On a problem of Graham By E. ERDŐS and E. SZEMERÉDI (Budapest) GRAHAM stated the following conjecture : Let p be a prime and a 1,..., ap p non-zero re

Size: px
Start display at page:

Download "On a problem of Graham By E. ERDŐS and E. SZEMERÉDI (Budapest) GRAHAM stated the following conjecture : Let p be a prime and a 1,..., ap p non-zero re"

Transcription

1 On a roblem of Graham By E. ERDŐS and E. SZEMERÉDI (Budaes) GRAHAM saed he following conjecure : Le be a rime and a 1,..., a non-zero residues (mod ). Assume ha if ' a i a i, ei=0 or 1 (no all e i=0) is a mulile of hen is uniquely deermined. The conjecure saes ha in his case here are only wo disinc residues among he a's. We are going o rove his conjecure for all sufficienly large, in fac we will rove a sharer resul. To exend our roof for he small values of would require considerable comuaion, bu no heoreical difficuly. Our roof is surrisingly comlicaed and we are no convinced ha a simler roof is no ossible, bu we could no find one. Firs we rove Theorem 1. Le ilo be sufficienly small, qi < q, >o(r1) : A ={a1,..., ar }, l> y1 1I1o is a se of non-zero residues mod. Assume ha for every he number of indices i saisfying a i - (mod ) is less han il -. Then i a iai - r(mod ) e i = 0 or 1, no all e i = 0 is solvable for every r (mod ). This heorem is erhas of some ineres in iself and easily imlies Grahams conjecure in case each residue ossurs wih a muliliciy <11o. To see his observe ha if n'1'0-< z we can sli our se a1i..., a ino wo disjoin ses which saisfy he requiremens of Theorem 1 and hus e i canno be unique for e i a i - 0 (mod ). Now we rove Theorem 1. Pu i1' 1' 0 =6. Firs we rove he following. Now denoe by F(D) he se of all residues of he form Z e i x i and wih x, ED X+Y={x+y ; HEX, yey}. Lemma. Le B(-A, IB ~ > 2I, (JAI =l >b). Then here is a D(- B so ha F(D)I is greaer han 2 ö 2 IDI.

2 1 24 P. Erdős and E. Szemerédi To rove he Lemma observe ha we can assume ha here is a B,,- B, B,I ::- J,BJ z ha every residue occurs in Br wih a muliliciy a leas r1 2;12. For if no hen a simle argumen shows ha B conains more ha 'í 2 disinc residues and hen by a heorem of Erdős and Heilbronn Z s i a i - r (mod ) is solvable u i E A for all r [1] which conradics our hyohesis. Henceforh we only consider B,. By he heorem of Dirichle o every beb, here is an ineger,<á2 so ha he residue of b b (mod ) is an absolue value ~8 2. We wan o show ha here is a beb, for which his b b (mod ) is an absolue value > 8~. The number of disinc b's in B, is greaer han (B, has a 4n leas S 4 elemens and a mos q of hem are in he same congruence class). Now here are a mos,2 choices for b hus here are a mos 2 disinc b's for which b - b is in he same residue class, hence here are a mos 2 2 = disinc values 8r 1 n of b for which b - b is no greaer han, bu since here are more han disinc b's in B, here is a beb, for which (1) ó < Ib-bl < 52 as saed. Now we are ready o consruc D. We can assume wihou loss of generaliy ha 1 occurs in B, (and is differen from he b which we jus consruced). Now our se D consiss of b [ a2, b's and g, 1's (by our condiions we have a leas h r1 21 /'2 1's and b's). I easily follows from (1) ha he number of sums S - i d d, ED is a leas l_ I ~ J~ (2) ~ ~ 2 O ~1 7 > lq - 2U2 + (b [ Q j2 L,~ ] L (2) follows from b _L S2 ] and 6=q` 11 which roves he Lemma. Uni D from A and aly he Lemma reeaedly. Thus we obain disjoin ses D i, I ~ i ~ r each of which saisfy he Lemma and heir union has a leas LI A (since by he Lemma if () A -- U D ; 1. 8 >2AI=11) we can selec anoher se D, +,).

3 On a roblem of Graham Now denoe by F(D) he se of all residues of he form Z a i di by our Lemma d; E D, (4) ~F(Di)j > IDil Now clearly (5) F ( ṫ U D ij = F(Dj) + F(D2) F(D,). - ))1 By he Cauchy-Davenor heorem [2] Y F U D i r z min, IF(Di)l ) A = P by (), (4) and (5), which comlees he roof of Theorem 1. Henceforh we can assume ha a leas one residue occurs a leas >7 o imes amongs he a's. Wihou loss of generaliy we can assume ha his residue is 1 and ha 1 occurs _->7 o imes. We have o disinguish several cases. Firs assume ::- o. Several subcases have o be disinguished. Firs assume ha all a 's are ~-, 1<a,<...<a_-::-. Le a,+...+ak_-- be he smalles k wih his roery, k<- is easy o see also a,+...+ak+,.< is obvious hus a,+... +ak+(-a,,-a ak)1 and a,+... +ak+1+(-a, ak+1)1 give wo reresenaions of 0 wih differen P e l. Thus a leas one of he a's are >-. Clearly one canno have wo incongruen a's in (-,) oherwise Za i is clearly no unique. Le -<a_,<. If a _ -- i mus clearly occur wih muliliciy one (since oherwise ::- o- again gives non-uniqueness for Z Ei). Observe ha in his case a,+...+a,--2(--1)~.- since _---2. Le now k be he smalles ineger saisfying -a,+...+ak-- and now a,_,+(-a_)l and a,+...+ak+(-a,-...-ak)l give wo differen IJ values for e i wha is conradicion. Thus we can assume a _ <. Bu hen a,+a _ 7 < and hus we again ge using -a _, res. -a,-a _, ones wo differen values of 2'e i. This disoses he i=r 9 case > TO. Henceforh assume q,,< Again we have o disinguish several cases. Firs assume ha here are a mos 1 00 residues amongs he a's greaer han

4 1 2 6 P. Erdős and E. Szemerédi 100 ' Since here are - a 's no congruen 1 here clearly are a leas P 2 +1 a 's greaer han one bu less han 100 ' Their sum is hus greaer han -. Le a, a, he smalles r for which a,+...+a,~- hen also al+...+ar+ar+l< < < hus al+...+a,+(-a,,-...-a,) 1 and a,+...+a,+a,+,+(- P -a,-...-a,-a,+,)1 again give wo differen values for ZEi. Henceforh we can assume ha here are a leas 100 a.'s greaer han 100 and in fac we can assume ha hey are all less han P2 since as we roved in he revious case a mos one a can be greaer han Le now S, be a se of P 2 ~. 100 a's which are congruen one and S 2 a disjoin se of 200 a's which are also congruen one. Le a be one of he residues in (6) P - Clearly Thus by Cauchy-Davenor Hence JF(aUS,)J - and JF(A-S,-S2 --a)j ~F(aUS,UA-S,-S2 -a)j (7) 0-1+ Y IAI - ISII - IS2I -1 -P min {,IF(aUS,)J+JF(A-S,-S 2 -a)j} _ Now we again have o disinguish wo cases. Assume firs E a, ~_.z aa, - 11ó ( - 11oh)- 100 As saed reviously we can assume by he heorem of Erdős and Heilbronn ha he number of disinc a's is less han }á hus we can assume a,- P 1/2 Thus by he heorem of Dirichle here is an s - 21 for which 200

5 On a roblem of Graham Ifsay :--200 hen sa,+(-sal)1 and 2sa,-(-2sa,)1 give wo reresenaions of D wih differen Z E i. Thus we can assume sal < 200 bu hen sa, can be relaced by sal ones from Sz and since sa, s his again gives wo disinc value of ~Ej. Thus we can assume, aq_wlo. Thus we have a leas --vió>2 a's disinc from 1 which have no been used in (7). By Erdős-Heilbronn (as used before) a leas one of hese a 's have a high muliliciy and hus here is an sa< Thus ai< 100 since oherwise we could relace sa of he ones by sa and hus we again ge wo disinc values of Z E;. Now we omi from A all he a's occuring in (6) and we obain a new se A'. Using (6) for A' we again ge reresenaion of 0 (T) (we remark ha we can assume ha a, in (7) and aí in (T) are boh hus we do no run ou of ones). Adding he wo reresenaions of D we obain our conradicion. References [1] P. ERDŐS and H. HEiLBRoNN, On he addiion of residue classes mod, Aca Arihnreica 9 (1964), [21 H. HALBERSTAm and K. F. ROTH, Sequences, Oxford, (Received February 14, 1974.)

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu ON EQUATIONS WITH SETS AS UNKNOWNS BY PAUL ERDŐS AND S. ULAM DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER Communicaed May 27, 1968 We shall presen here a number of resuls in se heory concerning

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

Families with no matchings of size s

Families with no matchings of size s Families wih no machings of size s Peer Franl Andrey Kupavsii Absrac Le 2, s 2 be posiive inegers. Le be an n-elemen se, n s. Subses of 2 are called families. If F ( ), hen i is called - uniform. Wha is

More information

Comments on Window-Constrained Scheduling

Comments on Window-Constrained Scheduling Commens on Window-Consrained Scheduling Richard Wes Member, IEEE and Yuing Zhang Absrac This shor repor clarifies he behavior of DWCS wih respec o Theorem 3 in our previously published paper [1], and describes

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

ON THE DEGREES OF RATIONAL KNOTS

ON THE DEGREES OF RATIONAL KNOTS ON THE DEGREES OF RATIONAL KNOTS DONOVAN MCFERON, ALEXANDRA ZUSER Absrac. In his paper, we explore he issue of minimizing he degrees on raional knos. We se a bound on hese degrees using Bézou s heorem,

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Chaer 3 Common Families of Disribuions Secion 31 - Inroducion Purose of his Chaer: Caalog many of common saisical disribuions (families of disribuions ha are indeed by one or more arameers) Wha we should

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Some Ramsey results for the n-cube

Some Ramsey results for the n-cube Some Ramsey resuls for he n-cube Ron Graham Universiy of California, San Diego Jozsef Solymosi Universiy of Briish Columbia, Vancouver, Canada Absrac In his noe we esablish a Ramsey-ype resul for cerain

More information

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016 UNIVERSITÁ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA Bernoulli numbers Francesco Chiai, Maeo Pinonello December 5, 206 During las lessons we have proved he Las Ferma Theorem

More information

Solutions to the Olympiad Cayley Paper

Solutions to the Olympiad Cayley Paper Soluions o he Olympiad Cayley Paper C1. How many hree-digi muliples of 9 consis only of odd digis? Soluion We use he fac ha an ineger is a muliple of 9 when he sum of is digis is a muliple of 9, and no

More information

The minimum number of nonnegative edges in hypergraphs

The minimum number of nonnegative edges in hypergraphs The minimum number of nonnegaive edges in hypergraphs Hao Huang DIMACS Rugers Universiy New Brunswic, USA huanghao@mahiasedu Benny Sudaov Deparmen of Mahemaics ETH 8092 Zurich, Swizerland benjaminsudaov@mahehzch

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Optimal Paired Choice Block Designs. Supplementary Material

Optimal Paired Choice Block Designs. Supplementary Material Saisica Sinica: Supplemen Opimal Paired Choice Block Designs Rakhi Singh 1, Ashish Das 2 and Feng-Shun Chai 3 1 IITB-Monash Research Academy, Mumbai, India 2 Indian Insiue of Technology Bombay, Mumbai,

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Rainbow saturation and graph capacities

Rainbow saturation and graph capacities Rainbow sauraion and graph capaciies Dániel Korándi Absrac The -colored rainbow sauraion number rsa (n, F ) is he minimum size of a -edge-colored graph on n verices ha conains no rainbow copy of F, bu

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Mah-NeRu All Russian mahemaical poral Roman Popovych, On elemens of high order in general finie fields, Algebra Discree Mah, 204, Volume 8, Issue 2, 295 300 Use of he all-russian mahemaical poral Mah-NeRu

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Congruent Numbers and Elliptic Curves

Congruent Numbers and Elliptic Curves Congruen Numbers and Ellipic Curves Pan Yan pyan@oksaeedu Sepember 30, 014 1 Problem In an Arab manuscrip of he 10h cenury, a mahemaician saed ha he principal objec of raional righ riangles is he following

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

On asymptotic behavior of composite integers n = pq Yasufumi Hashimoto

On asymptotic behavior of composite integers n = pq Yasufumi Hashimoto Journal of Mah-for-Indusry Vol1009A-6 45 49 On asymoic behavior of comosie inegers n = q Yasufumi Hashimoo Received on March 1 009 Absrac In his aer we sudy he asymoic behavior of he number of comosie

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball A Noe on Superlinear Ambrosei-Prodi Type Problem in a Ball by P. N. Srikanh 1, Sanjiban Sanra 2 Absrac Using a careful analysis of he Morse Indices of he soluions obained by using he Mounain Pass Theorem

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Soluions o seleced problems 1. Le A B R n. Show ha in A in B bu in general bd A bd B. Soluion. Le x in A. Then here is ɛ > 0 such ha B ɛ (x) A B. This shows x in B. If A = [0, 1] and B = [0, 2], hen

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Languages That Are and Are Not Context-Free

Languages That Are and Are Not Context-Free Languages Tha re and re No Conex-Free Read K & S 3.5, 3.6, 3.7. Read Supplemenary Maerials: Conex-Free Languages and Pushdown uomaa: Closure Properies of Conex-Free Languages Read Supplemenary Maerials:

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

An Excursion into Set Theory using a Constructivist Approach

An Excursion into Set Theory using a Constructivist Approach An Excursion ino Se Theory using a Consrucivis Approach Miderm Repor Nihil Pail under supervision of Ksenija Simic Fall 2005 Absrac Consrucive logic is an alernaive o he heory of classical logic ha draws

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

arxiv: v2 [math.co] 20 Jul 2018

arxiv: v2 [math.co] 20 Jul 2018 On he sizes of (k,l)-edge-maximal r-uniform hypergraphs arxiv:1805.1145v [mah.co] 0 Jul 018 Yingzhi Tian a, Hong-Jian Lai b, Jixiang Meng a, Murong Xu c, a College of Mahemaics and Sysem Sciences, Xinjiang

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

ON THE CONJECTURE OF JESMANOWICZ CONCERNING PYTHAGOREAN TRIPLES

ON THE CONJECTURE OF JESMANOWICZ CONCERNING PYTHAGOREAN TRIPLES BULL. AUSTRAL. MATH. SOC. VOL. 57 (1998) [515-524] 11D61 ON THE CONJECTURE OF JESMANOWICZ CONCERNING PYTHAGOREAN TRIPLES MOUJIE DENG AND G.L. COHEN Le a, b, c be relaively prime posiive inegers such ha

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at BOX-JENKINS MODEL NOAION he Box-Jenkins ARMA(,q) model is denoed b he equaion + + L+ + a θ a L θ a 0 q q. () he auoregressive (AR) ar of he model is + L+ while he moving average (MA) ar of he model is

More information

fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik /10/10

fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik /10/10 2 Peri Nes Peer Marwedel TU Dormund, Informaik 2 2008/0/0 Grahics: Alexandra Nole, Gesine Marwedel, 2003 Generalizaion of daa flow: Comuaional grahs Examle: Peri nes Inroduced in 962 by Carl Adam Peri

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Math From Scratch Lesson 34: Isolating Variables

Math From Scratch Lesson 34: Isolating Variables Mah From Scrach Lesson 34: Isolaing Variables W. Blaine Dowler July 25, 2013 Conens 1 Order of Operaions 1 1.1 Muliplicaion and Addiion..................... 1 1.2 Division and Subracion.......................

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Vector autoregression VAR. Case 1

Vector autoregression VAR. Case 1 Vecor auoregression VAR So far we have focused mosl on models where deends onl on as. More generall we migh wan o consider oin models ha involve more han one variable. There are wo reasons: Firs, we migh

More information

Monochromatic Infinite Sumsets

Monochromatic Infinite Sumsets Monochromaic Infinie Sumses Imre Leader Paul A. Russell July 25, 2017 Absrac WeshowhahereisaraionalvecorspaceV suchha,whenever V is finiely coloured, here is an infinie se X whose sumse X+X is monochromaic.

More information

Chapter 2 Summary. Carnegie Learning

Chapter 2 Summary. Carnegie Learning Chaper Summary Key Terms inducion (.1) deducion (.1) counerexample (.1) condiional saemen (.1) proposiional form (.1) proposiional variables (.1) hypohesis (.1) conclusion (.1) ruh value (.1) ruh able

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

SOME MORE APPLICATIONS OF THE HAHN-BANACH THEOREM

SOME MORE APPLICATIONS OF THE HAHN-BANACH THEOREM SOME MORE APPLICATIONS OF THE HAHN-BANACH THEOREM FRANCISCO JAVIER GARCÍA-PACHECO, DANIELE PUGLISI, AND GUSTI VAN ZYL Absrac We give a new proof of he fac ha equivalen norms on subspaces can be exended

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Longest Common Prefixes

Longest Common Prefixes Longes Common Prefixes The sandard ordering for srings is he lexicographical order. I is induced by an order over he alphabe. We will use he same symbols (,

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Linear Cryptanalysis

Linear Cryptanalysis Linear Crypanalysis T-79.550 Crypology Lecure 5 February 6, 008 Kaisa Nyberg Linear Crypanalysis /36 SPN A Small Example Linear Crypanalysis /36 Linear Approximaion of S-boxes Linear Crypanalysis 3/36

More information

control properties under both Gaussian and burst noise conditions. In the ~isappointing in comparison with convolutional code systems designed

control properties under both Gaussian and burst noise conditions. In the ~isappointing in comparison with convolutional code systems designed 535 SOFT-DECSON THRESHOLD DECODNG OF CONVOLUTONAL CODES R.M.F. Goodman*, B.Sc., Ph.D. W.H. Ng*, M.S.E.E. Sunnnary Exising majoriy-decision hreshold decoders have so far been limied o his paper a new mehod

More information

Dynamic Programming 11/8/2009. Weighted Interval Scheduling. Weighted Interval Scheduling. Unweighted Interval Scheduling: Review

Dynamic Programming 11/8/2009. Weighted Interval Scheduling. Weighted Interval Scheduling. Unweighted Interval Scheduling: Review //9 Algorihms Dynamic Programming - Weighed Ineral Scheduling Dynamic Programming Weighed ineral scheduling problem. Insance A se of n jobs. Job j sars a s j, finishes a f j, and has weigh or alue j. Two

More information

Reduction of the Supervisor Design Problem with Firing Vector Constraints

Reduction of the Supervisor Design Problem with Firing Vector Constraints wih Firing Vecor Consrains Marian V. Iordache School of Engineering and Eng. Tech. LeTourneau Universiy Longview, TX 75607-700 Panos J. Ansaklis Dearmen of Elecrical Engineering Universiy of Nore Dame

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Naural Logarihm Mah Objecives Sudens will undersand he definiion of he naural logarihm funcion in erms of a definie inegral. Sudens will be able o use his definiion o relae he value of he naural logarihm

More information

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990), SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F Trench SIAM J Marix Anal Appl 11 (1990), 601-611 Absrac Le T n = ( i j ) n i,j=1 (n 3) be a real symmeric

More information

Tracking Adversarial Targets

Tracking Adversarial Targets A. Proofs Proof of Lemma 3. Consider he Bellman equaion λ + V π,l x, a lx, a + V π,l Ax + Ba, πax + Ba. We prove he lemma by showing ha he given quadraic form is he unique soluion of he Bellman equaion.

More information

4.2 Transversals and Parallel Lines

4.2 Transversals and Parallel Lines Name Class Dae 4.2 Transversals and Parallel Lines Essenial Quesion: How can you rove and use heorems abou angles formed by ransversals ha inersec arallel lines? Exlore G.5.A Invesigae aerns o make conjecures

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Logic in computer science

Logic in computer science Logic in compuer science Logic plays an imporan role in compuer science Logic is ofen called he calculus of compuer science Logic plays a similar role in compuer science o ha played by calculus in he physical

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

Dirac s hole theory and the Pauli principle: clearing up the confusion.

Dirac s hole theory and the Pauli principle: clearing up the confusion. Dirac s hole heory and he Pauli rincile: clearing u he conusion. Dan Solomon Rauland-Borg Cororaion 8 W. Cenral Road Moun Prosec IL 656 USA Email: dan.solomon@rauland.com Absrac. In Dirac s hole heory

More information

F This leads to an unstable mode which is not observable at the output thus cannot be controlled by feeding back.

F This leads to an unstable mode which is not observable at the output thus cannot be controlled by feeding back. Lecure 8 Las ime: Semi-free configuraion design This is equivalen o: Noe ns, ener he sysem a he same place. is fixed. We design C (and perhaps B. We mus sabilize if i is given as unsable. Cs ( H( s = +

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Appendix 14.1 The optimal control problem and its solution using

Appendix 14.1 The optimal control problem and its solution using 1 Appendix 14.1 he opimal conrol problem and is soluion using he maximum principle NOE: Many occurrences of f, x, u, and in his file (in equaions or as whole words in ex) are purposefully in bold in order

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS D. D. ANDERSON, SHUZO IZUMI, YASUO OHNO, AND MANABU OZAKI Absrac. Le A 1,..., A n n 2 be ideals of a commuaive ring R. Le Gk resp., Lk denoe

More information

THE MATRIX-TREE THEOREM

THE MATRIX-TREE THEOREM THE MATRIX-TREE THEOREM 1 The Marix-Tree Theorem. The Marix-Tree Theorem is a formula for he number of spanning rees of a graph in erms of he deerminan of a cerain marix. We begin wih he necessary graph-heoreical

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION ECON 841 T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 211 EXAMINATION This exam has wo pars. Each par has wo quesions. Please answer one of he wo quesions in each par for a

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Question 1: Question 2: Topology Exercise Sheet 3

Question 1: Question 2: Topology Exercise Sheet 3 Topology Exercise Shee 3 Prof. Dr. Alessandro Siso Due o 14 March Quesions 1 and 6 are more concepual and should have prioriy. Quesions 4 and 5 admi a relaively shor soluion. Quesion 7 is harder, and you

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information