Rainbow saturation and graph capacities

Size: px
Start display at page:

Download "Rainbow saturation and graph capacities"

Transcription

1 Rainbow sauraion and graph capaciies Dániel Korándi Absrac The -colored rainbow sauraion number rsa (n, F ) is he minimum size of a -edge-colored graph on n verices ha conains no rainbow copy of F, bu he addiion of any missing edge in any color creaes such a rainbow copy. Barrus, Ferrara, Vandenbussche and Wenger conjecured ha rsa (n, K s ) = Θ(n log n) for every s 3 and ( s. In his shor noe we prove he conjecure in a srong sense, asympoically deermining he rainbow sauraion number for riangles. Our lower bound is probabilisic in spiri, he upper bound is based on he Shannon capaciy of a cerain family of cliques. Inroducion A graph G is called F -sauraed if i is a maximal F -free graph. The classic sauraion problem, firs sudied by Zykov [4] and Erdős, Hajnal and Moon [4], asks for he minimum number of edges in an F -sauraed graph (as opposed o he Turán problem, which asks for he maximum number of edges in such a graph). A rainbow analog of his problem was recenly inroduced by Barrus, Ferrara, Vandenbussche and Wenger [], where a -edge-colored graph is defined o be rainbow F -sauraed if i conains no rainbow copy of F (i.e., a copy of F where all edges have differen colors), bu he addiion of any missing edge in any color creaes such a rainbow copy. Then he -colored rainbow sauraion number rsa (n, F ) is he minimum size of a -edge-colored rainbow F -sauraed graph. ( n log n log log n ) Among oher resuls, Barrus e al. showed ha Ω rsa (n, K s ) O(n log n) and conjecured ha heir upper bound is of he righ order of magniude: Conjecure. ([]). For s 3 and ( s, rsa (n, K s ) = Θ(n log n). Here we prove his conjecure in a srong sense: we give a lower bound ha is asympoically igh for riangles. Theorem.2. For s 3 and ( s, we have wih equaliy for s = 3. rsa (n, K s ) ( + o()) ( s + log( s + n log n We should poin ou ha Conjecure. was independenly verified by Girão, Lewis and Popielarz [9] and by Ferrara e al. [5], bu wih somewha weaker bounds. In fac, our resul proves a conjecure in [9], esablishing he sronger esimae rsa (n, K s ) = Θ s ( n log n log ) wih heir upper bound. Insiue of Mahemaics, EPFL, Lausanne, Swizerland. Research suppored in par by SNSF grans and daniel.korandi@epfl.ch.

2 Our lower bound is probabilisic in spiri, using ideas of Kaona and Szemerédi [0], and Füredi, Horak, Pareek and Zhu [6] (similar echniques were used in [2, 2, ]). The upper bound for s = 3 is based on he following heorem ha follows from a srong informaion-heoreic resul of Gargano, Körner and Vaccaro [8] on he Shannon capaciies of graph families. Theorem.3. For every 3, here is a se X [] k of m = ( ) ( o())k srings of lengh k from alphabe [] = {,..., } such ha for any x, x X and any a [], here is a posiion i where x(i) x (i) and x(i), x (i) a. In he nex secion we derive Theorem.3 from resuls abou he Shannon capaciy of graph families. This is followed by he proof of Theorem.2 in Secion 3. 2 Graph capaciies Le G = {G,..., G r } be a family of graphs on verex se []. Le N k be he maximum size of a se X [] k of srings of lengh k on alphabe [] such ha for any wo srings x, x X and any G j G, here is a posiion i j [k] such ha x(i j )x (i j ) is an edge in G j. The Shannon capaciy of he family G is defined as C(G) = lim sup k k log N k (see, e.g., [3, 3] ). When G = {G}, we simply wrie C(G) for C(G). We need an analogous definiion for srings where he occurrences of each a [] are proporional o some probabiliy measure P on []. So le T k (P, ε) be he se of all srings x [] k such ha k #{i : x(i) = a} P (a) < ε for every a [], and le M k,ε be he maximum size of a se X T k (P, ε) such ha for every x, x X here is an i wih x(i)x (i) G. The Shannon capaciy wihin ype P is C(G, P ) = lim ε 0 lim sup k k log M k,ε. Using a clever consrucion, Gargano, Körner and Vaccaro [8] showed ha C(G) can be expressed in erms of he C(G j, P ): Theorem 2. ([8]). For a family of graphs G = {G,..., G r } on verex se [], we have C(G) = max P min C(G j, P ). G j G In fac, hey proved a more general resul for Sperner capaciies, he analogous noion for direced graphs. Wha we need is a corollary ha follows easily from his heorem using sandard ools abou graph enropy (see he survey of Simonyi [3] for more informaion). Here we give a self-conained argumen ha goes along he lines of a proof by Gargano, Körner and Vaccaro [7] of he case s = 2. Corollary 2.2. Le 2 s be an ineger and le G be he family of all s-cliques on [] (each wih s isolaed verices). Then C(G) = s log s. Proof. For he lower bound, we can ake P o be he uniform measure on []. Then by Theorem 2., i is enough o show ha C(G, P ) s log s where G is a clique on [s] wih isolaed verices s +,...,. Le X k T k (P, k ) be he se of all srings x of lengh k such ha he firs sk/ The usual definiion is wih binary logarihm, bu he base of our logarihms is unimporan for our purposes. 2

3 leers of x conain k/ or k/ insances of each a [s], and x(i) = b for every s + b and < i bk. Then (b )k log(x k ) C(G, P ) lim = lim k k k k sk ( log )! (( k = lim )!)s k k log(ssk/ ) = s log s. For he upper bound, le X [] k be a maximum se of srings such ha for any x, x X and for every s-clique G G, here is an i [k] such ha x(i)x (i) G. We se m = X o be his maximum. We may assume ha {,..., s} are he s leas frequen elemens appearing in he srings of X. Le d x be he number of elemens in x X ha are no in [s], so x X d x s mk, and le X x be he se of srings obained from x by replacing hese elemens arbirarily wih numbers from [s]. Then X x = s dx, and X x, X x are disjoin for disinc x, x X because any sring from X x will differ from any sring in X x a he posiion i where x(i)x (i) is an edge of he clique on [s]. Then using Jensen s inequaliy we have s k x X s dx m s ( x X dx)/m m s ( s)k, and hence m s sk/, implying C(G) k log m s log s. Theorem.3 clearly follows from he case s =. 3 Rainbow sauraion Proof of Theorem.2. For he lower bound, suppose H is a -edge-colored rainbow K s -sauraed graph, and spli is verices ino wo pars: le A = {a,..., a k } be he se of verices of degree a leas d = log 3 n, and B be he res. We may assume A n log n (oherwise H has a leas 2 n log2 n edges), and hus B conains m ( log n )n verices. Now le us define a sring x v [ + ] k for every v B ha encodes he colors of he A-B edges ouching v as follows: x v (i) is + if a i v is no an edge in H, oherwise i is he color of a i v. Assume, wihou loss of generaliy, ha s + 3,..., are he s 2 mos common colors among he A-B edges. For v B, le X v [ s + 2] k be he se of srings obained from x v by replacing each s + 3,..., + wih an arbirary number from [ s + 2]. Then if d v denoes he number of A-B edges in H ouching v and d v denoes he number of such edges of colors s + 3,...,, hen X v = ( s + k dv+d v. We claim ha if v, w B are non-adjacen wih no common neighbor in B, hen X v and X w have no sring in common. Indeed, adding he edge vw of color creaes a rainbow K s wih s 2 verices in A. So here mus be an a i such ha a i v and a i w have differen colors, also differing from s + 3,...,. Bu hen all he srings in X v have he color of a i v as heir i h leer, and all he srings in X w have he color of a i w as heir i h leer, so X v and X w are disjoin. Since verices in B have degree a mos d, each v B has a mos d 2 verices w B ha are eiher adjacen o v or have a common neighbor wih v in B. So each sring in [ s + 2] k can appear 3

4 in no more han d 2 + collecions X w, and hence we ge (d 2 + )( s + k X v = s + v B v B( k dv+d v d 2 + ( s + d v d v m ( s + m ( v B d v v B dv) v B using Jensen s inequaliy. Now s + 3,..., were he s 2 mos common colors, so we also have v B d v s 2 and hus v B d v v B d v s 2 v B d v. Taking logs, we obain d v v B s + 2 m ( log s+2 m log s+2 (d 2 + ) ). v B d v As he lef-hand side is a lower bound on he number of edges in H, his esablishes he desired lower bound (using d = log 3 n and m = n + o(n)). For he upper bound in he case of riangles, le k be large enough, and ake a se X of size m as provided by Theorem.3. Consider a k-by-m complee biparie graph G 0 wih pars A and B, where A = {a,..., a k }, and B corresponds o he srings in X. For every verex v B, we look a he corresponding sring x X, and color each edge va i by he color x(i). G 0 is clearly (rainbow) riangle-free, and by he definiion of X, adding an edge o G 0 beween wo verices of B in any color a [] creaes a rainbow riangle. Now le G be a maximal rainbow riangle-free supergraph of G 0. Then G is rainbow rianglesauraed by definiion, and compared o G 0, i only has new edges induced by A, hus i has a mos km + ( ) k 2 edges. Here n = k + m and k = (+o()) log m, implying he required upper bound. ( ) log( ) For s > 3 our lower bound is probably no igh. asympoics of rsa (n, K s ) for general s. I would be ineresing o deermine he Acknowledgemens. I hank Shagnik Das for finding [7] for me, and Gábor Simonyi for some clarificaions abou capaciies. References [] M. D. Barrus, M. Ferrara, J. Vandenbussche and P. S. Wenger, Colored sauraion parameers for rainbow subgraphs, J. Graph Theory, 86 (207), [2] B. Bollobás and A. Sco, Separaing sysems and oriened graphs of diameer wo, J. Combin. Theory Ser. B 97 (2007), [3] I. Csiszár and J. Körner, Informaion Theory, 2nd ediion, Cambridge Universiy Press, 20. [4] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph heory, Amer. Mah. Monhly, 7 (964),

5 [5] M. Ferrara, D. Johnson, S. Loeb, F. Pfender, A. Schule, H. C. Smih, E. Sullivan, M. Tai and C. Tompkins, On edge-colored sauraion problems, arxiv: preprin [6] Z. Füredi, P. Horak, C. M. Pareek and X. Zhu, Minimal oriened graphs of diameer 2, Graphs Combin. 4 (998), [7] L. Gargano, J. Körner and U. Vaccaro, Sperner capaciies, Graphs Combin., 9 (993), [8] L. Gargano, J. Körner and U. Vaccaro, Capaciies: from informaion heory o exremal se heory, J. Combin. Theory Ser. A, 68 (994), [9] A. Girão, D. Lewis and K. Popielarz, Rainbow sauraion of graphs, arxiv: preprin [0] G. Kaona and E. Szemerédi, On a problem of graph heory, Sudia Sci. Mah. Hungar. 2 (967), [] D. Korándi and B. Sudakov, Sauraion in random graphs, Random Srucures Algorihms 5 (207), [2] A. V. Kosochka, T. Luczak, G. Simonyi and E. Sopena, On he minimum number of edges giving maximum oriened chromaic number, in: Conemporary Trends in Discree Mahemaics, DIMACS Series in Discree Mahemaics and Theoreical Compuer Science, vol 49. (999), [3] G. Simonyi, Perfec graphs and graph enropy. An updaed survey, in: Perfec Graphs, Wiley (200), [4] A. Zykov, On some properies of linear complexes (in Russian), Ma. Sbornik N. S. 24 (949),

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

The Zarankiewicz problem in 3-partite graphs

The Zarankiewicz problem in 3-partite graphs The Zarankiewicz problem in 3-parie graphs Michael Tai Craig Timmons Absrac Le F be a graph, k 2 be an ineger, and wrie ex χ k (n, F ) for he maximum number of edges in an n-verex graph ha is k-parie and

More information

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE JAMES ALEXANDER, JONATHAN CUTLER, AND TIM MINK Absrac The enumeraion of independen ses in graphs wih various resricions has been a opic of much ineres

More information

Some Ramsey results for the n-cube

Some Ramsey results for the n-cube Some Ramsey resuls for he n-cube Ron Graham Universiy of California, San Diego Jozsef Solymosi Universiy of Briish Columbia, Vancouver, Canada Absrac In his noe we esablish a Ramsey-ype resul for cerain

More information

Families with no matchings of size s

Families with no matchings of size s Families wih no machings of size s Peer Franl Andrey Kupavsii Absrac Le 2, s 2 be posiive inegers. Le be an n-elemen se, n s. Subses of 2 are called families. If F ( ), hen i is called - uniform. Wha is

More information

Hedgehogs are not colour blind

Hedgehogs are not colour blind Hedgehogs are no colour blind David Conlon Jacob Fox Vojěch Rödl Absrac We exhibi a family of 3-uniform hypergraphs wih he propery ha heir 2-colour Ramsey numbers grow polynomially in he number of verices,

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

Monochromatic Infinite Sumsets

Monochromatic Infinite Sumsets Monochromaic Infinie Sumses Imre Leader Paul A. Russell July 25, 2017 Absrac WeshowhahereisaraionalvecorspaceV suchha,whenever V is finiely coloured, here is an infinie se X whose sumse X+X is monochromaic.

More information

Extremal colorings and independent sets

Extremal colorings and independent sets Exremal colorings and independen ses John Engbers Aysel Erey Ocober 17, 2017 Absrac We consider several exremal problems of maximizing he number of colorings and independen ses in some graph families wih

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Longest Common Prefixes

Longest Common Prefixes Longes Common Prefixes The sandard ordering for srings is he lexicographical order. I is induced by an order over he alphabe. We will use he same symbols (,

More information

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu ON EQUATIONS WITH SETS AS UNKNOWNS BY PAUL ERDŐS AND S. ULAM DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER Communicaed May 27, 1968 We shall presen here a number of resuls in se heory concerning

More information

arxiv:math.fa/ v1 31 Oct 2004

arxiv:math.fa/ v1 31 Oct 2004 A sharp isoperimeric bound for convex bodies Ravi Monenegro arxiv:mah.fa/0408 v 3 Oc 2004 Absrac We consider he problem of lower bounding a generalized Minkowski measure of subses of a convex body wih

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Weyl sequences: Asymptotic distributions of the partition lengths

Weyl sequences: Asymptotic distributions of the partition lengths ACTA ARITHMETICA LXXXVIII.4 (999 Weyl sequences: Asympoic disribuions of he pariion lenghs by Anaoly Zhigljavsky (Cardiff and Iskander Aliev (Warszawa. Inroducion: Saemen of he problem and formulaion of

More information

A problem related to Bárány Grünbaum conjecture

A problem related to Bárány Grünbaum conjecture Filoma 27:1 (2013), 109 113 DOI 10.2298/FIL1301109B Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma A problem relaed o Bárány Grünbaum

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Asymptotic Equipartition Property - Seminar 3, part 1

Asymptotic Equipartition Property - Seminar 3, part 1 Asympoic Equipariion Propery - Seminar 3, par 1 Ocober 22, 2013 Problem 1 (Calculaion of ypical se) To clarify he noion of a ypical se A (n) ε and he smalles se of high probabiliy B (n), we will calculae

More information

ERROR LOCATING CODES AND EXTENDED HAMMING CODE. Pankaj Kumar Das. 1. Introduction and preliminaries

ERROR LOCATING CODES AND EXTENDED HAMMING CODE. Pankaj Kumar Das. 1. Introduction and preliminaries MATEMATIČKI VESNIK MATEMATIQKI VESNIK 70, 1 (2018), 89 94 March 2018 research paper originalni nauqni rad ERROR LOCATING CODES AND EXTENDED HAMMING CODE Pankaj Kumar Das Absrac. Error-locaing codes, firs

More information

WHEN LINEAR AND WEAK DISCREPANCY ARE EQUAL

WHEN LINEAR AND WEAK DISCREPANCY ARE EQUAL WHEN LINEAR AND WEAK DISCREPANCY ARE EQUAL DAVID M. HOWARD AND STEPHEN J. YOUNG Absrac. The linear discrepancy of a pose P is he leas k such ha here is a linear exension L of P such ha if x and y are incomparable,

More information

LINEAR INVARIANCE AND INTEGRAL OPERATORS OF UNIVALENT FUNCTIONS

LINEAR INVARIANCE AND INTEGRAL OPERATORS OF UNIVALENT FUNCTIONS LINEAR INVARIANCE AND INTEGRAL OPERATORS OF UNIVALENT FUNCTIONS MICHAEL DORFF AND J. SZYNAL Absrac. Differen mehods have been used in sudying he univalence of he inegral ) α ) f) ) J α, f)z) = f ) d, α,

More information

The minimum number of nonnegative edges in hypergraphs

The minimum number of nonnegative edges in hypergraphs The minimum number of nonnegaive edges in hypergraphs Hao Huang DIMACS Rugers Universiy New Brunswic, USA huanghao@mahiasedu Benny Sudaov Deparmen of Mahemaics ETH 8092 Zurich, Swizerland benjaminsudaov@mahehzch

More information

Double system parts optimization: static and dynamic model

Double system parts optimization: static and dynamic model Double sysem pars opmizaon: sac and dynamic model 1 Inroducon Jan Pelikán 1, Jiří Henzler 2 Absrac. A proposed opmizaon model deals wih he problem of reserves for he funconal componens-pars of mechanism

More information

Logic in computer science

Logic in computer science Logic in compuer science Logic plays an imporan role in compuer science Logic is ofen called he calculus of compuer science Logic plays a similar role in compuer science o ha played by calculus in he physical

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

When Linear and Weak Discrepancy are Equal

When Linear and Weak Discrepancy are Equal When Linear and Weak Discrepancy are Equal David M. Howard b,2, Sephen J. Young b,1, a School of Mahemaics, Georgia Insiue of Technology, Alana, GA 30332-0160 Absrac The linear discrepancy of a pose P

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.fa] 9 Dec 2018 AN INVERSE FUNCTION THEOREM CONVERSE arxiv:1812.03561v1 [mah.fa] 9 Dec 2018 JIMMIE LAWSON Absrac. We esablish he following converse of he well-known inverse funcion heorem. Le g : U V and f : V U be inverse

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

ON THE DEGREES OF RATIONAL KNOTS

ON THE DEGREES OF RATIONAL KNOTS ON THE DEGREES OF RATIONAL KNOTS DONOVAN MCFERON, ALEXANDRA ZUSER Absrac. In his paper, we explore he issue of minimizing he degrees on raional knos. We se a bound on hese degrees using Bézou s heorem,

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Mah-NeRu All Russian mahemaical poral Roman Popovych, On elemens of high order in general finie fields, Algebra Discree Mah, 204, Volume 8, Issue 2, 295 300 Use of he all-russian mahemaical poral Mah-NeRu

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Coloring Graphs with Sparse Neighborhoods

Coloring Graphs with Sparse Neighborhoods Journal of Combinaorial Theory, Series B 77, 738 (1999) Aricle ID jcb.1999.1910, available online a hp:www.iealibrary.com on Coloring Graphs wih Sparse Neighborhoos Noga Alon* Deparmen of Mahemaics, Raymon

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Tight bounds for eternal dominating sets in graphs

Tight bounds for eternal dominating sets in graphs Discree Mahemaics 308 008 589 593 www.elsevier.com/locae/disc Tigh bounds for eernal dominaing ses in graphs John L. Goldwasser a, William F. Klosermeyer b a Deparmen of Mahemaics, Wes Virginia Universiy,

More information

On a problem of Graham By E. ERDŐS and E. SZEMERÉDI (Budapest) GRAHAM stated the following conjecture : Let p be a prime and a 1,..., ap p non-zero re

On a problem of Graham By E. ERDŐS and E. SZEMERÉDI (Budapest) GRAHAM stated the following conjecture : Let p be a prime and a 1,..., ap p non-zero re On a roblem of Graham By E. ERDŐS and E. SZEMERÉDI (Budaes) GRAHAM saed he following conjecure : Le be a rime and a 1,..., a non-zero residues (mod ). Assume ha if ' a i a i, ei=0 or 1 (no all e i=0) is

More information

Entropy compression method applied to graph colorings

Entropy compression method applied to graph colorings Enropy compression mehod applied o graph colorings Daniel Gonçalves a, Mickaël Monassier b, and Aleandre Pinlou c a CNRS, LIRMM b Universié Monpellier 2, LIRMM c Universié Monpellier 3, LIRMM 6 rue Ada,

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Almost Sure Degrees of Truth and Finite Model Theory of Łukasiewicz Fuzzy Logic

Almost Sure Degrees of Truth and Finite Model Theory of Łukasiewicz Fuzzy Logic Almos Sure Degrees of Truh and Finie odel Theory of Łukasiewicz Fuzzy Logic Rober Kosik Insiue of Informaion Business, Vienna Universiy of Economics and Business Adminisraion, Wirschafsuniversiä Wien,

More information

Czech Republic. Ingo Schiermeyer. Germany. June 28, A generalized (i; j)-bull B i;j is a graph obtained by identifying each of some two

Czech Republic. Ingo Schiermeyer. Germany. June 28, A generalized (i; j)-bull B i;j is a graph obtained by identifying each of some two Claw-free and generalized bull-free graphs of large diameer are hamilonian RJ Faudree Deparmen of Mahemaical Sciences The Universiy of Memphis Memphis, TN 38152 USA e-mail rfaudree@ccmemphisedu Zdenek

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

THE MATRIX-TREE THEOREM

THE MATRIX-TREE THEOREM THE MATRIX-TREE THEOREM 1 The Marix-Tree Theorem. The Marix-Tree Theorem is a formula for he number of spanning rees of a graph in erms of he deerminan of a cerain marix. We begin wih he necessary graph-heoreical

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads

Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads Saircase Codes for Secre Sharing wih Opimal Communicaion and Read Overheads Rawad Biar, Salim El Rouayheb ECE Deparmen, IIT, Chicago rbiar@hawkiiedu, salim@iiedu Absrac We sudy he communicaion efficien

More information

Average Number of Lattice Points in a Disk

Average Number of Lattice Points in a Disk Average Number of Laice Poins in a Disk Sujay Jayakar Rober S. Sricharz Absrac The difference beween he number of laice poins in a disk of radius /π and he area of he disk /4π is equal o he error in he

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course OMP: Arificial Inelligence Fundamenals Lecure 0 Very Brief Overview Lecurer: Email: Xiao-Jun Zeng x.zeng@mancheser.ac.uk Overview This course will focus mainly on probabilisic mehods in AI We shall presen

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays Applied Mahemaics 4 59-64 hp://dx.doi.org/.46/am..4744 Published Online July (hp://www.scirp.org/ournal/am) Bifurcaion Analysis of a Sage-Srucured Prey-Predaor Sysem wih Discree and Coninuous Delays Shunyi

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Explore 2 Proving the Vertical Angles Theorem

Explore 2 Proving the Vertical Angles Theorem Explore 2 Proving he Verical Angles Theorem The conjecure from he Explore abou verical angles can be proven so i can be saed as a heorem. The Verical Angles Theorem If wo angles are verical angles, hen

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION Bull. London Mah. Soc. 39 2007 482 486 C 2007 London Mahemaical Sociey doi:10.1112/blms/bdm032 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON and S. M. GONEK Absrac Le πs denoe he

More information

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016 UNIVERSITÁ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA Bernoulli numbers Francesco Chiai, Maeo Pinonello December 5, 206 During las lessons we have proved he Las Ferma Theorem

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS

GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS GCD AND LCM-LIKE IDENTITIES FOR IDEALS IN COMMUTATIVE RINGS D. D. ANDERSON, SHUZO IZUMI, YASUO OHNO, AND MANABU OZAKI Absrac. Le A 1,..., A n n 2 be ideals of a commuaive ring R. Le Gk resp., Lk denoe

More information

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique Filoma 29:5 (2015), 1067 1080 DOI 10.2298/FI1505067W Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma Nonlinear Fuzzy Sabiliy of a Funcional

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

A Note on Goldbach Partitions of Large Even Integers

A Note on Goldbach Partitions of Large Even Integers arxiv:47.4688v3 [mah.nt] Jan 25 A Noe on Goldbach Pariions of Large Even Inegers Ljuben Muafchiev American Universiy in Bulgaria, 27 Blagoevgrad, Bulgaria and Insiue of Mahemaics and Informaics of he Bulgarian

More information

On the Advantage over a Random Assignment*

On the Advantage over a Random Assignment* On he Advanage over a Random Assignmen* Johan Håsad, 1, S. Venkaesh 2, 1 Nada, KTH, SE-100 44 Sockholm, Sweden; e-mail: johanh@nada.kh.se 2 DIMACS Cener, CoRE Building, Rugers Universiy, 96 Frelinghuysen

More information

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990), SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F Trench SIAM J Marix Anal Appl 11 (1990), 601-611 Absrac Le T n = ( i j ) n i,j=1 (n 3) be a real symmeric

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 209 227 ISSN 0364-765X (prin) ISSN 1526-5471 (online) hp://dx.doi.org/10.1287/moor.1120.0562 2013 INFORMS On Boundedness of Q-Learning Ieraes

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information