Classifica(on and predic(on omics style. Dr Nicola Armstrong Mathema(cs and Sta(s(cs Murdoch University

Size: px
Start display at page:

Download "Classifica(on and predic(on omics style. Dr Nicola Armstrong Mathema(cs and Sta(s(cs Murdoch University"

Transcription

1 Classifica(on and predic(on omics style Dr Nicola Armstrong Mathema(cs and Sta(s(cs Murdoch University

2 Classifica(on Learning Set Data with known classes Prediction Classification rule Data with unknown classes Classification Technique Discrimination Class Assignment 2

3 Classification Rule Classification technique Feature selection Parameters [pre-determined, estimable] Distance measure Aggregation methods The classifica(on rule is like a black box, some methods provide more insight into the contents of the box 3

4 Classifica(on Techniques Decision Tree based Methods e.g. random forests (Breiman 2001) Rule- based Methods Memory based reasoning Neural Networks Naïve Bayes (DLDA) and Bayesian Belief Networks Support Vector Machines Widely used but parameters are difficult to interpret and most programs are black boxes

5 Ensemble packages in R Allow applica(on and evalua(on of mul(ple techniques on a dataset Simple and easy to use CMA caret ClassifyR

6 Classification Method Descrip.on Func.on(s) DM DV DD Wrapper for sparsediscrim s diagonal LDA func(on dlda. DLDAtrainInterface, DLDApredictInterface Wrapper for PoiClaClus s Poisson LDA func(on classify. classifyinterface Wrapper for glmnet s elas(c net GLM func(on glmnet. elasticnetglminterface P Wrapper for pamr s Nearest Shrunken Centroid functions pamr.train and pamr.predict. Wrapper for multinomial logistic regression as implemented in CRAN package mnlogit. NSCtrainInterface NSCpredictInterface logisticregressiontraininterfa ce logisticregressionpredictinter face Fisher s Linear Discrimiant Analysis fisherdiscriminant P P * Feature- wise mixtures of normals and vo(ng mixmodelstrain, mixmodelspredict P P P P P P P Feature- wise kernel density es(ma(on and vo(ng naivebayeskernel P P P Wrapper for randomforest's fuc(on randomforest. randomforestinterface P P P Wrapper for e1071 s Support Vector Machine func(on svm. SVMinterface P P P * If ordinary numeric measurements have been transformed to absolute deviations by subtractfromlocation. If kernel is not linear.

7 MODEL PERFORMANCE

8 Valida(on: Performance assessment Can be based on: Cross- valida(on Test set Independent tes(ng on future dataset. Independent tes(ng on exis(ng dataset (integra(ve analysis). 8

9 Cross- valida(on For i=1,, 100 For k=1,, n Par((on data into n disjoint sets S 1, S 2,, S n Omit S k Using all data except S k build classifier Use classifier to predict classes for S k Summary sta.s.cs of performance 9

10 Metrics for Performance Evalua(on Focus on the predic(ve capability of a model Rather than how fast it takes to classify or build models, scalability, etc. Confusion Matrix: PREDICTED CLASS Class=Yes Class=No ACTUAL CLASS Class=Yes a b Class=No c d a: TP (true posi(ve) b: FN (false nega(ve) c: FP (false posi(ve) d: TN (true nega(ve)

11 Accuracy Accuracy = a a + b + + d c + d = TP TP + TN + TN + FP + FN Issue if data highly skewed/biased For instance, if only 0.5% of the data is in category 1 and the rest is in category 0. Model has 99.5% accuracy! But because of the skew in that data, your model could just be: classify each observa(on to be in category 0, and it would achieve that accuracy.

12 Other metrics Misclassifica(on rate: 1- Accuracy Sensi(vity/Recall/true posi(ve rate: TP/(TP+FN) Specificity/true nega(ve rate: TN/(TN+FP) Posi(ve predic(ve value/precision: TP/(TP+FP) Nega(ve predic(ve value: TN/(TN+FN) F- score: harmonic mean of precision & recall 2*(precision*recall)/(precision+recall) 1=good, 0=bad, doesn t consider TNs

13 ROC (Receiver Opera(ng Characteris(c) Developed in 1950s for signal detec(on theory to analyze noisy signals Characterize the trade- off between posi(ve hits and false alarms ROC curve plots sensi-vity (on the y- axis) against (1- specificity) (on the x- axis) Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribu(on or cost matrix changes the loca(on of the point

14 ROC Curve (Sensi(vity,1- specificity): (0,0): declare everything to be nega(ve class (1,1): declare everything to be posi(ve class (1,0): ideal Diagonal line: Random guessing Below diagonal line: predic(on is opposite of the true class

15 Model Selec(on In prac(ce, omen not much difference in performance between several approaches. Aim to choose the model which is: Interpretable - can we see or understand why the model is making the decisions it makes? Simple - easy to explain and understand Accurate Fast (to train and test) Scalable (can be applied to a large dataset)

16 EXAMPLES

17 Hidden Markov Models Hidden States π i 2 K 2 K 2 K 2 K x 1 x 2 x 3 x K Observa(ons

18 input sequence: most probable path: gene prediction: AGCTAGCAGTATGTCATGGCATGTTCGGAGGTAGTACGTAGAGGTAGCTAGTATAGGTCGATAGTACG exon 1 exon 2 exon 3 Gene finding

19 Crossovers in meiosis ChromHMM: annota-ng genomic regions Ernst & Kellis 2002

20 MammaPrint van t Veer et al Nature 2002; van de Vijver et al NEJM 2002 Based on correla(on

21 Breast cancer survival Reyal et al 2008 BCR

22 Kok et al 2009 J Pathology

23 Kirschner et al JTO 2015

24 CONTINUOUS Y

25 Mul(ple Regression Linear Logis(c! =!!!!!!!!!!!!!! 1 +!!!!!!!!!!!!!! X is the genotype, i.e. the SNPs. Y is the phenotype: Linear: con(nuous phenotypic measurement. Logis(c: 0 = no, 1 = yes. β are the regression coefficients. 25

26 Ridge Regression X is the genotype, i.e. the SNPs Y is the phenotype i.e. risk of developing the disease. β ridge is the ridge regression coefficient. λ 0 is the tuning parameter that controls the amount of ridge penalty. is the ridge penalty. 26

27 LASSO (the Least Absolute Shrinkage and Selec(on Operator) X is the genotype, i.e. the SNPs Y is the phenotype i.e. risk of developing the disease. β lasso is the lasso regression coefficient. λ 0 is the tuning parameter that controls the amount of lasso penalty. is the lasso penalty. 27

28 Elas(c Net X is the genotype, i.e. the SNPs Y is the phenotype i.e. risk of developing the disease. β 0, β is the elas(c net regression coefficient. λ 0 is the tuning parameter that controls the amount of elas(c net penalty. 0 α 1 is elas(c penalty weight 28

29 Ridge vs. LASSO vs. Elas(c Net * Not well in case no of SNPs >> no of people, the maximum number of variables that LASSO can select before it saturates is equal to the number of people. All regression methods rely on linearity assump(on 29

30 Armstrong et al Epigenomics 2017 Hannum et al 2014, elas(c net & Horvath 2013, elas(c net

Bias/variance tradeoff, Model assessment and selec+on

Bias/variance tradeoff, Model assessment and selec+on Applied induc+ve learning Bias/variance tradeoff, Model assessment and selec+on Pierre Geurts Department of Electrical Engineering and Computer Science University of Liège October 29, 2012 1 Supervised

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Outline Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Robert F. Murphy External Senior Fellow, Freiburg Ins>tute for Advanced Studies Ray and Stephanie Lane Professor

More information

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University Why Do We Care? Necessity in today s labs Principled approach:

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

Performance Evaluation

Performance Evaluation Performance Evaluation David S. Rosenberg Bloomberg ML EDU October 26, 2017 David S. Rosenberg (Bloomberg ML EDU) October 26, 2017 1 / 36 Baseline Models David S. Rosenberg (Bloomberg ML EDU) October 26,

More information

Priors in Dependency network learning

Priors in Dependency network learning Priors in Dependency network learning Sushmita Roy sroy@biostat.wisc.edu Computa:onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 1 Evalua:on

More information

Performance Evaluation

Performance Evaluation Performance Evaluation Confusion Matrix: Detected Positive Negative Actual Positive A: True Positive B: False Negative Negative C: False Positive D: True Negative Recall or Sensitivity or True Positive

More information

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio Class 4: Classification Quaid Morris February 11 th, 211 ML4Bio Overview Basic concepts in classification: overfitting, cross-validation, evaluation. Linear Discriminant Analysis and Quadratic Discriminant

More information

Regression.

Regression. Regression www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts linear regression RMSE, MAE, and R-square logistic regression convex functions and sets

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 6: Linear Regression Model with Regulariza@ons Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sec@ons of this course

More information

Machine Learning and Data Mining. Bayes Classifiers. Prof. Alexander Ihler

Machine Learning and Data Mining. Bayes Classifiers. Prof. Alexander Ihler + Machine Learning and Data Mining Bayes Classifiers Prof. Alexander Ihler A basic classifier Training data D={x (i),y (i) }, Classifier f(x ; D) Discrete feature vector x f(x ; D) is a con@ngency table

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum Graphical Models Lecture 3: Local Condi6onal Probability Distribu6ons Andrew McCallum mccallum@cs.umass.edu Thanks to Noah Smith and Carlos Guestrin for some slide materials. 1 Condi6onal Probability Distribu6ons

More information

LDA, QDA, Naive Bayes

LDA, QDA, Naive Bayes LDA, QDA, Naive Bayes Generative Classification Models Marek Petrik 2/16/2017 Last Class Logistic Regression Maximum Likelihood Principle Logistic Regression Predict probability of a class: p(x) Example:

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Generative Model (Naïve Bayes, LDA)

Generative Model (Naïve Bayes, LDA) Generative Model (Naïve Bayes, LDA) IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University Materials from Prof. Jia Li, sta3s3cal learning book (Has3e et al.), and machine learning

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

STAD68: Machine Learning

STAD68: Machine Learning STAD68: Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 1 Evalua;on 3 Assignments worth 40%. Midterm worth 20%. Final

More information

Statistical aspects of prediction models with high-dimensional data

Statistical aspects of prediction models with high-dimensional data Statistical aspects of prediction models with high-dimensional data Anne Laure Boulesteix Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie February 15th, 2017 Typeset by

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis Week 5 Based in part on slides from textbook, slides of Susan Holmes Part I Linear Discriminant Analysis October 29, 2012 1 / 1 2 / 1 Nearest centroid rule Suppose we break down our data matrix as by the

More information

Machine Learning Concepts in Chemoinformatics

Machine Learning Concepts in Chemoinformatics Machine Learning Concepts in Chemoinformatics Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn BigChem Winter School 2017 25. October Data Mining in Chemoinformatics

More information

Least Squares Classification

Least Squares Classification Least Squares Classification Stephen Boyd EE103 Stanford University November 4, 2017 Outline Classification Least squares classification Multi-class classifiers Classification 2 Classification data fitting

More information

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes November 9, 2012 1 / 1 Nearest centroid rule Suppose we break down our data matrix as by the labels yielding (X

More information

Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport

Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport Ye Ding, Yanhua Li, Ke Deng, Haoyu Tan, Mingxuan Yuan, Lionel M. Ni Presenta;on by Karan Somaiah Napanda, Suchithra

More information

CC283 Intelligent Problem Solving 28/10/2013

CC283 Intelligent Problem Solving 28/10/2013 Machine Learning What is the research agenda? How to measure success? How to learn? Machine Learning Overview Unsupervised Learning Supervised Learning Training Testing Unseen data Data Observed x 1 x

More information

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15 Computer Vision Pa0ern Recogni4on Concepts Luis F. Teixeira MAP- i 2014/15 Outline General pa0ern recogni4on concepts Classifica4on Classifiers Decision Trees Instance- Based Learning Bayesian Learning

More information

COMP 562: Introduction to Machine Learning

COMP 562: Introduction to Machine Learning COMP 562: Introduction to Machine Learning Lecture 20 : Support Vector Machines, Kernels Mahmoud Mostapha 1 Department of Computer Science University of North Carolina at Chapel Hill mahmoudm@cs.unc.edu

More information

Building a Prognostic Biomarker

Building a Prognostic Biomarker Building a Prognostic Biomarker Noah Simon and Richard Simon July 2016 1 / 44 Prognostic Biomarker for a Continuous Measure On each of n patients measure y i - single continuous outcome (eg. blood pressure,

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Performance Evaluation

Performance Evaluation Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Example:

More information

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #3 Machine Learning Edward Y. Chang Edward Chang Founda'ons of LSMM 1 Edward Chang Foundations of LSMM 2 Machine Learning

More information

Classification. Classification is similar to regression in that the goal is to use covariates to predict on outcome.

Classification. Classification is similar to regression in that the goal is to use covariates to predict on outcome. Classification Classification is similar to regression in that the goal is to use covariates to predict on outcome. We still have a vector of covariates X. However, the response is binary (or a few classes),

More information

Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies

Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies Florian Tramèr, Zhicong Huang, Erman Ayday, Jean- Pierre Hubaux ACM CCS 205 Denver, Colorado,

More information

Boos$ng Can we make dumb learners smart?

Boos$ng Can we make dumb learners smart? Boos$ng Can we make dumb learners smart? Aarti Singh Machine Learning 10-601 Nov 29, 2011 Slides Courtesy: Carlos Guestrin, Freund & Schapire 1 Why boost weak learners? Goal: Automa'cally categorize type

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1

BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1 BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013) ISLR Data Mining I

More information

A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I. kevin small & byron wallace

A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I. kevin small & byron wallace A.I. in health informatics lecture 2 clinical reasoning & probabilistic inference, I kevin small & byron wallace today a review of probability random variables, maximum likelihood, etc. crucial for clinical

More information

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2. Professor Anita Wasilewska Computer Science Department Stony Brook University

Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2. Professor Anita Wasilewska Computer Science Department Stony Brook University Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2 Professor Anita Wasilewska Computer Science Department Stony Brook University Data Mining Process Ques*ons: Describe and discuss all stages of

More information

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt)

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Nathan Schneider (some slides borrowed from Chris Dyer) ENLP 12 February 2018 23 Outline Words, probabilities Features,

More information

Evaluation & Credibility Issues

Evaluation & Credibility Issues Evaluation & Credibility Issues What measure should we use? accuracy might not be enough. How reliable are the predicted results? How much should we believe in what was learned? Error on the training data

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis Jonathan Taylor, 10/12 Slide credits: Sergio Bacallado 1 / 1 Review: Main strategy in Chapter 4 Find an estimate ˆP

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

How to evaluate credit scorecards - and why using the Gini coefficient has cost you money

How to evaluate credit scorecards - and why using the Gini coefficient has cost you money How to evaluate credit scorecards - and why using the Gini coefficient has cost you money David J. Hand Imperial College London Quantitative Financial Risk Management Centre August 2009 QFRMC - Imperial

More information

Mul$variate clustering & classifica$on with R

Mul$variate clustering & classifica$on with R Mul$variate clustering & classifica$on with R Eric Feigelson Penn State Cosmology on the Beach, 2014 Astronomical context Astronomers have constructed classifica@ons of celes@al objects for centuries:

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Computer Science Department University of Pittsburgh Outline Introduction Learning with

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

Univariate shrinkage in the Cox model for high dimensional data

Univariate shrinkage in the Cox model for high dimensional data Univariate shrinkage in the Cox model for high dimensional data Robert Tibshirani January 6, 2009 Abstract We propose a method for prediction in Cox s proportional model, when the number of features (regressors)

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Classifier performance evaluation

Classifier performance evaluation Classifier performance evaluation Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánu 1580/3, Czech Republic

More information

Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report

Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report Hujia Yu, Jiafu Wu [hujiay, jiafuwu]@stanford.edu 1. Introduction Housing prices are an important

More information

Moving Average Rules to Find. Confusion Matrix. CC283 Intelligent Problem Solving 05/11/2010. Edward Tsang (all rights reserved) 1

Moving Average Rules to Find. Confusion Matrix. CC283 Intelligent Problem Solving 05/11/2010. Edward Tsang (all rights reserved) 1 Machine Learning Overview Supervised Learning Training esting Te Unseen data Data Observed x 1 x 2... x n 1.6 7.1... 2.7 1.4 6.8... 3.1 2.1 5.4... 2.8... Machine Learning Patterns y = f(x) Target y Buy

More information

Random projection ensemble classification

Random projection ensemble classification Random projection ensemble classification Timothy I. Cannings Statistics for Big Data Workshop, Brunel Joint work with Richard Samworth Introduction to classification Observe data from two classes, pairs

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 7. Models with binary response II GLM (Spring, 2018) Lecture 7 1 / 13 Existence of estimates Lemma (Claudia Czado, München, 2004) The log-likelihood ln L(β) in logistic

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent KDD August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. KDD August 2008

More information

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 21 K - Nearest Neighbor V In this lecture we discuss; how do we evaluate the

More information

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan Ensemble Methods NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan How do you make a decision? What do you want for lunch today?! What did you have last night?! What are your favorite

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models Machine Learning & Data Mining CS/CNS/EE 155 Lecture 8: Hidden Markov Models 1 x = Fish Sleep y = (N, V) Sequence Predic=on (POS Tagging) x = The Dog Ate My Homework y = (D, N, V, D, N) x = The Fox Jumped

More information

Simultaneous variable selection and class fusion for high-dimensional linear discriminant analysis

Simultaneous variable selection and class fusion for high-dimensional linear discriminant analysis Biostatistics (2010), 11, 4, pp. 599 608 doi:10.1093/biostatistics/kxq023 Advance Access publication on May 26, 2010 Simultaneous variable selection and class fusion for high-dimensional linear discriminant

More information

Proteomics and Variable Selection

Proteomics and Variable Selection Proteomics and Variable Selection p. 1/55 Proteomics and Variable Selection Alex Lewin With thanks to Paul Kirk for some graphs Department of Epidemiology and Biostatistics, School of Public Health, Imperial

More information

Linear and Logistic Regression. Dr. Xiaowei Huang

Linear and Logistic Regression. Dr. Xiaowei Huang Linear and Logistic Regression Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Two Classical Machine Learning Algorithms Decision tree learning K-nearest neighbor Model Evaluation Metrics

More information

Variable Selection and Weighting by Nearest Neighbor Ensembles

Variable Selection and Weighting by Nearest Neighbor Ensembles Variable Selection and Weighting by Nearest Neighbor Ensembles Jan Gertheiss (joint work with Gerhard Tutz) Department of Statistics University of Munich WNI 2008 Nearest Neighbor Methods Introduction

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

6.873/HST.951 Medical Decision Support Spring 2004 Evaluation

6.873/HST.951 Medical Decision Support Spring 2004 Evaluation Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo 6.873/HST.951 Medical Decision

More information

IN Pratical guidelines for classification Evaluation Feature selection Principal component transform Anne Solberg

IN Pratical guidelines for classification Evaluation Feature selection Principal component transform Anne Solberg IN 5520 30.10.18 Pratical guidelines for classification Evaluation Feature selection Principal component transform Anne Solberg (anne@ifi.uio.no) 30.10.18 IN 5520 1 Literature Practical guidelines of classification

More information

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation Data Privacy in Biomedicine Lecture 11b: Performance Measures for System Evaluation Bradley Malin, PhD (b.malin@vanderbilt.edu) Professor of Biomedical Informatics, Biostatistics, & Computer Science Vanderbilt

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. August 2008 Trevor

More information

Extensions to LDA and multinomial regression

Extensions to LDA and multinomial regression Extensions to LDA and multinomial regression Patrick Breheny September 22 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction Quadratic discriminant analysis Fitting models Linear discriminant

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Performance evaluation of binary classifiers

Performance evaluation of binary classifiers Performance evaluation of binary classifiers Kevin P. Murphy Last updated October 10, 2007 1 ROC curves We frequently design systems to detect events of interest, such as diseases in patients, faces in

More information

A Bias Correction for the Minimum Error Rate in Cross-validation

A Bias Correction for the Minimum Error Rate in Cross-validation A Bias Correction for the Minimum Error Rate in Cross-validation Ryan J. Tibshirani Robert Tibshirani Abstract Tuning parameters in supervised learning problems are often estimated by cross-validation.

More information

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com Logis&c Regression These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes. December 2, 2012

Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes. December 2, 2012 Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Neural networks Neural network Another classifier (or regression technique)

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 7/8 - High-dimensional modeling part 1 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Classification

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

High-Dimensional Statistical Learning: Introduction

High-Dimensional Statistical Learning: Introduction Classical Statistics Biological Big Data Supervised and Unsupervised Learning High-Dimensional Statistical Learning: Introduction Ali Shojaie University of Washington http://faculty.washington.edu/ashojaie/

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information