Polarized Proton Target for the g 2. Experiment. Melissa Cummings The College of William and Mary On Behalf of the E Collaboration

Size: px
Start display at page:

Download "Polarized Proton Target for the g 2. Experiment. Melissa Cummings The College of William and Mary On Behalf of the E Collaboration"

Transcription

1 Polarized Proton Target for the g 2 p Experiment Melissa Cummings The College of William and Mary On Behalf of the E Collaboration APS April Meeting, April 16 th 2013

2 g 2 p Collaboration Spokespeople Alexandre Camsonne Jian- Ping Chen Don Crabb Karl Slifer Post Docs Kalyan Allada Dustin Keller James Maxwell Johnathan Mullholland Vince Sulkosky Jixie Zhang Graduate Students Toby Badman Melissa Cummings Chao Gu Min Huang Jie Liu Pengjia Zhu Ryan Zielinski JLab Target Group Chris Keith James Brock Chris Carlin Dave Meekins Josh Pierce 2

3 Introduction The g 2 p experiment will provide the Virst measurement of the proton spin structure function g 2 in the resonance region: 0.02 < Q 2 < 0.2 GeV 2 Ran concurrently with the GEp experiment, which measures the proton form factor ratio (G E /G M ) Data will shed light on outstanding physics puzzles The solid NH 3 target used for the experiment had never before been used in JLab s Hall A Data at 2.5T magnetic Vield is of particular interest 3

4 Thermal Equilibrium Polarization Material placed in a high magnetic Vield and cooled to low temperatures will polarize according to Boltzmann Statistics: P TE = e µb KT e µb KT e KT µb + e µb KT = tanh µb kt At 1K in 2.5T Vield: P TE = 0.25% for protons P TE = 92% for electrons 4

5 Dynamic Nuclear Polarization (DNP) Takes advantage of e- p spin coupling Use microwaves to induce forbidden transitions H = µ e B + µ p B + H ss e p e p ν µ = ν EPR ν NMR Both positive and negative proton polarizations can be achieved with the same magnetic Vield e p e p ν µ = ν EPR + ν NMR Relaxation Time: Proton: tens of minutes Electron: milliseconds 5

6 Target Setup - Improvements Polarized Target & Ins Refrigerator was constructed using improved techniques improved performance: 1.1K with 3W microwave power Last minute failure of original (UVa/JLab) magnet Hall B magnet was able to be modivied as a replacement Redesigned target insert Less cumbersome More reliable Overall easier to maintain! 6

7 Target Setup M. Cummings APS April Meeting April 16th

8 Magnetic Field Polarized Target & Ins Superconducting NbTi split- pair Capable of 10-4 uniformity over cylindrical volume 2 cm in diameter and 2 cm long Open geometry allows for beam to pass through or to the Vield 8

9 Target Insert Several advantages to using NH3 as a proton target: Can reach high polarizations Polarizes quickly Good resistance to radiation damage Material was irradiated at the NIST 10MeV linac prior to the run to produce extra radicals for use in DNP warm dose irradiations produce NH2 cold dose irradiations produce atomic hydrogen Material must be annealed during the run to recover high polarization M. Cummings APS April Meeting April 16th

10 Target Insert Microwaves are provided by the EIO tube and carried via wave guides to the horn positioned near the ammonia cups 5T: ~140 GHz 2.5T: ~70 GHz As radiation damage accumulates, optimal frequency changes M. Cummings APS April Meeting April 16th

11 NMR Used to measure proton polarization Observes the spin Vlip of the proton at its Larmor frequency Inductor of an LCR circuit is imbedded in the target material Can detect the energy lost or gained in the circuit as a function of the circuit s frequency RF Generator Q- Meter LCR Circuit TE 10, Event Polarization is recorded every 30s Raw Sweep Data Raw Baseline Data Index 11

12 NMR Signal Analysis Raw TE signal 10, Event with baseline Raw Sweep Data Raw Baseline Data Index Courtesy T. Badman 12

13 NMR Signal Analysis Baseline subtracted signal with TE 10, Event rd order polynomial Ait to wings Base Subtracted Data 0 3rd Order Polynomail Fit Index Courtesy T. Badman 13

14 NMR Signal Analysis Fit-subtracted TE 10, Event signal 0 Fit Subtracted Data Index Courtesy T. Badman 14

15 OfVline Polarization Results Calibration constants determined ofvline using thermal equilibrium measurements for each material (18 different NH 3 samples were used) P Enh P TE = (A G) Enh (A G) TE Polarization Offline Polarization Results for E=1.7 GeV, 2.5T, Transverse Polarization Offline Polarization Results for E=2.2 GeV, 5T, Longitudinal Run # Average polarization: for 2.5T running: ~30% for 5T running: ~70% Run # 15

16 Systematic Uncertainty Study Analysis is underway to determine polarization uncertainties Possible contributions to the uncertainty include: Magnetic Vield power supply precision Magnetic Vield uniformity He 4 manometer precision Baseline Vit Fit integration Magnetic Vield drift NMR drift Gain voltage 16

17 Summary Solid NH3 target was installed and used for the Virst time in Hall A to great success High polarizations were achieved during the run 2.5T running polarization much higher then expected! In extraction of g2p, target polarization goes directly into the cross section difference Target polarization will be one of the leading systematic contributions to cross section M. Cummings APS April Meeting April 16th

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration Min Huang Duke University, TUNL On behalf of the E08-027 (g2p) collaboration Hall A Collaboration Meeting, June 13th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration Min Huang Duke University, TUNL For the Jefferson Lab Hall A E08-027 (g2p) collaboration APS April Meeting, April 16th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

Status and Prospects for the Existing Polarized Target at JLab. Josh Pierce Newport News 3/12/14

Status and Prospects for the Existing Polarized Target at JLab. Josh Pierce Newport News 3/12/14 Status and Prospects for the Existing Polarized Target at JLab Josh Pierce Newport News 3/12/14 Dynamic Nuclear Polarization Material is prepared with free electron spins Through irradiation or chemical

More information

Radiation Damage and Recovery in Polarized Ammonia Targets

Radiation Damage and Recovery in Polarized Ammonia Targets Radiation Damage and Recovery in Polarized Ammonia Targets James Maxwell Univ. of Virginia Polarized Target Group Polarized Sources & Targets, Ferrara, Italia, 8.9.2009 Outline Spin Physics at TJNAF (Jefferson

More information

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 Magnetic resonance imaging (MRI) is a tool utilized in the medical

More information

E1039 Polarized SeaQuest

E1039 Polarized SeaQuest E1039 Polarized SeaQuest Dustin Keller University of Virginia Spin 2018 Outline Physics of Interest The Experimental Setup The Target System The Schedule What we Think we Know Of the 4-5%, Higgs helps

More information

Polarized 3 He Target Updates

Polarized 3 He Target Updates Polarized 3 He Target Updates Kai Jin, University of Virginia, on behalf of JLab polarized 3 He group Hall A Winter Collaboration Meeting, January 19, 2017 Introduction to polarized 3He target Target upgrade

More information

Polarized Target Training for SANE, g 1. and SemiSane

Polarized Target Training for SANE, g 1. and SemiSane Polarized Target Training for SANE, g 1 d and SemiSane Donal Day University of Virginia October 2008 Outline Operator Duties and Responsibilities (3) General architecture of control system (1) Dynamic

More information

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Polarized solid deuteron targets EU-SpinMap Dubrovnik Experimentalphysik I Arbeitsgruppe Physik der Hadronen und Kerne Prof. Dr. W. Meyer G. Reicherz, Chr. Heß, A. Berlin, J. Herick Polarized solid deuteron targets EU-SpinMap 11.10.2010 Dubrovnik Polarized

More information

Polarized 3 He Target For Future Experiments

Polarized 3 He Target For Future Experiments Polarized 3 He Target For Future Experiments Kai Jin, University of Virginia, on behalf of JLab polarized 3 He group Hall C Winter Collaboration Meeting, January 20, 2017 Introduction to polarized 3 He

More information

Limiting Factors in Target Rotation

Limiting Factors in Target Rotation Limiting Factors in Target Rotation April 10, 2018 1 Target Raster System We start from the premise that the Compact Photon Source (CPS) target system should be able to handle the the same heat load from

More information

A dynamically polarized target for CLAS12

A dynamically polarized target for CLAS12 A dynamically polarized target for CLAS12 Thomas Jefferson National Acccelerator Facility E-mail: ckeith@jlab.org The 12 GeV physics program in Hall B at Jefferson Lab will be centered on the newly commissioned,

More information

The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense

The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense PR12-13-011 Spokespeople J.-P. Chen, N. Kalantarians, D. Keller, E. Long, O. A. Rondon, K. Slifer, P. Solvignon b 1 Collaboration K.

More information

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith

Frozen Spin Targets. In a Nutshell. Version 2.0. Chris Keith Frozen Spin Targets In a Nutshell Version 2.0 Chris Keith Dynamic Nuclear Polarization (the simple model) Use Low Temperature + High Field to polarize free electrons (aka paramagnetic centers) in the target

More information

Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions

Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions P. Degtiarenko, G. Kharashvili, V. Vylet Jefferson Lab 2 nd FLUKA Advanced Course and Workshop Sept 2012, Vancouver

More information

Spin Temperature and Dynamic Nuclear Polarization

Spin Temperature and Dynamic Nuclear Polarization Spin Temperature and Dynamic Nuclear Polarization Latest Results on the Deuteron Polarization Spin Temperature and Dynamic Nuclear Polarization A new generation of polarizable deuteron target materials

More information

Probing Short Range Structure Through the Tensor Asymmetry A zz

Probing Short Range Structure Through the Tensor Asymmetry A zz Probing Short Range Structure Through the Tensor Asymmetry A zz (TA ) at x>1 zz Elena Long Joint Hall A/C Collaboration Meeting Jefferson Lab June 6 th, 2014 1 Today s Discussion Overview of Physics Motivation

More information

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

arxiv: v1 [nucl-ex] 29 Mar 2018

arxiv: v1 [nucl-ex] 29 Mar 2018 A Letter of Intent to Jefferson Lab PAC 44, June 6, 2016 Search for Exotic Gluonic States in the Nucleus M. Jones, C. Keith, J. Maxwell, D. Meekins Thomas Jefferson National Accelerator Facility, Newport

More information

D Target for Electro- production Experiments. A.M. Sandorfi

D Target for Electro- production Experiments. A.M. Sandorfi A Possible H!! D Target for Electro- production Experiments A.M. Sandorfi (BNL!JLab) motivating factors for transversely polarized targets frozen-spin! H! D and performance with photon beams factors limiting

More information

Small Angle GDH & polarized 3 He target

Small Angle GDH & polarized 3 He target Small Angle GDH & polarized 3 He target Nguyen Ton University of Virginia 04/14/2016 1 Outline Physics: Electron scattering GDH theory: sum rules. Experiment E97110 at Jefferson Lab: Setup Analysis status:

More information

Polarized Target Options for Deuteron Tensor Structure Function Studies

Polarized Target Options for Deuteron Tensor Structure Function Studies Polarized Target Options for Deuteron Tensor Structure Function Studies Oscar A. Rondón University of Virginia Tensor Polarized Solid Target Workshop JLab March 12, 2012 Inclusive Spin Dependent Observables:

More information

Abstract Experiments carried out at Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, and other national labs, require

Abstract Experiments carried out at Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, and other national labs, require Abstract Experiments carried out at Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, and other national labs, require the use of solid polarized targets that are used to

More information

Tensor Optimized Solid Polarized Targets

Tensor Optimized Solid Polarized Targets Tensor Optimized Solid Polarized Targets Dustin Keller March 12, 2014 Dustin Keller (UVA) Tensor 2014 March 12, 2014 1 / 21 Table of contents 1 Introduction Tensor Target Observables Definitions Material

More information

Precise field map measurements for Hall-B Frozen Spin Target Polarizing Magnet

Precise field map measurements for Hall-B Frozen Spin Target Polarizing Magnet CLAS-NOTE 2004-023 Precise field map measurements for Hall-B Frozen Spin Target Polarizing Magnet O. Dzyubak, C. Djalali, D. Tedeschi University of South Carolina Spectroscopy Group Meeting June 20-22

More information

A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option

A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option Donal Day, Dustin Keller, Darshana Perera, Jixie Zhang and friends NPS Collaboration Meeting January 19, 2017 Jefferson

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Overview of Low Energy Spin Structure Experiments

Overview of Low Energy Spin Structure Experiments Overview of Low Energy Spin Structure Experiments Jian-ping Chen, Jefferson Lab, USA Spin Workshop at EINN015, Cyprus, November 4, 015! Introduction! Moments of Spin Structure Functions g1: GDH/Bjorken

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

Linac JUAS lecture summary

Linac JUAS lecture summary Linac JUAS lecture summary Part1: Introduction to Linacs Linac is the acronym for Linear accelerator, a device where charged particles acquire energy moving on a linear path. There are more than 20 000

More information

ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY

ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY ELECTRON SPIN RESONANCE & MAGNETIC RESONANCE TOMOGRAPHY 1. AIM OF THE EXPERIMENT This is a model experiment for electron spin resonance, for clear demonstration of interaction between the magnetic moment

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

Possibilities for a polarized (frozen spin) target for the WASA detector

Possibilities for a polarized (frozen spin) target for the WASA detector Possibilities for a polarized (frozen spin) target for the WASA detector Hartmut Dutz, A. Raccanelli Physikalisches Institut Universität Bonn FEMC04 Jülich 1 Possibilities for a polarized (frozen spin)

More information

Electron spin resonance

Electron spin resonance Quick reference guide Introduction This is a model experiment for electron spin resonance, for clear demonstration of interaction between the magnetic moment of the electron spin with a superimposed direct

More information

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Xiaochao Zheng University of Virginia April 22, 2009 The JLab/CLAS EG4 experiment overview EG4 exclusive channel

More information

HELICAL COOLING CHANNEL PROGRESS*

HELICAL COOLING CHANNEL PROGRESS* Muons, Inc. HELICAL COOLING CHANNEL PROGRESS* R. P. Johnson #, Muons, Inc., Batavia, IL, U.S.A. Y. S. Derbenev, JLab, Newport News, VA, USA K. Yonehara, Fermilab, Batavia, IL, USA (and many other SBIR-STTR

More information

10.3 NMR Fundamentals

10.3 NMR Fundamentals 10.3 NMR Fundamentals nuclear spin calculations and examples NMR properties of selected nuclei the nuclear magnetic moment and precession around a magnetic field the spin quantum number and the NMR transition

More information

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. 14 Sep 11 NMR.1 NUCLEAR MAGNETIC RESONANCE The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. Theory: In addition to its well-known properties of mass, charge,

More information

Møller Polarimetry on Atomic Hydrogen

Møller Polarimetry on Atomic Hydrogen E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen 1 Møller Polarimetry on Atomic Hydrogen E.Chudakov 1 1 JLab Meeting at UVA Outline E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen

More information

Tensor Asymmetry A zz Jefferson Lab

Tensor Asymmetry A zz Jefferson Lab Tensor Asymmetry A zz at Jefferson Lab Elena Long Tensor Spin Observables Workshop Jefferson Lab March 11 th, 2014 1 Today s Discussion Overview of the Physics Rates Calculation Experimental Set-up Potential

More information

Novel Physics with Tensor Polarized Deuteron Targets

Novel Physics with Tensor Polarized Deuteron Targets Novel Physics with Tensor Polarized Deuteron Targets PSTP 2013 K. Slifer, UNH Sept 9, 2013 This Talk Brief Review of Tensor Polarization Overview of the Jefferson Lab b1 experiment (E12-13-011) "All Conventional

More information

Polarized target options for deuteron tensor structure function studies

Polarized target options for deuteron tensor structure function studies Polarized target options for deuteron tensor structure function studies O A Rondon-Aramayo Institute for Nuclear and Particle Physics, U. of Virginia, Charlottesville, VA E-mail: or@virginia.edu Abstract.

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC 1of23 Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC Brookhaven National Laboratory for the RHIC Polarimetry Group Sep 12, 2013 Relativistic Heavy Ion Collider world

More information

The Hall C Spin Program at JLab

The Hall C Spin Program at JLab The Hall C Spin Program at JLab Karl J. Slifer University of Virginia For the RSS collaboration We discuss the preliminary results of the Resonant Spin Structure (RSS) experiment and outline future spin-dependent

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

Last Revision: August,

Last Revision: August, A3-1 HALL EFFECT Last Revision: August, 21 2007 QUESTION TO BE INVESTIGATED How to individual charge carriers behave in an external magnetic field that is perpendicular to their motion? INTRODUCTION The

More information

BEAM DYNAMICS ISSUES IN THE SNS LINAC

BEAM DYNAMICS ISSUES IN THE SNS LINAC BEAM DYNAMICS ISSUES IN THE SNS LINAC A. Shishlo # on behalf of the SNS Accelerator Group, ORNL, Oak Ridge, TN 37831, U.S.A. Abstract A review of the Spallation Neutron Source (SNS) linac beam dynamics

More information

4/4/11. Particles possess intrinsic angular momentum. Spin angular momentum is quantized (it can only take on discrete values)

4/4/11. Particles possess intrinsic angular momentum. Spin angular momentum is quantized (it can only take on discrete values) For the completely filled shells, subshell (4d 10 ) the orbital magnetic momentum is zero; for the 5s orbital M L is also zero. Hypothesis: the argent atom possesses no magnetic momentum >> they move in

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

Status of PRad Experiment

Status of PRad Experiment Status of PRad Experiment Chao Gu Duke University For PRad Collaboration Outline The Proton Charge Radius Experiment Setup Analysis Status and Preliminary Results 2 The Proton Charge Radius Puzzle Proton

More information

S1155 Ground State Moments of Lithium Status and Recent Results

S1155 Ground State Moments of Lithium Status and Recent Results S1155 Ground State Moments of Lithium Status and Recent Results, 2. June 2010 Lithium charge radii RMS charge radii of Li isotopes Data taken from: Sánchez et al. PRL 96, 33002 (2006) RMS charge radii

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

High deuteron polarization in polymer target materials

High deuteron polarization in polymer target materials High deuteron polarization in polymer target materials 1,2 L.Wang, 1 W.Meyer, 1 Ch.Hess, 1 E.Radtke, 1 A.Berlin, 1 J.Herick, 1 G.Reicherz, 1 Institut of Experimental Physics AG I, Ruhr-University Bochum,

More information

Cross-section Measurements with HRS and Septum

Cross-section Measurements with HRS and Septum Cross-section Measurements with HRS and Septum Vincent Sulkosky The College of William and Mary Hall A Analysis Workshop January 6 th, 27 Hall A Analysis Workshop p.1/16 Overview of Experiment E97-11 Precise

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

On Electron Paramagnetic Resonance in DPPH

On Electron Paramagnetic Resonance in DPPH On Electron Paramagnetic Resonance in DPPH Shane Duane ID: 08764522 JS Theoretical Physics 5th Dec 2010 Abstract Electron Paramagnetic Resonance (EPR) was investigated in diphenyl pecryl hydrazyl (DPPH).

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

SIMULATION STUDY FOR MEIC ELECTRON COOLING*

SIMULATION STUDY FOR MEIC ELECTRON COOLING* SIMULATION STUDY FOR MEIC ELECTRON COOLING* He Zhang #, Yuhong Zhang, JLab, Newport News, VA 23606, USA Abstract Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

QED, Lamb shift, `proton charge radius puzzle' etc.

QED, Lamb shift, `proton charge radius puzzle' etc. QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching) Outline Different methods to determine

More information

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis FY04 Luminosity Plan SAG Meeting September 22, 2003 Dave McGinnis FY03 Performance Accelerator Issues TEV Pbar Main Injector Reliability Operations Study Strategy Shot Strategy Outline FY04 Luminosity

More information

Measuring the Proton Spin-Polarizabilities at HIgS

Measuring the Proton Spin-Polarizabilities at HIgS Measuring the Proton Spin-Polarizabilities at HIgS Philippe Martel UMass Amherst Advisor: Rory Miskimen TUNL (Triangle Universities Nuclear Lab) NNPSS 08 - GWU Table of Contents Concerning spin-polarizabilities

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Ion Polarization in RHIC/eRHIC

Ion Polarization in RHIC/eRHIC Ion Polarization in RHIC/eRHIC M. Bai, W. MacKay, V. Ptitsyn, T. Roser, A. Zelenski Polarized Ion Sources (reporting for Anatoly Zelenski) Polarized proton beams in RHIC/eRHIC Polarized He3 for erhic (reporting

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

High deuteron polarization in polymer target materials

High deuteron polarization in polymer target materials High deuteron polarization in polymer target materials 1,2 L.Wang, 1 W.Meyer, 1 Ch.Hess, 1 E.Radtke, 1 A.Berlin, 1 J.Herick, 1 G.Reicherz, 1 Institut of Experimental Physics AG I, Ruhr-University Bochum,

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

The High-Power-Target System of a Muon Collider or Neutrino Factory

The High-Power-Target System of a Muon Collider or Neutrino Factory The High-Power-Target System of a Muon Collider or Neutrino Factory K. McDonald Princeton U. (August 29, 2014) NuFact 14 U Glasgow KT McDonald NuFact 14 (U Glasgow) August 29, 2014 1 The Target System

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

BNL Very Long Baseline Neutrino Oscillation Expt.

BNL Very Long Baseline Neutrino Oscillation Expt. Mary Bishai, BNL 1 p.1/36 BNL Very Long Baseline Neutrino Oscillation Expt. Next Generation of Nucleon Decay and Neutrino Detectors 8/04/2005 Mary Bishai mbishai@bnl.gov Brookhaven National Lab. Mary Bishai,

More information

The Deuteron Polarized Tensor Structure Function b 1

The Deuteron Polarized Tensor Structure Function b 1 The Deuteron Polarized Tensor Structure Function b 1 JLAB PAC 40 K. Slifer, UNH June 18, 2013 b 1 Collaboration K. Allada, A. Camsonne, J.- P. Chen, A. Deur, D. Gaskell, M. Jones, C. Keith, C. Keppel,

More information

GMp Experiment (E ): An update

GMp Experiment (E ): An update GMp Experiment (E12-07-108): An update Kalyan Allada MIT Hall A/C Summer Meeting, Jefferson Lab 17th July 2015 Motivation Accurately measure e-p elastic cross section in kinematics similar to other JLab

More information

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury GOALS Physics Measure the energy difference between the ground state and the first excited state in mercury atoms, and conclude

More information

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled Spin-Spin oupling 13 NMR A comparison of two 13 NMR Spectra 1 oupled (undecoupled) 1 Decoupled 1 Proton Decoupled 13 NMR 6. To simplify the 13 spectrum, and to increase the intensity of the observed signals,

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Schematic for resistivity measurement

Schematic for resistivity measurement Module 9 : Experimental probes of Superconductivity Lecture 1 : Experimental probes of Superconductivity - I Among the various experimental methods used to probe the properties of superconductors, there

More information

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction A measurement of the parity conserving asymmetry in the neutron capture on 3 He at SNS Latiful Kabir University of Kentucky for the n-

More information

Magnetic Resonance Spectroscopy EPR and NMR

Magnetic Resonance Spectroscopy EPR and NMR Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin, - rotation of the charge about its axis generates a magnetic field at each electron.

More information

The New Proton Charge Radius Experiment at JLab

The New Proton Charge Radius Experiment at JLab The New Proton Charge Radius Experiment at JLab Dipangkar Dutta Mississippi State University (for the PRad Collaboration) INPC 2016 Sept 12, 2016 Adelaide, Australia Outline 1. The Proton Charge Radius

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

DETECTION OF UNPAIRED ELECTRONS

DETECTION OF UNPAIRED ELECTRONS DETECTION OF UNPAIRED ELECTRONS There are experimental methods for the detection of unpaired electrons. One of the hallmarks of unpaired electrons in materials is interaction with a magnetic field. That

More information

High Pressure, High Gradient RF Cavities for Muon Beam Cooling

High Pressure, High Gradient RF Cavities for Muon Beam Cooling High Pressure, High Gradient RF Cavities for Muon Beam Cooling R. P. Johnson, R. E. Hartline, M. Kuchnir, T. J. Roberts Muons, Inc. C. M. Ankenbrandt, A. Moretti, M. Popovic Fermilab D. M. Kaplan, K. Yonehara

More information

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES 1 Olga Samsonenka, University of Washington Andy Kim, University of Washington Andrea Oehler,

More information

The CMS ECAL Laser Monitoring System

The CMS ECAL Laser Monitoring System The CMS ECAL Laser Monitoring System Adolf Bornheim California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA Abstract. The CMS detector at LHC will be equipped with a high

More information

Accelerators Ideal Case

Accelerators Ideal Case Accelerators Ideal Case Goal of an accelerator: increase energy of CHARGED par:cles Increase energy ΔE = r 2 F dr = q ( E + v B)d r The par:cle trajectory direc:on dr parallel to v ΔE = increase of energy

More information

Engines of Discovery

Engines of Discovery Engines of Discovery R.S. Orr Department of Physics University of Toronto Berkley 1930 1 MeV Geneva 20089 14 TeV Birth of Particle Physics and Accelerators 1909 Geiger/Marsden MeV a backscattering - Manchester

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Observing a single hydrogen-like ion in a Penning trap at T = 4K Hyperfine Interactions 115 (1998) 185 192 185 Observing a single hydrogen-like ion in a Penning trap at T = 4K M. Diederich a,h.häffner a, N. Hermanspahn a,m.immel a,h.j.kluge b,r.ley a, R. Mann b,w.quint

More information

Spin Structure of the Proton and Deuteron

Spin Structure of the Proton and Deuteron Spin Structure of the Proton and Deuteron K. Griffioen College of William & Mary griff@physics.wm.edu Spin Structure at Long Distances Jefferson Lab 12 March 2009 Inelastic Scattering Q 2 increases 12

More information

The low Q 2 chicane and Compton polarimeter at the JLab EIC

The low Q 2 chicane and Compton polarimeter at the JLab EIC EPJ Web of Conferences 112, 01007 (2016) DOI: 10.1051/ epjconf/ 201611201007 C Owned by the authors, published by EDP Sciences, 2016 The low Q 2 chicane and Compton polarimeter at the JLab EIC, Alexandre

More information

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia Toward 0.5% Electron Beam Polarimetry Kent Paschke University of Virginia Needs for 0.5% The proposed PV-DIS experiments may be systematics limited, with fractional errors approaching 0.5%. No

More information

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?

More information

LBNF Neutrino Beam. James Strait Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL , USA. on behalf of the LBNF/DUNE Team

LBNF Neutrino Beam. James Strait Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL , USA. on behalf of the LBNF/DUNE Team FERMILAB-CONF-15-620-ND LBNF Neutrino Beam James Strait Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL 60510-0500, USA on behalf of the LBNF/DUNE Team (Dated: March 22, 2016) Operated

More information

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states The 2013 International Workshop on Polarized Sources, Targets & Polarimetry Neutron spin filter based on dynamically polarized protons using photo-excited triplet states Tim Eichhorn a,b, Ben van den Brandt

More information