SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 In the format provided by the authors and unedited. Room temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures: Supplementary Information Olivier Boulle, Jan Vogel, Hongxin Yang, Stefania Pizzini, Dayane de Souza Chaves, Andrea Locatelli, Tevfik Onur Menteş, Alessandro Sala, Liliana D. Buda-Prejbeanu, Olivier Klein, Mohamed Belmeguenai, Yves Roussigné, Andrey Stashkevich, Salim Mourad Chérif, Lucia Aballe, Michael Foerster, Mairbek Chshiev, Stéphane Auffret, Ioan Mihai Miron, Gilles Gaudin 1 Sample preparation and magnetic characterization The Ta(3)/Pt(3)/Co(0.5-1)/MgO x /Ta(2) (thickness in nm) film was deposited by magnetron sputtering on a 100 mm high resistivity Si wafer and was then annealed for 1.5h at 250 C under vacuum and under an in-plane magnetic field of µ 0 H = 240 mt. The Co layer was deposited using a wedge deposition, so that its thickness varies between approximately 0.5 and 1.1 nm across the sample. The nominal thickness of the studied film is t =0.98 nm (except in the XCMD-PEEM experiments presented in Fig. 5 of the main text where t=1.08 nm). The magnetic moment per unit area µ S = (1.529 ± 0.03) 10 3 A was measured by SQUID magnetometry. The effective anisotropy field µ 0 H k = 200 mt was measured by Kerr effect microscopy experiments in the presence of an external in-plane magnetic field. To evaluate the value of D from the BLS experiments, due to the uncertainty in the magnetic thickness resulting from the wedge deposition of the Co and the magnetic polarisation of the Pt 1, the value of the saturation magnetisation M s was chosen equal to the bulk value M s = A/m. Previous measurements we carried out on Pt(3 nm)/co (x nm)/x/pt where X =Cu, Pt, Au, have indeed shown that M s is close to the bulk value for a thickness x larger than 1 nm, when taking into account the presence of a dead layer 2. With this value of M s, an effective thickness of Co of t =1.06 nm is obtained from the magnetic moment per unit area and D =2.05 ± 0.3 mj/m 2 (see below). 1 NATURE NANOTECHNOLOGY 1

2 These values of M s, D and t were used for the micromagnetic simulations. Note that the relevant parameters in the micromagnetic simulations are the magnetic moment per unit area µ S = M s t as well as the interfacial DMI parameter D s = Dt =2.17 ± 0.14 pj/m, which have been measured experimentally using SQUID magnetometry and Brillouin Light Scattering experiments. 2 Brillouin Light Scattering experiments To quantify the amplitude of the DMI in our films, we measured the frequency shift of oppositely propagating spin waves using spin wave spectroscopy experiments?, 3 7. The idea of the measurement is the following: When the magnetisation is pulled in the plane by an external magnetic field H y, the D vector is oriented along y for spin waves propagating along the x axis (see Fig. S3(a)). Thus, at a given time t, when moving along the x axis, the magnetisation rotates anticlockwise around the D vector for spin waves with k x < 0 and clockwise for k x > 0. This leads to an energy shift for spin waves with opposite k x vector due to the DMI and the corresponding frequency shift writes f(k x )=f(k x ) f( k x )=2γk x D/(πM s ). To measure f, we have carried out spin wave spectroscopy experiments using the Brillouin Light Scattering technique in a backscattering geometry 7. A spin wave spectrum is shown on Fig. S3(b) (red dots) for an in-plane magnetic field of 0.7 T and k x =4.1µm 1. The Stokes (S) and Anti - Stokes (AS) peaks are observed, corresponding to ±k x. The blue line is a Lorentzian fit of the experimental data inverted with respect to f =0, which shows that the Stokes peak has a frequency different to the Anti-Stokes peak, as is expected in the presence of DMI. The shift in frequency f = f S f AS scales linearly with k x (Fig. S3(c)), which allows to extract a DM parameter D =2.05 ± 0.3 mj/m 2. Note that the sign of f is consistent with the sign of D and the left handedness of the Néel DW we observe experimentally. As D is expected to be inversely proportional to the film thickness t 7, one can also evaluate a related interfacial DM parameter D s = Dt =2.17 ± 0.14 pj/m. 2 NATURE NANOTECHNOLOGY 2

3 b Intensity (a.u) f c f (GHz) Frequency (GHz) f AS k x (µm -1 ) f S Frequency (GHz) k x (µm -1 ) Figure S1: Brillouin Light Scattering experiments (a) Principle of the measurement. At a given time t, when moving along x, the magnetisation rotates clockwise (/counterclockwise) around the D vector for spin waves propagating along x (-x), which leads to a different DM energy. (b) BLS spectra for an in-plane magnetic field H=0.7 T and k x = 4.1µm 1. The red squares are experimental data whereas the red lines are Lorentzian fits. The blue line is a Lorentzian fit of the experimental data inverted with respect to f =0. (c) f = f S f AS as a function k x for H =0.7T, where f S and f AS are respectively the Stokes and Anti-Stokes resonance frequency. Inset: f S and f AS as a function k x. 3 Fitting procedure We discuss in this section the fitting procedure of the linescan of the dichroic contrast of Fig. 1(a) (white dotted line) of the article. This linescan crosses two consecutive up/down - down/up domain walls normally to their surface. We considered the following standard Néel domain wall profile for the magnetisation angle θ : θ = ±2 arctan[exp(x/ )], where is the DW width parameter. The dichroic contrast C is proportional to the projection of the magnetisation along the X-ray beam direction, which impinges at an angle α = 16 on the sample surface plane. The in-plane direction 3 NATURE NANOTECHNOLOGY 3

4 a Magnetic contrast (a.u) Experiments =12 nm =14 nm =16 nm =18 nm =20 nm = 22 nm Distance (nm) b (nm) (nm) Figure S2: (a) Dark blue line : Linescan of the dichroic contrast of Fig. 1(b) of the main article. The other colored lines are fits using a Gaussian convoluted Néel chiral DW profile assuming a fixed value for the standard deviation σ. (b) Dependence of the domain wall width π deduced from the fits on σ. The error bars show the 95% confidence interval. of the X-ray beam being here perpendicular to the DW surface C m z sin α + m x cos α, where m z = cos θ(x) and m x = ± sin θ(x) for a chiral Néel domain wall (the axis x is normal to the DW surface). To take into account the finite lateral spatial resolution of the technique, C was convoluted with a Gaussian function with standard deviation σ. The fitting curve shown in Fig.1(b) of the article was obtained with and σ chosen as free parameters. This leads to a DW width π = 29.5 ± 4 nm and 2σ = 40 nm. The error in the DW width is estimated from the 95% confidence interval of the fit as well as the error in the angle α of 1. We show on Fig. S2(a) the fitting curves assuming σ is a fixed parameter with values ranging between 12 and 22 nm. One can see that the effect of the fit is a modulation of the height of the dip/peak due to the DW signal, as well as a slight change in the slope of the signal at the DW position. This leads to a weak change in the DW width when σ varies, as can be seen on Fig. S2(b). For the fitting of the linescan of the skyrmion shown in Fig.3 of the article, a value 2σ = 4 NATURE NANOTECHNOLOGY 4

5 a Contrast (a.u) Experiments =12 nm =14 nm = 16 nm = 18 nm = 20 nm = 22 nm = 24 nm Diameter (nm) b Distance (nm) (nm) Figure S3: (a) Dark blue line : Linescan of the dichroic contrast across the skyrmion of Fig. 3 of the main article. The other colored lines are fits using a Gaussian convoluted Néel chiral DW profile assuming a fixed values for the standard deviation σ. (b) Dependence of the skyrmion diameter deduced from the fits as a function of σ. The error bars show the 95% confidence interval. 28 nm was used. This value was deduced from a linescan of the topographic image of the dot, which was fitted with an error function. Note that the spatial resolution may vary from one image to another due to differences in the focus and astigmatism correction settings as well as the drift compensation. To estimate the influence of the resolution on the fit, we fitted this linescan assuming different values of σ. We show on Fig. S3(a) the fitting curves when σ varies and on Fig. S3(b), the deduced diameter. The quality of the fit is still good for higher values of σ and the value of the diameter changes little when σ varies. 4 Larger dots Square dots with lateral sides of 1 µm were also observed using XMCD-PEEM (see Fig. S4(ab)). We did not observe single isolated skyrmions in these dots but larger distorted bubbles (see Fig. S4(a)) or worm like magnetisation patterns (see Fig. S4(b)). Micromagnetic simulations predict that the skyrmion becomes unstable above lateral dimensions of about 1.2 µm, leading to worm like pattern (see Fig. S4(c)). These results underline the important role of the confinement 5 NATURE NANOTECHNOLOGY 5

6 a b c hν hν mz Figure S4: (a-b) XMCD-PEEM image of magnetisation patterns observed in 1 µm long squared dots at zero applied magnetic field. The white arrow indicates the in-plane direction of the X-ray beam. (c) magnetisation pattern in a 1.2 µm square dot obtained by micromagnetic simulation. This state was obtained after relaxation from an initial magnetic state composed of a 350 nm diameter skyrmion. to stabilize single isolated skyrmions at zero external magnetic field in this material. 5 Ab-initio calculations The Vienna ab initio simulation package (VASP) was used in our calculations with electron-core interactions described by the projector augmented wave method for the pseudopotentials, and the exchange correlation energy calculated within the generalized gradient approximation of the Perdew- Burke-Ernzerhof (PBE) form 8, 9. The cutoff energies for the plane wave basis set used to expand the Kohn-Sham orbitals were chosen to be 320 ev for all the calculations. The Monckhorst-Pack scheme was used for the Γ-centred k-point sampling. In order to extract the DMI vector, calculations were performed in three steps. First, structural relaxations were performed until the forces become smaller than ev/å for determining the most stable interfacial geometries. For DMI calculations, one to five monolayers of Co were stacked between several layers of Pt and MgO films in a 4 1 surface unit cell with π/2 spin rotations along (111) direction (Fig. S5). The 6 NATURE NANOTECHNOLOGY 6

7 oxygen bonds on the top layer have been passivated. Next, the Kohn-Sham equations were solved, with no spin-orbit coupling, to find out the charge distribution of the systems ground state. Finally, the spin-orbit coupling was included and the self-consistent total energy of the system was determined as a function of the orientation of the magnetic moments which were controlled by using the constrained method implemented in VASP. This method has been used for DMI calculations in bulk frustrated systems and insulating chiral-lattice magnets 10, 11 and was adapted here to the case of interfaces 12. Figure S5: Crystalline structure of the Pt[3]/Co[3]/MgO multilayer. 6 References 1. Grange, W. et al. Magnetocrystalline anisotropy in (111) CoPt 3 thin films probed by x-ray magnetic circular dichroism. Physical Review B 58, 6298 (1998). 2. Bandiera, S., Sousa, R., Rodmacq, B. & Dieny, B. Asymmetric Interfacial Perpendicular Magnetic Anisotropy in Pt/Co/Pt Trilayers. IEEE Magnetics Letters 2, (2011). 7 NATURE NANOTECHNOLOGY 7

8 3. Moon, J.-H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, (2013). 4. Di, K. et al. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathinpt/cofeb film. Appl. Phys. Lett. 106, (2015). 5. Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Spectroscopic confirmation of linear relation between Heisenberg- and interfacial Dzyaloshinskii-Moriya-exchange in polycrystalline metal films. ArXiv Cond-Mat (2014). 6. Stashkevich, A. A. et al. Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction. Physical Review B 91, (2015). 7. Belmeguenai, M. et al. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, (2015). 8. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, (1993). 9. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, (1996). 10. Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H. & Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, (2011). 11. Yang, J. H. et al. Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu 2 OSeO 3. Phys. Rev. Lett. 109, (2012). 12. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, (2015). 8 NATURE NANOTECHNOLOGY 8

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spin-orbit torque magnetization switching controlled by geometry C.K.Safeer, Emilie Jué, Alexandre Lopez, Liliana Buda-Prejbeanu, Stéphane Auffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, Gilles

More information

arxiv: v1 [cond-mat.mtrl-sci] 10 Jan 2016

arxiv: v1 [cond-mat.mtrl-sci] 10 Jan 2016 Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures arxiv:161.2278v1 [cond-mat.mtrl-sci] 1 Jan 216 Olivier Boulle, 1,2,3 Jan Vogel, 4,5 Hongxin Yang, 1,2,3 Stefania Pizzini,

More information

Wide-Range Probing of Dzyaloshinskii Moriya Interaction

Wide-Range Probing of Dzyaloshinskii Moriya Interaction Wide-Range Probing of Dzyaloshinskii Moriya Interaction Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of Physics and Institute of Applied Physics,

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state acquired at a given out-ofplane magnetic field. Bright and

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Bloch point formation during skyrmion annihilation. Skyrmion number in layers with different z-coordinate during the annihilation of a skyrmion. As the skyrmion

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Skyrmions in symmetric bilayers

Skyrmions in symmetric bilayers Skyrmions in symmetric bilayers A. Hrabec, J. Sampaio, J.Miltat, A.Thiaville, S. Rohart Lab. Physique des Solides, Univ. Paris-Sud, CNRS, 91405 Orsay, France I. Gross, W. Akhtar, V. Jacques Lab. Charles

More information

Cedex, France. 1 Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

Cedex, France. 1 Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA Phase Transitions of Chiral Spin Textures via Dipolar Coupling in Multilayered Films with Interfacial Dzyaloshinskii-Moriya interactions Javier F. Pulecio 1,2, Aleš Hrabec 3,4, Katharina Zeissler 3, Yimei

More information

arxiv: v1 [cond-mat.mtrl-sci] 21 Aug 2017

arxiv: v1 [cond-mat.mtrl-sci] 21 Aug 2017 Halbach arrays at the nanoscale from chiral spin textures Miguel A. Marioni, Marcos Penedo, Mirko Baćani, Johannes Schwenk, and Hans J. Hug Empa, Swiss Federal Laboratories for Materials Science and Technology,

More information

Magnetic bubblecade memory based on chiral domain walls

Magnetic bubblecade memory based on chiral domain walls Magnetic bubblecade memory based on chiral domain walls Kyoung-Woong Moon, Duck-Ho Kim, Sang-Cheol Yoo, Soong-Geun Je, Byong Sun Chun, Wondong Kim, Byoung-Chul Min, Chanyong Hwang & Sug-Bong Choe 1. Sample

More information

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Hans T. Nembach, Justin M. Shaw, Mathias Weiler*, Emilie Jué and Thomas J. Silva Electromagnetics

More information

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Methods Materials Synthesis The In 4 Se 3-δ crystal ingots were grown by the Bridgeman method. The In and Se elements were placed in an evacuated quartz ampoule with an excess of In (5-10

More information

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes Supporting Information for Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-dependent Oxidation of Pt 3 Co Nanoparticles via in-situ Transmission Electron Microscopy Sheng

More information

Direct observation of the skyrmion Hall effect

Direct observation of the skyrmion Hall effect SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3883 Direct observation of the skyrmion Hall effect Wanjun Jiang 1,2,3, *,, Xichao Zhang 4,*, Guoqiang Yu 5, Wei Zhang 1, Xiao Wang 6, M. Benjamin Jungfleisch

More information

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Yan Chen, 1,2,,$, * Shengxi Huang, 3,6, Xiang Ji, 2 Kiran Adepalli, 2 Kedi Yin, 8 Xi Ling, 3,9 Xinwei

More information

Supporting Information

Supporting Information Supporting Information The Origin of Active Oxygen in a Ternary CuO x /Co 3 O 4 -CeO Catalyst for CO Oxidation Zhigang Liu, *, Zili Wu, *, Xihong Peng, ++ Andrew Binder, Songhai Chai, Sheng Dai *,, School

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

How to measure the local Dzyaloshinskii Moriya Interaction in Skyrmion Thin Film Multilayers

How to measure the local Dzyaloshinskii Moriya Interaction in Skyrmion Thin Film Multilayers How to measure the local Dzyaloshinskii Moriya Interaction in Skyrmion Thin Film Multilayers Mirko Baćani, 1 Miguel A. Marioni, 1,* Johannes Schwenk, 1,2 Hans J. Hug 1,2 1 Empa, Swiss Federal Laboratories

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields L. Schmidt, J. Hagemeister, P.-J. Hsu, A. Kubetzka, K. von Bergmann and R. Wiesendanger Department of Physics, University

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries Supplementary Information [100] directed Cu-doped h-coo Nanorods: Elucidation of Growth Mechanism and Application to Lithium-Ion Batteries Ki Min Nam, Young Cheol Choi, Sung Chul Jung, Yong-Il Kim, Mi

More information

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda MINECO ANR ANR MIUR

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda MINECO ANR ANR MIUR Joint Transnational Call 2015 Tailoring Spin-Orbit effects in for Spin-Orbitronic applications Rodolfo Miranda UMPHY CNRS-THALES IPM srl MINECO ANR ANR MIUR 1 Scientific background, key challenges and

More information

Structure and Formation Mechanism of Black TiO 2 Nanoparticles

Structure and Formation Mechanism of Black TiO 2 Nanoparticles Structure and Formation Mechanism of Black TiO 2 Nanoparticles Mengkun Tian 1, Masoud Mahjouri-Samani 2, Gyula Eres 3*, Ritesh Sachan 3, Mina Yoon 2, Matthew F. Chisholm 3, Kai Wang 2, Alexander A. Puretzky

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) Materials and Methods: SUPPLEMENTARY INFORMATION Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) All the crystals, with nominal composition FeTe0.5Se0.5, used in

More information

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Anjan Soumyanarayanan Panagopoulos Group, NTU, Singapore Data Storage Institute, A*STAR, Singapore A.S. et al., arxiv:1606.06034 (2016) Collaborators

More information

Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall

Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall creep and flow regimes Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Jun 2017

arxiv: v1 [cond-mat.mtrl-sci] 7 Jun 2017 Making the Dzyaloshinskii-Moriya interaction visible arxiv:176.58v1 [cond-mat.mtrl-sci] 7 Jun 17 A. Hrabec, 1 M. Belmeguenai, A. Stashkevich, S.M. Chérif, S. Rohart, 1 Y. Roussigné, and A. Thiaville 1

More information

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D.

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D. Supporting Information The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang,

More information

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Molybdenum compound MoP as an efficient electrocatalyst for hydrogen evolution

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

Tuning the Dzyaloshinskii Moriya Interaction in Pt/Co/MgO heterostructures through MgO thickness

Tuning the Dzyaloshinskii Moriya Interaction in Pt/Co/MgO heterostructures through MgO thickness Tuning the Dzyaloshinskii Moriya Interaction in Pt/Co/MgO heterostructures through MgO thickness Anni Cao, a, 1) Xueying Zhang, abc, 1) Bert Koopmans, d Shouzhong Peng, a Yu Zhang, ab Zilu Wang, a Shaohua

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Supplementary Information Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Co-Ni multilayers Jiawei Yu, Xuepeng Qiu, Yang Wu, Jungbum Yoon, Praveen Deorani, Jean Mourad Besbas,

More information

Supporting Information

Supporting Information Supporting Information A Porous Two-Dimensional Monolayer Metal-Organic Framework Material and its Use for the Size-Selective Separation of Nanoparticles Yi Jiang, 1 Gyeong Hee Ryu, 1, 3 Se Hun Joo, 4

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2045 Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions Stefan Heinze 1,*, Kirsten von Bergmann 2,*, Matthias Menzel 2,*, Jens Brede 2, André

More information

Defects in TiO 2 Crystals

Defects in TiO 2 Crystals , March 13-15, 2013, Hong Kong Defects in TiO 2 Crystals Richard Rivera, Arvids Stashans 1 Abstract-TiO 2 crystals, anatase and rutile, have been studied using Density Functional Theory (DFT) and the Generalized

More information

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT Supporting Information Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity Minhua Shao,, * Amra Peles,, * Krista Shoemaker UTC Power, South Windsor, CT

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires S. Jaiswal 1,2, K. Litzius 1,3,4, I. Lemesh 5, F. Büttner 5, S. Finizio 6,J.

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

Anion-redox nanolithia cathodes for Li-ion batteries

Anion-redox nanolithia cathodes for Li-ion batteries ARTICLE NUMBER: 16111 Anion-redox nanolithia cathodes for Li-ion batteries Zhi Zhu 1,2, Akihiro Kushima 1,2, Zongyou Yin 1,2, Lu Qi 3 *, Khalil Amine 4, Jun Lu 4 * and Ju Li 1,2 * 1 Department of Nuclear

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/325/5948/1670/dc1 Supporting Online Material for Coordinatively Unsaturated Al 3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-al 2 O 3 Ja Hun

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Supporting Information. for. Length Dependence. Micro-Nano Biomedical Instruments, Southeast University, Nanjing, , P. R.

Supporting Information. for. Length Dependence. Micro-Nano Biomedical Instruments, Southeast University, Nanjing, , P. R. Supporting Information for Thermal Transport in Quasi-1D van der Waals Crystal Ta 2 Pd 3 Se 8 Nanowires: Size and Length Dependence Qian Zhang, 1, Chenhan Liu, 2, Xue Liu, 3, Jinyu Liu, 3, Zhiguang Cui,

More information

arxiv: v1 [cond-mat.mes-hall] 12 Oct 2018

arxiv: v1 [cond-mat.mes-hall] 12 Oct 2018 High resolution dynamic imaging of the delay- and tilt-free motion of Néel domain walls in perpendicularly magnetized superlattices S. Finizio, 1, S. Wintz, 1, 2 K. Zeissler, 3 A. V. Sadovnikov, 4, 5 S.

More information

Puckering and spin orbit interaction in nano-slabs

Puckering and spin orbit interaction in nano-slabs Electronic structure of monolayers of group V atoms: Puckering and spin orbit interaction in nano-slabs Dat T. Do* and Subhendra D. Mahanti* Department of Physics and Astronomy, Michigan State University,

More information

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging X. P. Xie, X. W. Zhao, J. W. Knepper, F. Y. Yang, and R. Sooryakumar Department of

More information

arxiv: v2 [cond-mat.mtrl-sci] 13 Apr 2018

arxiv: v2 [cond-mat.mtrl-sci] 13 Apr 2018 Micromagnetics of anti-skyrmions in ultrathin films arxiv:1712.04743v2 [cond-mat.mtrl-sci] 13 Apr 2018 Lorenzo Camosi, 1, Nicolas Rougemaille, 1 Olivier Fruchart, 2 Jan Vogel, 1, and Stanislas Rohart 3

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT Spontaneous Oxidation of Ni Nanoclusters on MgO Monolayers Induced by Segregation of Interfacial Oxygen. M. Smerieri 1, J. Pal 1,2, L. Savio 1*, L. Vattuone 1,2, R. Ferrando 1,3, S. Tosoni 4, L. Giordano

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

arxiv: v1 [cond-mat.mes-hall] 6 Dec 2018

arxiv: v1 [cond-mat.mes-hall] 6 Dec 2018 Multistep Bloch-line-mediated Walker breakdown in ferromagnetic strips Johanna Hütner 1,2, Touko Herranen 1, and Lasse Laurson 1,3 1 Helsinki Institute of Physics and Department of Applied Physics, Aalto

More information

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting information Origins of High Electrolyte-Electrode Interfacial Resistances

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L a YIG CoO Pt φ= o φ=9 o I 1 I 3 H X-ray E φ XAS (a.u.) 778 779 11 112 111 775 78 785 Photon energy (ev) c.1 T=78 K T=23 K d.2 R L3 ΔR L3.1 ΔR L3 -.1 3 6 φ (deg.) 9 1 2 3 T (K) Supplementary Figure 1: a.

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Facet engineered Ag 3 PO 4 for efficient water photooxidation

Facet engineered Ag 3 PO 4 for efficient water photooxidation Supporting Information Facet engineered Ag 3 PO 4 for efficient water photooxidation David James Martin, Naoto Umezawa, Xiaowei Chen, Jinhua Ye and Junwang Tang* This file includes the following experimental/theoretical

More information

voltage measurement for spin-orbit torques"

voltage measurement for spin-orbit torques SUPPLEMENTARY for article "Accurate analysis for harmonic Hall voltage measurement for spin-orbit torques" Seok Jin Yun, 1 Eun-Sang Park, 2 Kyung-Jin Lee, 1,2 and Sang Ho Lim 1,* 1 Department of Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphys436 Non-adiabatic spin-torques in narrow magnetic domain walls C. Burrowes,2, A. P. Mihai 3,4, D. Ravelosona,2, J.-V. Kim,2, C. Chappert,2, L. Vila 3,4, A. Marty

More information

Significant Dzyaloshinskii-Moriya Interaction at Graphene-Ferromagnet. Interfaces due to Rashba-effect

Significant Dzyaloshinskii-Moriya Interaction at Graphene-Ferromagnet. Interfaces due to Rashba-effect Significant Dzyaloshinskii-Moriya Interaction at Graphene-Ferromagnet Interfaces due to Rashba-effect Hongxin Yang 1,2*,#, Gong Chen 3*,#, Alexandre A.C. Cotta 3,4,5, Alpha T. N'Diaye 3, Sergey A. Nikolaev

More information

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Supplementary Information Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Dominik Kurzydłowski, *a Zoran Mazej, b Zvonko Jagličić, c Yaroslav Filinchuk

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT ASSOCIATED CONTENT Supporting Information Gold Cluster-CeO 2 Nanostructured Hybrid Architectures as Catalysts for Selective Oxidation of Inert Hydrocarbons Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang,

More information

G12 8QQ, United Kingdom. France

G12 8QQ, United Kingdom. France Quantitative imaging of hybrid chiral spin textures in magnetic multilayer systems by Lorentz microscopy K. Fallon 1, S. McVitie 1, W. Legrand 2, F. Ajejas 2, D. Maccariello 2, S. Collin 2, V. Cros 2,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures a b A B Supplementary Figure S1: No distortion observed in the graphite lattice. (a) Drift corrected and reorientated topographic STM image recorded at +300

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

REPORT ON D1.1 (LEAD: PSI)

REPORT ON D1.1 (LEAD: PSI) MAGICSKY GRANT AGREEMENT NO 665095 REPORT ON D1.1 (LEAD: PSI) Report on imaging of individual skyrmions of MML systems made by different techniques Vincent CROS, Roland Wiesendanger, Christopher Marrows,

More information

on Si substrates, using Pt, W, Ir and MgO buffer or/and capping layers. Vibrating sample

on Si substrates, using Pt, W, Ir and MgO buffer or/and capping layers. Vibrating sample Investigation of the thickness-dependence of the Dzyaloshinskii-Moriya interaction in Co 2 FeAl ultrathin films: effects of the annealing temperature and the heavy metal material M. Belmeguenai 1,*, Y.

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications

Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications www.nature.com/scientificreports Received: 14 December 2017 Accepted: 20 February 2018 Published: xx xx xxxx OPEN Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications

More information

References in the Supporting Information:

References in the Supporting Information: Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning Supporting

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. X-ray diffraction patterns of (a) pure LDH, (b) AuCl 4 ion-exchanged LDH and (c) the Au/LDH hybrid catalyst. The refined cell parameters for pure, ion-exchanged,

More information

Construction of Two Dimensional Chiral Networks

Construction of Two Dimensional Chiral Networks Supporting Information Construction of Two Dimensional Chiral Networks through Atomic Bromine on Surfaces Jianchen Lu, De-Liang Bao, Huanli Dong, Kai Qian, Shuai Zhang, Jie Liu, Yanfang Zhang, Xiao Lin

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the spin-dependent Peltier effect J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene & B. J. van Wees A. Calculation of the temperature gradient We first derive an expression for

More information