieber, J.W., Wanner, W., Matthaeus, W.H. J. Geophys. Res. 11, 511, Burger, R.A., Visser, D.J. ApJ 75, 1366, 1. Carbone, V., Malara, F., Veltri, P. J. Geophys. Res. 95,.673, Dasso, S., Milano, L., Matthaeus, W., Smith, C. ApJ 635, L181, 5. Dmitruk, P., Matthaeus, W.H. Phys. Plasmas 16, 634, 9. Dosch, A., Shalchi, A., Weinhorst, B. Adv. Space Res. 44, 136, 9. Dosch, A., Shalchi, A. MNRAS 394, 89, 9. Dosch, A., Shalchi, A. Adv. Space Res. 46, 18, 1. Earl, J.A. ApJ 193, 31, Gao, X., Lu, Q., Wang, S. Ap&SS 335, 399, 11. Giacalone, J., Jokipii, J.R. ApJ 5, 4, Goldstein, M.L. ApJ 4, 9, Hasselman, K., Wibberenz, G. Z. Geophys. 34, 353, Hauff, T., Pueschel, M.J., Dannert, T., Jenko, F. Phys. Rev. Lett. 1, 754, 9. Hauff, T., Jenko, F. Phys. Plasmas 16, 138, 9. Hitge, M., Burger, R.A. Adv. Space Res. 45, 18, 1. Horbury, T.S., Forman, M.A., Oughton, S. Plasma Phys. Control. Fusion 47, B73, 5. Horbury, T., Forman, M., Oughton, S. Phys. Rev. Lett. 11, 1755, 8. Hunana, P., Zank, G.P. Astrophys. J. 718, 148, 1. Jokipii, J.R. ApJ 146, 48, Jones, F.C., Birmingham, T.J., Kaiser, T.B. ApJ 18, L139, Jones, F.C., Birmingham, T.J., Kaiser, T.B. Phys. Fluids 1, 347, Kaiser, T.B. In: 14th International Cosmic Ray Conference, Munich, Germany, Conference Papers, vol. 3, p. 86, Kaiser, T.B., Birmingham, T.J., Jones, F.C. Phys. Fluids 1, 361, Kolmogorov, A. Dokl. Akad. Nauk SSSR 3, 31, le Roux, J.A., Webb, G.M. ApJ 667, 93, 7. Li, G., Shalchi, A., Ao, X., Zank, G.P., Verkhoglyadova, O.P. Adv. Space Res. 49, 167, 1. Mace, R.L., Matthaeus, W.H., Bieber, J.W. ApJ 538, 19,. Manuel, R., Ferreira, S.E.S., Potgieter, M.S. Adv. Space Res. 48, 874, 11. Matthaeus, W.H., Goldstein, M.L., Roberts, D.A. J. Geophys. Res. 95,.673, 199. Matthaeus, W.H., Ghosh, S., Oughton, S., Roberts, D. J. Geophys. Res. 11, 7619, Matthaeus, W.H., Qin, G., Bieber, J.W., Zank, G.P. ApJ 59, L53, 3. Matthaeus, W.H., Bieber, J.W., Ruffolo, D., Chuychai, P., Minnie, J. ApJ 667, 956, 7. Michałek, G., Ostrowski, M. Nonlinear Process. Geophys. 3, 66, Osman, K.T., Horbury, T.S. ApJ 654, L13, 7. Osman, K.T., Horbury, T.S. J. Geophys. Res. 114, A613, 9a. Osman, K.T., Horbury, T.S. Annal. Geophys. 7, 319, 9b. Oughton, S., Priest, E., Matthaeus, W.H. J. Fluid. Mech. 8, 95, Owens, A.J. ApJ 191, 35, Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. Numerical Recipes in FORTRAN. Cambridge Univ. Press, Cambridge, 199. Ptuskin, V.S., Moskalenko, I.V., Jones, F.C., Strong, A.W., Zirakashvili, V.N. ApJ 64, 9, 6. Qin, G., Matthaeus, W.H., Bieber, J.W. Geophys. Res. Lett. 9, 148, a. Qin, G., Matthaeus, W.H., Bieber, J.W. ApJ 578, L117, b. Qin, G., Matthaeus, W.H., Bieber, J.W. ApJ 64, L13, 6. Qin, G. ApJ 656, 17, 7. Schlickeiser, R. Cosmic Ray Astrophysics. Springer-Verlag, Berlin,. Shaikh, D., Zank, G.P. ApJ 656, L17, 7. Shalchi, A., Bieber, J.W., Matthaeus, W.H., Qin, G. ApJ 616, 617, 4. Shalchi, A. Phys. Plasmas 1, 595, 5. Shalchi, A. A&A 448, 89, 6a. Shalchi, A. A&A 453, L43, 6b. Shalchi, A. J. Phys. G: Nucl. Particle Phys. 34, 9, 7. Shalchi, A., Kourakis, I. A&A 47, 45, 7. Shalchi, A., Bieber, J.W., Matthaeus, W.H. A&A 483, 371, 8. Shalchi, A., Dosch, A. ApJ 685, 971, 8. Shalchi, A., Dosch, A. Phys. Rev. D 79, 831, 9. Shalchi, A., Weinhorst, B. Adv. Space Res. 43, 149, 9. Shalchi, A. Nonlinear Cosmic Ray Diffusion Theories. Astrophysics and Space Science Library, 36. Springer, Berlin, 9. Shalchi, A., Qin, G. Ap&SS 33, 79, 1. Shalchi, A. ApJ 7, L17, 1. Shalchi, A., Li, G., Zank, G.P. Ap&SS 35, 99, 1. Strauss, R.D., Potgieter, M.S., Büsching, I., Kopp, A. ApJ 735, 83, 11. Tautz, R.C. ApJ 73, 194, 9. Tautz, R.C. Comput. Phys. Commun. 181, 71, 1. Tautz, R.C., Shalchi, A. JGR 115, A314, 1. Tautz, R.C., Shalchi, A. ApJ 735, 9, 11. Völk, H.J. Ap&SS 5, 471, Völk, H.J. Rev. Geophys. Space Phys. 13, 547, Webb, G.M., Zank, G.P., Kaghashvili, E.Kh., le Roux, J.A. ApJ 651, 11, 6. Zank, G.P., Matthaeus, W.H. Phys. Fluids A 5, 57, Zank, G.P., Rice, W.K.M., Wu, C.C. J. Geophys. Res. 15, 579,. Zank, G.P., Li, G., Verkhoglyadova, O. Space Sci. Rev. 13, 55, 7. Zimbardo, G., Pommois, P., Veltri, P. ApJ 639, L91, 6.

Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves

Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves MNRAS 444, 676 684 (014) doi:10.1093/mnras/stu1595 Parallel and perpendicular diffusion coefficients of energetic particles interacting with shear Alfvén waves M. Hussein and A. Shalchi Department of Physics

More information

When do particles follow field lines?

When do particles follow field lines? JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:1.19/8ja13349, 9 When do particles follow field lines? J. Minnie, 1 W. H. Matthaeus, 1 J. W. Bieber, 1 D. Ruffolo, and R. A. Burger 3 Received 8 April 8;

More information

Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence

Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence Gaetano Zimbardo S. Perri, P. Pommois, and P. Veltri Universita

More information

Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay in time asymptotic transport

Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay in time asymptotic transport Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L17105, doi:10.1029/2007gl030672, 2007 Temporary topological trapping and escape of charged particles in a flux tube as a cause of delay

More information

Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport

Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport Random ballistic interpretation of the nonlinear guiding center theory of perpendicular transport, a T. Jitsuk, a T. Pianpanit, a A. P. Snodin, b W. H. Matthaeus, c P. Chuychai d a Mahidol University,

More information

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil Brazilian Journal of Physics ISSN: 0103-9733 luizno.bjp@gmail.com Sociedade Brasileira de Física Brasil Engelbrecht, N. E.; Burger, R. A. Cosmic-Ray Modulation: an Ab Initio Approach Brazilian Journal

More information

NONLINEAR PARALLEL AND PERPENDICULAR DIFFUSION OF CHARGED COSMIC RAYS IN WEAK TURBULENCE

NONLINEAR PARALLEL AND PERPENDICULAR DIFFUSION OF CHARGED COSMIC RAYS IN WEAK TURBULENCE The Astrophysical Journal, 616:617 69, 4 November # 4. The American Astronomical Society. All rights reserved. Printed in U.S.A. NONLINAR PARALLL AN PRPNICULAR IFFUSION OF CHARG COSMIC RAYS IN WAK TURBULNC

More information

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Philip A. Isenberg a, Sean Oughton b, Charles W. Smith a and William H. Matthaeus c a Inst. for Study of Earth, Oceans and

More information

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model Available online at www.sciencedirect.com Advances in Space Research 49 (2012) 1327 1332 www.elsevier.com/locate/asr Effect of current sheets on the power spectrum of the solar wind magnetic field using

More information

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift

Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift G.M. Webb, J. A. le Roux, G. P. Zank, E. Kh. Kaghashvili and G. Li Institute of Geophysics and Planetary Physics,

More information

Cosmic ray diffusion tensor throughout the heliosphere

Cosmic ray diffusion tensor throughout the heliosphere Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.109/009ja014705, 010 Cosmic ray diffusion tensor throughout the heliosphere C. Pei, 1 J. W. Bieber, 1 B. Breech, R. A. Burger,

More information

arxiv: v1 [astro-ph.he] 30 Sep 2013

arxiv: v1 [astro-ph.he] 30 Sep 2013 Astronomy & Astrophysics manuscript no. numdmu8 c ESO 8 September 4, 8 Pitch-angle scattering in magnetostatic turbulence I. Test-particle simulations and the validity of analytical results R. C. Tautz,

More information

Numerical simulations of solar energetic particle event timescales associated with ICMES

Numerical simulations of solar energetic particle event timescales associated with ICMES Numerical simulations of solar energetic particle event timescales associated with ICMES Shi-Yang Qi 1,2, Gang Qin 3,1,2 and Yang Wang 3 1 State Key Laboratory of Space Weather, National Space Science

More information

Simulations of cosmic ray cross field diffusion in highly perturbed magnetic fields

Simulations of cosmic ray cross field diffusion in highly perturbed magnetic fields Astron. Astrophys. 326, 793 800 (1997) ASTRONOMY AND ASTROPHYSICS Simulations of cosmic ray cross field diffusion in highly perturbed magnetic fields G. Michaĺek 1 and M. Ostrowski 1,2 1 Obserwatorium

More information

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907

Acceleration of energetic particles by compressible plasma waves of arbitrary scale sizes DOI: /ICRC2011/V10/0907 3ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING Acceleration of energetic particles by compressible plasma s of arbitrary scale sizes MING ZHANG Department of Physics and Space Sciences, Florida Institute

More information

LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR WIND

LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR WIND The Astrophysical Journal, 653:1493Y1498, 006 December 0 # 006. The American Astronomical Society. All rights reserved. Printed in U.S.A. LENGTHS OF WANDERING MAGNETIC FIELD LINES IN THE TURBULENT SOLAR

More information

A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE DEPENDENCE

A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE DEPENDENCE The Astrophysical Journal, 674:511Y519, 008 February 10 # 008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A FISK-PARKER HYBRID HELIOSPHERIC MAGNETIC FIELD WITH A SOLAR-CYCLE

More information

THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS

THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS Joe Giacalone Lunary & Planetary Laboratory, University of Arizona, Tucson, AZ, 8572, USA ABSTRACT Using analytic theory, test-particle simulations,

More information

Numerical simulations of solar energetic particle event timescales associated with ICMEs

Numerical simulations of solar energetic particle event timescales associated with ICMEs RAA 2017 Vol. 17 No. 4, 33 (12pp) doi: 10.1088/1674 4527/17/4/33 c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. http://www.raa-journal.org http://iopscience.iop.org/raa Research

More information

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/809/2/177 SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8 Gang Qin

More information

Monte Carlo simulations of intensity profiles for energetic particle propagation ABSTRACT

Monte Carlo simulations of intensity profiles for energetic particle propagation ABSTRACT A&A 586, A8 (6) DOI:.5/4-636/5755 c ESO 6 Astronomy & Astrophysics Monte Carlo simulations of intensity profiles for energetic particle propagation R. C. Tautz, J. Bolte, and A. Shalchi Zentrum für Astronomie

More information

Space Physics / Plasma Physics at BRI

Space Physics / Plasma Physics at BRI Observational Theoretical Experimental Space Physics / Plasma Physics at BRI Solar Heliospheric/solar wind Cosmic rays, modulation Scattering and transport theory Turbulence MHD: magnetic reconnection,

More information

Observations and Modeling of Turbulence in the Solar Wind

Observations and Modeling of Turbulence in the Solar Wind Observations and Modeling of Turbulence in the Solar Wind Melvyn L. Goldstein NASA Goddard Space Flight Center, USA E-mail: melvyn.l.goldstein@nasa.gov Summary. Alfvénic fluctuations are a ubiquitous component

More information

Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons

Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010158, 2004 Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons U. W. Langner and M. S. Potgieter

More information

Modelling cosmic ray intensities along the Ulysses trajectory

Modelling cosmic ray intensities along the Ulysses trajectory Annales Geophysicae,, 6 7, 5 SRef-ID: -576/ag/5--6 European Geosciences Union 5 Annales Geophysicae Modelling cosmic ray intensities along the Ulysses trajectory D. C. Ndiitwani, S. E. S. Ferreira, M.

More information

Cosmic ray transport in non-uniform magnetic fields: consequences of gradient and curvature drifts

Cosmic ray transport in non-uniform magnetic fields: consequences of gradient and curvature drifts J. Plasma Physics 2010), vol. 76, parts 3&4, pp. 317 327. c Cambridge University Press 2010 doi:10.1017/s0022377809990444 317 Cosmic ray transport in non-uniform magnetic fields: consequences of gradient

More information

Spacecraft observations of solar wind turbulence: an overview

Spacecraft observations of solar wind turbulence: an overview INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (2005) B703 B717 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/47/12b/s52 Spacecraft observations of solar wind turbulence:

More information

Evidence for superdiffusive shock acceleration at interplanetary shock waves

Evidence for superdiffusive shock acceleration at interplanetary shock waves Journal of Physics: Conference Series PAPER Evidence for superdiffusive shock acceleration at interplanetary shock waves To cite this article: S Perri and G Zimbardo 2015 J. Phys.: Conf. Ser. 642 012020

More information

Fundamentals of Turbulence

Fundamentals of Turbulence Fundamentals of Turbulence Stanislav Boldyrev (University of Wisconsin - Madison) Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas What is turbulence? No exact definition.

More information

Diffusive cosmic ray acceleration at shock waves of arbitrary speed

Diffusive cosmic ray acceleration at shock waves of arbitrary speed Diffusive cosmic ray acceleration at shock waves of arbitrary speed Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-4478 Bochum, Germany E-mail: rsch@tp4.rub.de

More information

THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK

THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK THE INTERACTION OF TURBULENCE WITH THE HELIOSPHERIC SHOCK G.P. Zank, I. Kryukov, N. Pogorelov, S. Borovikov, Dastgeer Shaikh, and X. Ao CSPAR, University of Alabama in Huntsville Heliospheric observations

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

HELIOSPHERIC RADIO EMISSIONS

HELIOSPHERIC RADIO EMISSIONS 1 2 3 4 5 6 7 8 9 10 TWO RECENT khz OUTER HELIOSPHERIC RADIO EMISSIONS SEEN AT VOYAGER 1 - WHAT ARE THE INTERPLANETARY EVENTS THAT TRIGGER THEM AND WHERE ARE THESE EVENTS WHEN THE RADIO EMISSIONS START?

More information

A first step towards proton flux forecasting

A first step towards proton flux forecasting Advances in Space Research xxx (2005) xxx xxx www.elsevier.com/locate/asr A first step towards proton flux forecasting A. Aran a, *, B. Sanahuja a, D. Lario b a Departament dõastronomia i Meteorologia,

More information

Solar Wind Turbulence

Solar Wind Turbulence Solar Wind Turbulence Presentation to the Solar and Heliospheric Survey Panel W H Matthaeus Bartol Research Institute, University of Delaware 2 June 2001 Overview Context and SH Themes Scientific status

More information

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael

Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Article Drift induced deceleration of Solar Energetic Particles Dalla, Silvia, Marsh, Michael and Laitinen, Timo Lauri mikael Available at http://clok.uclan.ac.uk/12041/ Dalla, Silvia, Marsh, Michael and

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Voyager observations of galactic and anomalous cosmic rays in the helioshealth

Voyager observations of galactic and anomalous cosmic rays in the helioshealth Voyager observations of galactic and anomalous cosmic rays in the helioshealth F.B. McDonald 1, W.R. Webber 2, E.C. Stone 3, A.C. Cummings 3, B.C. Heikkila 4 and N. Lal 4 1 Institute for Physical Science

More information

2-D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity

2-D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity Journal of Physics: Conference Series PAPER OPEN ACCESS -D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity To cite this article: M Siluszyk et al 5 J. Phys.: Conf. Ser. 63 8 View the

More information

DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS? The Astrophysical Journal, 711:980 989, 2010 March 10 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/711/2/980 DROPOUTS IN SOLAR ENERGETIC PARTICLES:

More information

Study of the magnetic turbulence in a corotating interaction region in the interplanetary medium

Study of the magnetic turbulence in a corotating interaction region in the interplanetary medium Ann. Geophysicae 17, 1361±1368 (1999) Ó EGS ± Springer-Verlag 1999 Study of the magnetic turbulence in a corotating interaction region in the interplanetary medium J. F. Valde s-galicia, R. A. Caballero

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

Prediction of solar activity cycles by assimilating sunspot data into a dynamo model

Prediction of solar activity cycles by assimilating sunspot data into a dynamo model Solar and Stellar Variability: Impact on Earth and Planets Proceedings IAU Symposium No. 264, 2009 A. G. Kosovichev, A. H. Andrei & J.-P. Rozelot, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309992638

More information

Cosmic Ray Acceleration at Relativistic Shock Waves

Cosmic Ray Acceleration at Relativistic Shock Waves Cosmic Ray Acceleration at Relativistic Shock Waves M. Ostrowski Obserwatorium Astronomiczne, Uniwersytet Jagielloński, Kraków, Poland (E-mail: mio@oa.uj.edu.pl) Abstract Theory of the first-order Fermi

More information

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere

Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L21112, doi:10.1029/2006gl027578, 2006 Correlation between energetic ion enhancements and heliospheric current sheet crossings in the

More information

Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame

Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 1 10, doi:10.1002/jgra.50398, 2013 Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame James M. Weygand,

More information

Stochastic Particle Acceleration in Parallel Relativistic Shocks

Stochastic Particle Acceleration in Parallel Relativistic Shocks Stochastic Particle Acceleration in Parallel Relativistic Shocks Joni J. P. Virtanen Tuorla Observatory, Väisäläntie 20, FI-21500 Piikkiö, FINLAND Rami Vainio Department of Physical Sciences, P.O. Box

More information

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA A Galactic Cosmic Ray Electron Spectrum at Energies from 2 MeV to 2 TeV That Fits Voyager 5-60 MeV Data at Low Energies and PAMELA and AMS-2 Data at 10 GeV Using an Electron Source Spectrum ~E -2.25 A

More information

LOSS CONE PRECURSORS TO FORBUSH DECREASES AND ADVANCE WARNING OF SPACE WEATHER EFFECTS K. Leerungnavarat and D. Ruffolo. and J. W.

LOSS CONE PRECURSORS TO FORBUSH DECREASES AND ADVANCE WARNING OF SPACE WEATHER EFFECTS K. Leerungnavarat and D. Ruffolo. and J. W. The Astrophysical Journal, 593:587 596, 2003 August 10 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. LOSS CONE PRECURSORS TO FORBUSH DECREASES AND ADVANCE WARNING OF

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

Rotation of the Earth s plasmasphere at different radial distances

Rotation of the Earth s plasmasphere at different radial distances Available online at www.sciencedirect.com Advances in Space Research 48 (2011) 1167 1171 www.elsevier.com/locate/asr Rotation of the Earth s plasmasphere at different radial distances Y. Huang a,b,, R.L.

More information

Exact solutions of dispersion equation for MHD waves with short-wavelength modification

Exact solutions of dispersion equation for MHD waves with short-wavelength modification Article Astrophysics April 011 Vol. 56 No. 10: 955 961 doi: 10.1007/s11434-011-4409- Exact solutions of dispersion equation for MHD waves with short-wavelength modification CHEN Ling 1, & WU DeJin 1* 1

More information

Comment on Effects of fast and slow solar wind on the correlation between interplanetary medium and geomagnetic activity by P.

Comment on Effects of fast and slow solar wind on the correlation between interplanetary medium and geomagnetic activity by P. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A10, 1386, doi:10.1029/2002ja009746, 2003 Correction published 20 January 2004 Comment on Effects of fast and slow solar wind on the correlation between interplanetary

More information

Dynamics of charged particles in spatially chaotic magnetic fields

Dynamics of charged particles in spatially chaotic magnetic fields PSFC/JA-1-38 Dynamics of charged particles in spatially chaotic magnetic fields Abhay K. Ram and Brahmananda Dasgupta a October 21 Plasma Science and Fusion Center, Massachusetts Institute of Technology

More information

The influence of in situ pitch-angle cosine coverage on the derivation of solar energetic particle injection and interplanetary transport conditions

The influence of in situ pitch-angle cosine coverage on the derivation of solar energetic particle injection and interplanetary transport conditions Available online at www.sciencedirect.com Advances in Space Research 44 (2009) 794 800 www.elsevier.com/locate/asr The influence of in situ pitch-angle cosine coverage on the derivation of solar energetic

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

Heating of ions by low-frequency Alfven waves

Heating of ions by low-frequency Alfven waves PHYSICS OF PLASMAS 14, 433 7 Heating of ions by low-frequency Alfven waves Quanming Lu School of Earth and Space Sciences, University of Science and Technology of China, Hefei 36, People s Republic of

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail Paolo Desiati 1,2 & Alexander Lazarian 2 1 IceCube Research Center 2 Department of Astronomy University of Wisconsin -

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 9. Synchrotron Radiation Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Useful reminders relativistic terms, and simplifications for very high velocities

More information

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment Research supported by US DOE and NSF Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment David Schaffner Swarthmore College, NSF Center for Magnetic Self-Organization with

More information

TRANSPORT OF CHARGED PARTICLES IN TURBULENT MAGNETIC FIELDS. Prachanda Subedi

TRANSPORT OF CHARGED PARTICLES IN TURBULENT MAGNETIC FIELDS. Prachanda Subedi TRANSPORT OF CHARGED PARTICLES IN TURBULENT MAGNETIC FIELDS by Prachanda Subedi A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications 3D Reconnection of Weakly Stochastic Magnetic Field and its Implications Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration:

More information

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Cosmic Rays in CMSO Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Galaxies are Pervaded by Magnetic Fields & Relativistic Particles Synchrotron radiation from M51 (MPIfR/NRAO) Galactic molecular

More information

MHD SIMULATIONS IN PLASMA PHYSICS

MHD SIMULATIONS IN PLASMA PHYSICS MHD SIMULATIONS IN PLASMA PHYSICS P. Jelínek 1,2, M. Bárta 3 1 University of South Bohemia, Department of Physics, Jeronýmova 10, 371 15 České Budějovice 2 Charles University, Faculty of Mathematics and

More information

ION THERMAL CONDUCTIVITY IN TORSATRONS. R. E. Potok, P. A. Politzer, and L. M. Lidsky. April 1980 PFC/JA-80-10

ION THERMAL CONDUCTIVITY IN TORSATRONS. R. E. Potok, P. A. Politzer, and L. M. Lidsky. April 1980 PFC/JA-80-10 ION THERMAL CONDUCTIVITY IN TORSATRONS R. E. Potok, P. A. Politzer, and L. M. Lidsky April 1980 PFC/JA-80-10 ION THERMAL CONDUCTIVITY IN TORSATRONS R.E. Potok, P.A. Politzer, and L.M. Lidsky Plasma Fusion

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, A02103, doi: /2008ja013689, 2009

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, A02103, doi: /2008ja013689, 2009 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013689, 2009 Galactic propagation of cosmic ray nuclei in a model with an increasing diffusion coefficient at low

More information

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium Annales Geophysicae (2004) 22: 3063 3072 SRef-ID: 1432-0576/ag/2004-22-3063 European Geosciences Union 2004 Annales Geophysicae Effects of the solar wind termination shock and heliosheath on the heliospheric

More information

GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE: A STOCHASTIC PARTICLE APPROACH

GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE: A STOCHASTIC PARTICLE APPROACH The Astrophysical Journal, 634:1116 1125, 2005 December 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC COSMIC-RAY MODULATION USING A SOLAR MINIMUM MHD HELIOSPHERE:

More information

Cyclic variations of the heliospheric tilt angle and cosmic ray modulation

Cyclic variations of the heliospheric tilt angle and cosmic ray modulation Advances in Space Research 4 (27) 164 169 www.elsevier.com/locate/asr Cyclic variations of the heliospheric tilt angle and cosmic ray modulation K. Alanko-Huotari a, I.G. Usoskin b, *, K. Mursula a, G.A.

More information

Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity

Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014225, 2009 Balloon-borne observations of the galactic positron fraction during solar minimum negative polarity John Clem 1 and Paul Evenson

More information

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind

Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011528, 2006 Radial decay law for large-scale velocity and magnetic field fluctuations in the solar wind J. J. Podesta 1 Received 10 November

More information

ESWW-2. L.I. Dorman (a, b)

ESWW-2. L.I. Dorman (a, b) ESWW-2 Forecasting of the part of global climate change caused by the influence of long-term cosmic ray intensity variation on the planetary cloudiness L.I. Dorman (a, b) (a) Israel Cosmic Ray and Space

More information

Two-dimensional hybrid simulations of filamentary structures. and kinetic slow waves downstream of a quasi-parallel shock

Two-dimensional hybrid simulations of filamentary structures. and kinetic slow waves downstream of a quasi-parallel shock Two-dimensional hybrid simulations of filamentary structures and kinetic slow waves downstream of a quasi-parallel shock Yufei Hao 1,2,3, Quanming Lu 1,3, Xinliang Gao 1,3, Huanyu Wang 1,3, Dejin Wu 4,

More information

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Iver H. Cairns 1, Daniel B. Graham 1,2, Bo Li 1, A. Layden 1, B. Layden (1 = U. Sydney, 2 = Swed. Int. Sp.

More information

arxiv: v2 [astro-ph.sr] 3 Aug 2010

arxiv: v2 [astro-ph.sr] 3 Aug 2010 Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind Sofiane Bourouaine 1, Eckart Marsch 1 and Fritz M. Neubauer 2 arxiv:1003.2299v2 [astro-ph.sr]

More information

The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity

The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity Journal of Physics: Conference Series PAPER OPEN ACCESS The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity To

More information

The O + Ion Flux in the Martian Magnetosphere and Martian Intrinsic Moment

The O + Ion Flux in the Martian Magnetosphere and Martian Intrinsic Moment Chin. J. Astron. Astrophys. Vol. 1, No. 2, (2001 185 189 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn Chinese Journal of Astronomy and Astrophysics The O + Ion Flux in the Martian Magnetosphere and

More information

Progress and Plans on Physics and Validation

Progress and Plans on Physics and Validation Progress and Plans on Physics and Validation T.S. Hahm Princeton Plasma Physics Laboratory Princeton, New Jersey Momentum Transport Studies: Turbulence and Neoclassical Physics Role of Trapped Electrons

More information

Turbulence and Reconnection

Turbulence and Reconnection Turbulence and Reconnection Jeff Tessein July 10, 2011 NASA turbulence study at Wallops Island, Virginia Outline Turbulence (length scales, Reynolds decomposition) Navier-Stokes Equation Turbulence Spectrum

More information

Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed

Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016621, 2011 Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed James

More information

Searching for signatures of nearby sources of Cosmic rays in their local chemical composition

Searching for signatures of nearby sources of Cosmic rays in their local chemical composition Searching for signatures of nearby sources of Cosmic rays in their local chemical composition D. Bisschoff 1, I. Büsching 12 and M. S. Potgieter 1 1 Centre for Space Research, North-West University, Potchefstroom

More information

Article (peer-reviewed)

Article (peer-reviewed) Title Author(s) Influence of noise intensity on the spectrum of an oscillator Swain, Rabi Sankar; Gleeson, James P.; Kennedy, Michael Peter Publication date 2005-11 Original citation Type of publication

More information

Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1

Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011156, 2005 Relation between the solar wind dynamic pressure at Voyager 2 and the energetic particle events at Voyager 1 J. D. Richardson,

More information

COSMIC-RAY ENERGY CHANGES IN THE HELIOSPHERE. II. THE EFFECT ON K-CAPTURE ELECTRON SECONDARIES

COSMIC-RAY ENERGY CHANGES IN THE HELIOSPHERE. II. THE EFFECT ON K-CAPTURE ELECTRON SECONDARIES The Astrophysical Journal, 663:1335Y1339, 2007 July 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. COSMIC-RAY ENERGY CHANGES IN THE HELIOSPHERE. II. THE EFFECT ON

More information

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind

Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009947, 2004 Anisotropy and Alfvénicity of hourly fluctuations in the fast polar solar wind M. Neugebauer 1 Lunar and Planetary Laboratory,

More information

Kinetic and Small Scale Solar Wind Physics

Kinetic and Small Scale Solar Wind Physics Chapter 11 Kinetic and Small Scale Solar Wind Physics Thus far the origin, evolution, and large scale characteristics of the solar wind have been addressed using MHD theory and observations. In this lecture

More information

arxiv: v1 [physics.plasm-ph] 3 Apr 2011

arxiv: v1 [physics.plasm-ph] 3 Apr 2011 A comparison of Vlasov with drift kinetic and gyrokinetic theories arxiv:1104.0427v1 [physics.plasm-ph] 3 Apr 2011 H. Tasso 1, G. N. Throumoulopoulos 2 1 Max-Planck-Institut für Plasmaphysik, Euratom Association,

More information

Coronal Heating Problem

Coronal Heating Problem PHY 690C Project Report Coronal Heating Problem by Mani Chandra, Arnab Dhabal and Raziman T V (Y6233) (Y7081) (Y7355) Mentor: Dr. M.K. Verma 1 Contents 1 Introduction 3 2 The Coronal Heating Problem 4

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

PARTICLE ACCELERATION AT COMETS

PARTICLE ACCELERATION AT COMETS PARTICLE ACCELERATION AT COMETS Tamas I. Gombosi Space Physics Research Laboratory Department of Atmospheric, Oceanic and Space Sciences The University of Michigan, Ann Arbor, MI 48109 ABSTRACT This paper

More information

Cosmic Rays in the Dynamic Heliosphere

Cosmic Rays in the Dynamic Heliosphere J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Cosmic Rays in the Dynamic Heliosphere Marius S. POTGIETER Unit for Space Physics, North-West University, 2520 Potchefstroom, South Africa (Received: 27 August

More information

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE GA A6 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE by R. PRATER, C.C. PETTY, R. HARVEY, Y.R. LIN-LIU, J.M. LOHR, and T.C. LUCE JULY DISCLAIMER This report was prepared as an account of work sponsored

More information

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions

Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions Calculation of alpha particle redistribution in sawteeth using experimentally reconstructed displacement eigenfunctions R. Farengo, H. E. Ferrari,2, M.-C. Firpo 3, P. L. Garcia-Martinez 2,3, A. F. Lifschitz

More information

Cosmic rays propagation in Galaxy: A fractional approach

Cosmic rays propagation in Galaxy: A fractional approach A workshop on the occasion of the retirement of Francesco Mainardi Bilbao Basque Country Spain 6 8 November 2013 Cosmic rays propagation in Galaxy: A fractional approach Vladimir Uchaikin and Renat Sibatov

More information

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere

Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012207, 2007 Temporal and spectral variations of anomalous oxygen nuclei measured by Voyager 1 and Voyager 2 in the outer heliosphere W. R.

More information

Modulation effects of anisotropic perpendicular diffusion on cosmic ray electron intensities in the heliosphere

Modulation effects of anisotropic perpendicular diffusion on cosmic ray electron intensities in the heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 05, NO. A8, PAGES 8,305-8,34, AUGUST, 2000 Modulation effects of anisotropic perpendicular diffusion on cosmic ray electron intensities in the heliosphere S. E. S.

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

The Cosmic Ray Boron/Carbon Ratio Measured at Voyager and at AMS-2 from 10 MeV/nuc up to ~1 TeV/nuc and a Comparison With Propagation Calculations

The Cosmic Ray Boron/Carbon Ratio Measured at Voyager and at AMS-2 from 10 MeV/nuc up to ~1 TeV/nuc and a Comparison With Propagation Calculations 1 The Cosmic Ray Boron/Carbon Ratio Measured at Voyager and at AMS-2 from 10 MeV/nuc up to ~1 TeV/nuc and a Comparison With Propagation Calculations W.R. Webber and T.L. Villa New Mexico State University,

More information