Notes on Renormalization Group: Introduction

Size: px
Start display at page:

Download "Notes on Renormalization Group: Introduction"

Transcription

1 Notes on Renormalization Group: Introduction Yi Zou (Dated: November 19, 2015) We introduce brief istory for te development of renormalization group (RG) in pysics. Kadanoff s scaling ypoteis is present to understand te critical penomena. We also present te general framework for tree-stage RG transformations to obtain RG flow equations (Gell-Mann- Low equations). Te idea of fixed point is presented as well as relevant, irrelevant and marginal coupling. I. BRIEF HISTORY Wy renormalization group (RG)? Renormalization group plays an essential role in modern pysics, including quantum field teory, statistical mecanics, condensed matter pysics, and even dissipative quantum tunnelling. Quantum electrodynamics (QED): A quantum field teory Te problem of infinities: Ultraviolet (UV) divergence (Weisskopf) Renormalization: Feynman, Scwinger, Tomonaga, Dyson, et al. Quantum field teory and renormalization group: Peterman and Strückberg, Gell-Mann and Low, Bogoliubov and Sirkov Tey consider QED in te limit of potons and massless electrons. In a massive teory, te renormalized carge can be defined troug te electric interaction of particles at rest, say, Coulomb interaction. Tis definition is no longer applicable to massless particles, wic always travel at te speed of ligt. Ten it is necessary to introduce an arbitary mass or energy scale µ to define te renormalized carge e. Tis effective carge ten depends on µ. Te set of transformations of pysical constants accociated wit te cange in scale µ is called renormalization group. Standard model Critical penomena: Oter infinities (Infrared (IR) divengence) Pases and pase transition Mean field teory Fluctuations Te non-decoupling of scales Te cutoff as scale paramter Kadanoff and Wilson s renormalization group Scaling ypotesis Continuum limit Gaussian fixed point and mean field teory Go beyond Guassian fixed point Te concept of effective field teory More is different Emergnet penomena: Different pysical laws will appear at different scale Renormalizability: A criterion to construct effective field teories

2 2 A. Te cutoff as scale parameter: Effective field teory at criticality To ensure tat we remain in te low-energy domain, we would like to take te cutoff to be infinite, but tis cannot be done by declaration. In te absence of external fields, ta action of te system does not contain an intrinsic energy scale apart from te cutoff. Tus, te cutoff disappears from te action wen we reduce all quantities to dimensionless form. Te only way to tell weter it is finite or infinite is to calculate some pysical quantity wit dimension, suc as te correlation lengt, from te teory. Te cutoff is infinite wen te correlation lengt diverges, in wic case te system is said to be at a critical point. To approac te limit of infinite cutoff, terefore, we must adjust te parameters so as to make te system go critical. ϕ(x)ϕ(y) Ce x y / ξ x y Here te correlation lengt ξ is measured in te same unit as x. Using Λ 1 as unit for distance, we ave were ξ is dimensionless: x y ξ = x y Λ ξ ξ = Λ ξ. Ignoring te patological case ξ = 0, we see tat an infinite cutoff corresponds to te limit ξ. II. CRITICAL PHENOMENA A. Critical exponents For continuous pase transitions, te critical exponents will not vary along te pase boundary, wic caracterize te universality class for pase transitions. Te critical exponents for ferromagnetic systems are list in te following table. TABLE I: Critical exponents for ferromagnetic systems, were t = (T T c )/T 0, = (H H c )/H 0, T 0 and H 0 are nonuniversal constants. critical exponent associated quantity singular part α eat capacity C H t α β magnetization m t β γ susceptibility χ t γ δ magnetization m 1/δ η correlation function G( r) e r/ξ r d 2+η ν correlation lengt ξ t ν B. Scaling ypotesis Widom made te following omogeneity assumption for te singular form of free energy in te vicinity of a pase transition, ( ) f(t, ) = t 2 α g f t,

3 were g f is a scaling funciton for free energy (wic is different for t > 0 and t < 0), and te exponents α and depend on te critical point under consideration. Using tis form of free energy, one can determine a series of critical exponents using te two independent exponents α and. Heat capacity: E f ( ) ( ) ( ) t = (2 α)t1 α g f t t 1 α g f t t 1 α g E t, 3 and ( ) C H t α g C t, ( were g ) ( C t = (1 ) ( α)ge t g ) E t. Magnetization: In te limit x 0, g m (x) is a constant, so tat m(t, ) = f ( ) ( ) t2 α g f t t 2 α g m t m(t, = 0) t 2 α g m (0), i.e., β = 2 α. On te oter and, if x, g m (x) x p, we must ave p = 2 α. Hence i.e., δ = /(2 α ) = /β. Susceptibility: So tat i.e., γ = 2 + α 2. A number of exponent identities follows, for example, m(t = 0, ) p = 2 α, ( ) χ(t, ) t 2 α 2 g χ t χ(t, = 0) t 2 α 2 g χ (0), and α + 2β + γ = 2, δ 1 = γ/β. Correlation lengt: Close to criticality, te correlation lengt ξ is te most imporant lengt scale, and is solely responsible for singular contribution to termodynamic quantities. Since ln Z is dimensionless and extensive, ln Z = Ld ξ d g s + Ld a d g a. From te assumption of te sigular form for f(t, ), we ave g s ξ d = t2 α g f, and ξ(t, ) t α 2 d gξ ( t ),

4 4 i.e., 2 α = dν. Correlation functions: At te critical point, On te oter and So tat χ G( r) 1 r d 2+η. ξ d d rg( r) d d 1 r r d 2+η ξ2 η t ν(2 η). γ = (2 η)ν. Te critical system as an additional dilation symmetry, G critical (λ r) = λ p G critical ( r), wic implies scale invariance or self-similarity. It is not in general possible to see directly ow suc a symmetry requrirment constrains te effective Hamiltonian. We sall instead precrible a less direct route by following te effects of te dilation operation on te effective energy, namely, a process known as renormalization group. Homework: Solve one-dimensional Ising model using transfer matrix metod. Find out te transition temperature T c, and compute te critical exponents α, β, and γ. III. RENORMALIZATION GROUP: GENERAL THEORY Suppose we ave an effective field teory defined torug te action, S[ϕ] = a g a O a [ϕ], were ϕ is some field, g a are coupling constants and O a [ϕ] a certain set of operators. Renormalization is a sceme to derive a set of Gell-Mann-Low equations describing te cange of te coupling constants {g a } as fast fluctuation modes of te teory are sucessively integrated out. Tere are a number of metodologically different procedures by wic te set of flow equations can be obtained from te microscopic teory. In general, RG transformations contains te following tree stages. Subdivision of te field manifold, te practice may be different in different situations, for instance We may proceed a generalized block spin sceme, and integrate over all degrees of freedom witin a certain structural unit in real space. We may separate fast and slow field modes (ϕ > and ϕ < ) in momentum space, and integrate over a sell of Λ/b p < Λ, were Λ is te momentum cutoff and b > 1. We may decide to integrate over all te ig-lying degrees of freedom λ 1 p. In tis case, te encountered divergent integrals may be andled wit dimensional regularization, for example. We may use te sort-distance real space cutoff underlying te socalled operator product expansion (OPE). RG transformation, te central part of RG, is to actually integrate over sort-range fluctuations. For RG in momentum space, a frequently used approximation sceme is te loop expansion.

5 5 Following te procedure, an integration over te fast degrees of freedom gives rise to an action S [ϕ < ] = a g ao a[ϕ < ], were coupling constants of te remaining slow fields are altered. Notice tat te integration over fast field fluctuations may lead to te generation of new operators. Rescaling, to recover te form of S[ϕ] wit te same set of {O a [ϕ]}. One ten rescales momentum/frequency so tat te rescaled field ϕ fluctuates on te same scales as te original field ϕ, i.e., one sets q bq, ω b z ω, were te dynamical exponent z depends on te effective dispersion. We will also designate a dimension L d ϕ to for te field ϕ, so as to compensate for te factor b x arising after te renormalization of te operator. Te rescaling ϕ b d ϕ ϕ is known as field renormalization. It renders te leading operator in te action scale invarinat. As a result of all tese manipulations, we obtain a renormalized action S[ϕ] = a g ao a [ϕ], wic is entirely described by te set of canged coupling contants, i.e. te effect of te RG transformation is fully encapsulated in te mapping g = R(g). Letting l ln b, we ave te Gell-Mann-Low equation dg dl = R(g), were R(g) = lim l 0 ( R(g) g)/l is te generalized β-function. A. Analysis of te Gell-Mann-Low equation Te Gell-Mann-Low equation represents te principle result of an RG analysis. Fixed points, were te RG flow becomes stationary, R(g ) = 0. At a fixed point, te system becomes self-similar, namely, does not cange under rescaling. One can analyze te RG flow close to a fixed point g by expanding were te matrix W is given by Ten te matrix W can be diagonalized as follows, R(g) W (g g ), W ab = R a g b g=g. ϕ T αw = λ α ϕ T α.

6 6 Scaling field. Defining we ave dv α dl v α = ϕ T α (g g ), = ϕ T α dg dl = ϕt α R(g) = ϕ T αw (g g ) = λ α ϕ T α (g g ) = λ α v α. Under renormalization, te coefficients v α cange by a mere scaling factor λ α, tereby tey are called scaling fields. Relevant scaling field. For λ α > 0, te flow is directly away from te fixed point. Te associated scaling field v α is said to be relevant. Irrelevant scaling field. For λ α < 0, te flow is attracted by te fixed point. Te associated scaling field is said to be irrelevant. Marginal scaling field. For λ α = 0, te scaling field is uncanged under te flow, are termed marginal. Tere exist different types of fixed points. Stable fixed point. All te scaling fields are irrelevant or, at worst, marginal. Tese points define wat we migt call stable pase of matter. Unstable fixed point. Complementary to te stable fixed points, tere are unstable fixed points, wose scalling fields are all relevant. Tere is te gneric class of fixed points wit bot relevant and irrelevant scaling fields. Tese points are of particular interest because tey can be associated wit pase transition. [1] Jon Cardy, Scaling and renormalization group in statistical pysics, Cambridge Univsersity Press (1996). [2] M. E. Peskin and D. V. Scroeder, An introduction to quantum field teory, Westview Press (1995). [3] Alexander Altland and Ben Simons, Condensed Matter Field teory, Cambridge Univsersity Press (2010). [4] Jon B. Kogut, Rev. Mod. Pys. 51, 659 (1979). [5] Jean Zinn-Justin, Pase Transition and Renormalization Group, Oxford Univsersity Press (2002).

Notes on Renormalization Group: ϕ 4 theory and ferromagnetism

Notes on Renormalization Group: ϕ 4 theory and ferromagnetism Notes on Renormalization Group: ϕ 4 theory and ferromagnetism Yi Zhou (Dated: November 4, 015) In this lecture, we shall study the ϕ 4 theory up to one-loop RG and discuss the application to ferromagnetic

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

III. The Scaling Hypothesis

III. The Scaling Hypothesis III. The Scaling Hypothesis III.A The Homogeneity Assumption In the previous chapters, the singular behavior in the vicinity of a continuous transition was characterized by a set of critical exponents

More information

f(t,h) = t 2 g f (h/t ), (3.2)

f(t,h) = t 2 g f (h/t ), (3.2) Chapter 3 The Scaling Hypothesis Previously, we found that singular behaviour in the vicinity of a second order critical point was characterised by a set of critical exponents {α,β,γ,δ, }. These power

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery Graviton Induced Nuclear Fission troug Electromagnetic Wave Flux Pil Russell, * Jerry Montgomery Nort Carolina Central University, Duram, NC 27707 Willowstick Tecnologies LLC, Draper, UT 84020 (Dated:

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

The structure of the atoms

The structure of the atoms Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C.

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare ttp://ocw.mit.edu 5.74 Introductory Quantum Mecanics II Spring 9 For information about citing tese materials or our Terms of Use, visit: ttp://ocw.mit.edu/terms. Andrei Tokmakoff, MIT

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e.,

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e., Quasiparticle decay rate at T = 0 in a clean Fermi Liquid. ω +ω Fermi Sea τ e e ( ) F ( ) log( ) Conclusions:. For d=3, from > e-e, i.e., tat te qusiparticles are well determined

More information

Chapter 2 Ising Model for Ferromagnetism

Chapter 2 Ising Model for Ferromagnetism Capter Ising Model for Ferromagnetism Abstract Tis capter presents te Ising model for ferromagnetism, wic is a standard simple model of a pase transition. Using te approximation of mean-field teory, te

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Part C : Quantum Physics

Part C : Quantum Physics Part C : Quantum Pysics 1 Particle-wave duality 1.1 Te Bor model for te atom We begin our discussion of quantum pysics by discussing an early idea for atomic structure, te Bor model. Wile tis relies on

More information

CHAPTER 4 QUANTUM PHYSICS

CHAPTER 4 QUANTUM PHYSICS CHAPTER 4 QUANTUM PHYSICS INTRODUCTION Newton s corpuscular teory of ligt fails to explain te penomena like interference, diffraction, polarization etc. Te wave teory of ligt wic was proposed by Huygen

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

10.1 VIBRATIONAL RELAXATION *

10.1 VIBRATIONAL RELAXATION * Andrei Tokmakoff, MIT Department of Cemistry, 3//009 p. 0-0. VIRATIONAL RELAXATION * Here we want to address ow a quantum mecanical vibration undergoes irreversible energy dissipation as a result of interactions

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Last lecture (#4): J vortex. J tr

Last lecture (#4): J vortex. J tr Last lecture (#4): We completed te discussion of te B-T pase diagram of type- and type- superconductors. n contrast to type-, te type- state as finite resistance unless vortices are pinned by defects.

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom Extracting Atomic and Molecular Parameters From te de Broglie Bor Model of te Atom Frank ioux Te 93 Bor model of te ydrogen atom was replaced by Scrödingerʹs wave mecanical model in 96. However, Borʹs

More information

Exercise 19 - OLD EXAM, FDTD

Exercise 19 - OLD EXAM, FDTD Exercise 19 - OLD EXAM, FDTD A 1D wave propagation may be considered by te coupled differential equations u x + a v t v x + b u t a) 2 points: Derive te decoupled differential equation and give c in terms

More information

3. Using your answers to the two previous questions, evaluate the Mratio

3. Using your answers to the two previous questions, evaluate the Mratio MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0219 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4 Distributed: Friday, April 2, 2004 Due: Friday,

More information

Continuous Stochastic Processes

Continuous Stochastic Processes Continuous Stocastic Processes Te term stocastic is often applied to penomena tat vary in time, wile te word random is reserved for penomena tat vary in space. Apart from tis distinction, te modelling

More information

Diffraction. S.M.Lea. Fall 1998

Diffraction. S.M.Lea. Fall 1998 Diffraction.M.Lea Fall 1998 Diffraction occurs wen EM waves approac an aperture (or an obstacle) wit dimension d > λ. We sall refer to te region containing te source of te waves as region I and te region

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

(a) What is the origin of the weak localization effect?

(a) What is the origin of the weak localization effect? 1 Problem 1: Weak Localization a) Wat is te origin of te weak localization effect? Weak localization arises from constructive quantum interference in a disordered solid. Tis gives rise to a quantum mecanical

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Problem Solving. Problem Solving Process

Problem Solving. Problem Solving Process Problem Solving One of te primary tasks for engineers is often solving problems. It is wat tey are, or sould be, good at. Solving engineering problems requires more tan just learning new terms, ideas and

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

More information

Problem Set 4: Whither, thou turbid wave SOLUTIONS

Problem Set 4: Whither, thou turbid wave SOLUTIONS PH 253 / LeClair Spring 2013 Problem Set 4: Witer, tou turbid wave SOLUTIONS Question zero is probably were te name of te problem set came from: Witer, tou turbid wave? It is from a Longfellow poem, Te

More information

arxiv:solv-int/ v1 18 Oct 1999

arxiv:solv-int/ v1 18 Oct 1999 January 5 08 N = Hamiltonians wit sl) coalgebra symmetry and teir integrable deformations arxiv:solv-int/990009v 8 Oct 999 ANGEL BALLESTEROS Departamento de Física Universidad de Burgos Pa. Misael Bañuelos

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 May 2004

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 May 2004 Quantum renormalization group of XYZ model in a transverse magnetic field A. Langari Institute for Advanced Studies in Basic Sciences, Zanjan 595-59, Iran Max-Planck-Institut für Pysik komplexer Systeme,

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

Lecture: Experimental Solid State Physics Today s Outline

Lecture: Experimental Solid State Physics Today s Outline Lecture: Experimental Solid State Pysics Today s Outline Te quantum caracter of particles : Wave-Particles dualism Heisenberg s uncertainty relation Te quantum structure of electrons in atoms Wave-particle

More information

UNIT-1 MODERN PHYSICS

UNIT-1 MODERN PHYSICS UNIT- MODERN PHYSICS Introduction to blackbody radiation spectrum: A body wic absorbs all radiation tat is incident on it is called a perfect blackbody. Wen radiation allowed to fall on suc a body, it

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Phase Transitions and Renormalization:

Phase Transitions and Renormalization: Phase Transitions and Renormalization: Using quantum techniques to understand critical phenomena. Sean Pohorence Department of Applied Mathematics and Theoretical Physics University of Cambridge CAPS 2013

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Quantization of electrical conductance

Quantization of electrical conductance 1 Introduction Quantization of electrical conductance Te resistance of a wire in te classical Drude model of metal conduction is given by RR = ρρρρ AA, were ρρ, AA and ll are te conductivity of te material,

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

2.2 WAVE AND PARTICLE DUALITY OF RADIATION

2.2 WAVE AND PARTICLE DUALITY OF RADIATION Quantum Mecanics.1 INTRODUCTION Te motion of particles wic can be observed directly or troug microscope can be explained by classical mecanics. But wen te penomena like potoelectric effect, X-rays, ultraviolet

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1 r nucleus orbital electron wave λ /7/008 Quantum ( F.Robilliard) 1 Wat is a Quantum? A quantum is a discrete amount of some quantity. For example, an atom is a mass quantum of a cemical element te mass

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Nuclear electromagnetic charge and current operators in ChEFT

Nuclear electromagnetic charge and current operators in ChEFT Nuclear electromagnetic carge and current operators in CEFT Luca Girlanda Università del Salento & INFN Lecce collaborators: Saori Pastore, Bob Wiringa (ANL), Rocco Sciavilla, (Jlab), Laura Marcucci, Alejandro

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Test on Nuclear Physics

Test on Nuclear Physics Test on Nuclear Pysics Examination Time - 40 minutes Answer all questions in te spaces provided Tis wole test involves an imaginary element called Bedlum wic as te isotope notation sown below: 47 11 Bd

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

A classical particle with spin realized

A classical particle with spin realized A classical particle wit spin realized by reduction of a nonlinear nonolonomic constraint R. Cusman D. Kemppainen y and J. Sniatycki y Abstract 1 In tis paper we describe te motion of a nonlinear nonolonomically

More information

arxiv: v1 [quant-ph] 29 Nov 2018

arxiv: v1 [quant-ph] 29 Nov 2018 Scwinger s Metod for Non Relativistic Feynman Propogators in Momentum Space arxiv:1811.188v1 [quant-p] 9 Nov 018 Oem Trivedi November 30, 018 Abstract In tis paper, we present a formulation of Scwinger

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information