Constructing Number Systems in Coq

Size: px
Start display at page:

Download "Constructing Number Systems in Coq"

Transcription

1 April 29, 2011

2 Table of contents 1 2 Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts 3 Definition Order Multiplication Addition 4

3 of my thesis Elegant construction of number systems in Coq N + Q + R + R Discuss the necessity of additional assumptions Excluded middle XM - R + Extensionality PE, FE, CE - R + Proof irrelevance PI - R + Strong excluded middle SXM - R

4 of my thesis Elegant construction of number systems in Coq N + Q + R + R Discuss the necessity of additional assumptions Excluded middle XM - R + Extensionality PE, FE, CE - R + Proof irrelevance PI - R + Strong excluded middle SXM - R

5 Landau s Grundlagen der Analysis Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Natural Numbers, Peano Axioms Construction of Fractions, Rational, Real and Complex Numbers Basic theorems and their proofs (about 300)

6 Natural Numbers Æ Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Æ = {1,2,3...} Inductive nat : Type := O : nat S : nat -> nat O as origin or one S as the successor function Coercion bool Prop, (leq : nat nat bool)

7 Fractions F Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts F = { x 1 x 2 : x 1,x 2 Æ} Definition (Equivalence of fractions) x 1,x 2,y 1,y 2 Æ : Definition (Order of fractions) x 1,x 2,y 1,y 2 Æ : x 1 x 2 y 1 y 2 : x 1 y 2 = y 1 x 2 x1 x2 < y1 y2 : x 1 y 2 < y 1 x 2

8 Positive Rational Numbers Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Definition (Positive Rational Numbers) The (positive) Rational Numbers É + are defined as F modulo : É + := F/ In other words: Let X É + : x y. x X (y X x y)

9 Reducing a fraction Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Let red : frac frac be the function that reduces a fraction Property (1) x. x red x Property (2) x y. x y red x = red y

10 Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Definition (Positive Rational Numbers) The (positive) Rational Numbers É + are defined as: É + := {f F red f = f} Avoid the use of FE The theorems about the rationals reduce to the theorems about fractions.

11 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Different possibilities to define red (gcd, first) Prove the 2 properties of red Property (1) x. x red x Property (2) x y. x y red x = red y

12 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Preliminary note Function first : (nat bool) nat nat yields to a set p and an upper bound x for the minimum the least element in p first p x = minp We can represent y x. p y having type bool using first: p(first p x)

13 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define N x := { y 1 y 2. x 1 x 2 y 1 y 2 } rednum x := minn x D x := { y 2 x 1 x 2 rednum x y 2 } redden x := mind x

14 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define N x := { y 1 y 2. x 1 x 2 y 1 y 2 } rednum x := min N x minn x := first N x x 1 N x := { y 1 y 2 y 1 x 2. x 1 x 2 y 1 y 2 }

15 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define N x := { y 1 y 2. x 1 x 2 y 1 y 2 } rednum x := min N x minn x := first N x x 1 N x := { y 1 y 2 y 1 x 2. x 1 x 2 y 1 y 2 }

16 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define N x := { y 1 y 2. x 1 x 2 y 1 y 2 } rednum x := min N x minn x := first N x x 1 N x := { y 1 y 2 y 1 x 2. x 1 x 2 y 1 y 2 }

17 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define D x := { y 2 x 1 x 2 rednum x y 2 } redden x := mind x mind x := first D x (rednum x x 2 )

18 Defining red Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Given a fraction x = x 1 x 2 we define D x := { y 2 x 1 x 2 rednum x y 2 } redden x := mind x mind x := first D x (rednum x x 2 )

19 Dedekind Cuts Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Definition (Dedekind Cut) A Dedekind Cut Θ is a set of positive Rational Numbers with the following properties: X. X Θ X. X / Θ X Y. Y Θ X < Y X Θ X. X Θ Y. X < Y Y Θ Intuition: Θ = (0,θ) É where θ Ê +.

20 Dedekind Cuts Landau s Grundlagen der Analysis Natural Numbers Æ Fractions Positive Rational Numbers Dedekind Cuts Definition (Cut Extensionality) Two Cuts Θ and Ξ are equal if they contain the same rational numbers. That is, CE := Θ Ξ. ( X. X Θ X Ξ) Θ = Ξ We can prove PE FE CE or SE CE. Note PE PI. Definition (Order) Given two Cuts Θ and Ξ we define Θ < Ξ : Θ Ξ Z. Z Ξ Z / Θ

21 Definition Definition Order Multiplication Addition Inductive real : Type := Z : real P : cut -> real N : cut -> real.

22 Order of Definition Order Multiplication Addition N Θ < N Ξ := Ξ < Θ N Θ < P Ξ := True. P Θ < Z := False P Θ < P Ξ := Θ < Ξ

23 Multiplication Definition Order Multiplication Addition Z η := Z ǫ Z := Z P Θ P Ξ := P (Θ Ξ) N Θ N Ξ := P (Θ Ξ) N Θ P Ξ := N (Θ Ξ) P Θ N Ξ := N (Θ Ξ) if ǫ Z

24 Addition Definition Order Multiplication Addition ǫ+z := ǫ Z +η := η N Θ+N Ξ := N (Θ+Ξ) P Θ+P Ξ := P (Θ+Ξ) P Θ+N Ξ := Z P Θ+N Ξ := N (Ξ Θ) P Θ+N Ξ := P (Θ Ξ) N Θ+P Ξ := P Ξ+N Θ if η Z if Θ = Ξ if Θ < Ξ if Θ > Ξ

25 Addition Definition Order Multiplication Addition ǫ+z := ǫ Z +η := η N Θ+N Ξ := N (Θ+Ξ) P Θ+P Ξ := P (Θ+Ξ) P Θ+N Ξ := Z P Θ+N Ξ := N (Ξ Θ) P Θ+N Ξ := P (Θ Ξ) N Θ+P Ξ := P Ξ+N Θ if η Z if Θ = Ξ if Θ < Ξ if Θ > Ξ

26 Strong Excluded Middle Definition Order Multiplication Addition XM := X : Prop. X X SXM := X : Prop. { X }+{ X } STR := Θ Ξ. { Θ < Ξ }+{ Θ = Ξ }+{ Ξ < Θ } SXM STR

27 Strong Excluded Middle Definition Order Multiplication Addition XM := X : Prop. X X SXM := X : Prop. { X }+{ X } STR := Θ Ξ. { Θ < Ξ }+{ Θ = Ξ }+{ Ξ < Θ } SXM STR

28 Definition Order Multiplication Addition Given two subsets P and Q of the real numbers we define P < Q := ǫ η. ǫ P η Q ǫ < η P := ǫ. ǫ P P Q = R := ǫ. ǫ P ǫ Q ub P η := ǫ P. ǫ η

29 Definition Order Multiplication Addition Theorem (Supremum Property) Let P be a nonempty subset of the real numbers that is bounded from above. That is, P and η. ub P η Then there is a (unique) least upper bound ζ. This is a real number ζ with the following property: ub P ζ and η. ub P η ζ η

30 Definition Order Multiplication Addition Theorem (Dedekind s Fundamental Theorem) Let P and Q be given with P < Q, P, Q, and P Q = R. Then there is a unique ζ such that ǫ.(ǫ < ζ ǫ P) (ζ < ǫ ǫ Q)

31 Definition Order Multiplication Addition Theorem (Fundamental Theorem) Let P and Q be given with P < Q, P and Q. Then there is a ζ such that ǫ.(ǫ < ζ ǫ / Q) (ζ < ǫ ǫ / P) If P Q = R, we can prove Dedekind s Fundamental Theorem.

32 Definition Order Multiplication Addition Let P and Q be given with P < Q, P and Q. If neither P contains a positive number nor Q contains a negative number, we set ζ to Z. If both P contains a positive number and Q contains a negative number, we have a contradiction. If P contains a positive number, we construct the cut Θ = {X ǫ P. X < ǫ} and set ζ to P Θ. (Analogous if Q contains a negative number.)

33 Definition Order Multiplication Addition Let P and Q be given with P < Q, P and Q. If neither P contains a positive number nor Q contains a negative number, we set ζ to Z. If both P contains a positive number and Q contains a negative number, we have a contradiction. If P contains a positive number, we construct the cut Θ = {X ǫ P. X < ǫ} and set ζ to P Θ. (Analogous if Q contains a negative number.)

34 Definition Order Multiplication Addition Let P and Q be given with P < Q, P and Q. If neither P contains a positive number nor Q contains a negative number, we set ζ to Z. If both P contains a positive number and Q contains a negative number, we have a contradiction. If P contains a positive number, we construct the cut Θ = {X ǫ P. X < ǫ} and set ζ to P Θ. (Analogous if Q contains a negative number.)

35 Definition Order Multiplication Addition Landau defines Θ in a different way. Define Θ to be the cut Θ = {X X P ǫ P. X < ǫ} If P Q = R we have Θ = Θ

36 Differences to Landau Proof of Peano axioms Definition of < independent from + Function first for Well-Ordering Principle Definition of Rational Numbers using red Third property of cuts More general formulation of Dedekind s Fundamental Theorem

37 Additional Assumptions Excluded middle Well-Ordering Principle WP XM Trichotomy for cuts TR XM Other assumptions Cut extensionality CE, SE CE or PE FE CE Strong excluded middle or strong trichotomy for cuts SXM STR

38 References E. Landau : Grundlagen der Analysis (1930) G. Smolka, C. E. Brown : Introduction to Computational Logic (Lecture Notes SS 2010) Y. Bertot, P. Castéran : Interactive Theorem Proving and Program Development: Coq Art: The Calculus of Inductive Constructions (2004) J. Harrison : Theorem Proving with the (1998)

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Outline. We will now investigate the structure of this important set.

Outline. We will now investigate the structure of this important set. The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Peano Axioms. 1. IfS x S y then x y (we say that S is one to one).

Peano Axioms. 1. IfS x S y then x y (we say that S is one to one). Peano Axioms To present a rigorous introduction to the natural numbers would take us too far afield. We will however, give a short introduction to one axiomatic approach that yields a system that is quite

More information

0.Axioms for the Integers 1

0.Axioms for the Integers 1 0.Axioms for the Integers 1 Number theory is the study of the arithmetical properties of the integers. You have been doing arithmetic with integers since you were a young child, but these mathematical

More information

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S.

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S. Appendix A Number Axioms P. Danziger 1 Number Axioms 1.1 Groups Definition 1 A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b and c S 0. (Closure) 1. (Associativity)

More information

Mathematical Reasoning & Proofs

Mathematical Reasoning & Proofs Mathematical Reasoning & Proofs MAT 1362 Fall 2018 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

More information

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set 1 Mathematical Induction We assume that the set Z of integers are well defined, and we are familiar with the addition, subtraction, multiplication, and division. In particular, we assume the following

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

The Nature of Natural Numbers - Peano Axioms and Arithmetics: A Formal Development in PowerEpsilon

The Nature of Natural Numbers - Peano Axioms and Arithmetics: A Formal Development in PowerEpsilon The Nature of Natural Numbers - Peano Axioms and Arithmetics: A Formal Development in PowerEpsilon Ming-Yuan Zhu CoreTek Systems, Inc. 11 th Floor, 1109, CEC Building 6 South Zhongguancun Street Beijing

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

Supremum and Infimum

Supremum and Infimum Supremum and Infimum UBC M0 Lecture Notes by Philip D. Loewen The Real Number System. Work hard to construct from the axioms a set R with special elements O and I, and a subset P R, and mappings A: R R

More information

Zermelo-Fraenkel Set Theory

Zermelo-Fraenkel Set Theory Zermelo-Fraenkel Set Theory Zak Mesyan University of Colorado Colorado Springs The Real Numbers In the 19th century attempts to prove facts about the real numbers were limited by the lack of a rigorous

More information

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2 Why non-pictured analysis? CHAPTER 1 Preliminaries f is continuous at x if lim f(x + h) = f(x) h!0 and f(x + h) f(x) f is di erentiable at x if lim h!0 h Then but Di erentiability =) continuity, continuity

More information

Formal Logic and Deduction Systems

Formal Logic and Deduction Systems Formal Logic and Deduction Systems Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) Formal Logic and Deduction Systems MFES

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

The natural numbers. The natural numbers come with an addition +, a multiplication and an order < p < q, q < p, p = q.

The natural numbers. The natural numbers come with an addition +, a multiplication and an order < p < q, q < p, p = q. The natural numbers N = {0, 1,, 3, } The natural numbers come with an addition +, a multiplication and an order < p, q N, p + q N. p, q N, p q N. p, q N, exactly one of the following holds: p < q, q

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

SEMANTICS OF INTUITIONISTIC PROPOSITIONAL LOGIC: HEYTING ALGEBRAS AND KRIPKE MODELS

SEMANTICS OF INTUITIONISTIC PROPOSITIONAL LOGIC: HEYTING ALGEBRAS AND KRIPKE MODELS SEMNTICS OF INTUITIONISTIC PROPOSITIONL LOGIC: HEYTING LGEBRS ND KRIPKE MODELS CHD E. BROWN bstract. We describe two well-known semantics for intuitionistic propositional logic: Heyting algebras and Kripke

More information

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities Number Systems N 1,2,3,... the positive integers Z 3, 2, 1,0,1,2,3,... the integers Q p q : p,q Z with q 0 the rational numbers R {numbers expressible by finite or unending decimal expansions} makes sense

More information

Math 4606, Summer 2004: Inductive sets, N, the Peano Axioms, Recursive Sequences Page 1 of 10

Math 4606, Summer 2004: Inductive sets, N, the Peano Axioms, Recursive Sequences Page 1 of 10 Math 4606, Summer 2004: Inductive sets, N, the Peano Axioms, Recursive Sequences Page 1 of 10 Inductive sets (used to define the natural numbers as a subset of R) (1) Definition: A set S R is an inductive

More information

Discrete Mathematics for CS Fall 2003 Wagner Lecture 3. Strong induction

Discrete Mathematics for CS Fall 2003 Wagner Lecture 3. Strong induction CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 3 This lecture covers further variants of induction, including strong induction and the closely related wellordering axiom. We then apply these

More information

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118).

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118). Chapter 3 Betweenness (ordering) Point B is between point A and point C is a fundamental, undefined concept. It is abbreviated A B C. A system satisfying the incidence and betweenness axioms is an ordered

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

Suppose R is an ordered ring with positive elements P.

Suppose R is an ordered ring with positive elements P. 1. The real numbers. 1.1. Ordered rings. Definition 1.1. By an ordered commutative ring with unity we mean an ordered sextuple (R, +, 0,, 1, P ) such that (R, +, 0,, 1) is a commutative ring with unity

More information

Frege-numbers + Begriffsschrift revisited

Frege-numbers + Begriffsschrift revisited History of logic: from Frege to Gödel 26th September 2017 Grundlagen der Arithmetik: some philosophical issues Introduction: Grundlagen der Arithmetik: some philosophical issues Introduction: "In this

More information

Wollongong College Australia

Wollongong College Australia Wollongong College Australia University of Wollongong Diploma in Information Technology WUCT121 Discrete Mathematics Mid-Term Test #2 Autumn Session 2008 SOLUTIONS Time Allowed: 50 minutes DIRECTIONS TO

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

REAL ANALYSIS: INTRODUCTION

REAL ANALYSIS: INTRODUCTION REAL ANALYSIS: INTRODUCTION DR. RITU AGARWAL EMAIL: RAGARWAL.MATHS@MNIT.AC.IN MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. The real number system 1 2. Field Axioms 1 3. Order Axioms 2 4.

More information

Acyclicity and Finite Linear Extendability: a Formal and Constructive Equivalence

Acyclicity and Finite Linear Extendability: a Formal and Constructive Equivalence Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n o 5668 Acyclicity and Finite Linear Extendability: a Formal and Constructive

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

1.2 MATHEMATICAL INDUCTION. Peano s Postulates and Induction. 10 Chapter 1 The Real Numbers

1.2 MATHEMATICAL INDUCTION. Peano s Postulates and Induction. 10 Chapter 1 The Real Numbers 10 Chapter 1 The Real Numbers 1. MATHEMATICAL INDUCTION If a flight of stairs is designed so that falling off any step inevitably leads to falling off the next, then falling off the first step is a sure

More information

Frege s Proofs of the Axioms of Arithmetic

Frege s Proofs of the Axioms of Arithmetic Frege s Proofs of the Axioms of Arithmetic Richard G. Heck, Jr. 1 The Dedekind-Peano Axioms for Arithmetic 1. N0 2. x(nx y.p xy) 3(a). x y z(nx P xy P xy y = z) 3(b). x y z(nx Ny P xz P yz x = y) 4. z(nz

More information

2 Elementary number theory

2 Elementary number theory 2 Elementary number theory 2.1 Introduction Elementary number theory is concerned with properties of the integers. Hence we shall be interested in the following sets: The set if integers {... 2, 1,0,1,2,3,...},

More information

2.7.1 Foundations of Proof Systems

2.7.1 Foundations of Proof Systems 2.7.1 Foundations of Proof Systems Exam 2017-2018 1 Warming up... Question 1 Give a proof in natural deduction of the following proposition : ( f = (g = h)) = (( f = g) = ( f = h)). Solution. f (g h);

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Representations of Boolean Functions in Constructive Type Theory

Representations of Boolean Functions in Constructive Type Theory Saarland University Faculty of Natural Sciences and Technology I Department of Computer Science Bachelor s Program in Computer Science Bachelor s Thesis Representations of Boolean Functions in Constructive

More information

MAGIC Set theory. lecture 2

MAGIC Set theory. lecture 2 MAGIC Set theory lecture 2 David Asperó University of East Anglia 22 October 2014 Recall from last time: Syntactical vs. semantical logical consequence Given a set T of formulas and a formula ', we write

More information

Section II.1. Free Abelian Groups

Section II.1. Free Abelian Groups II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010)

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010) http://math.sun.ac.za/amsc/sam Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics 2009-2010 Lecture notes in progress (27 March 2010) Contents 2009 Semester I: Elements 5 1. Cartesian product

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

Turing Centenary Lecture

Turing Centenary Lecture Turing Centenary Lecture P.D.Welch University of Bristol Visiting Research Fellow, Isaac Newton Institute Early Life King s College 1931 King s College 1931 Hardy Eddington He attended Eddington s lectures

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 2 Asymptotic Notation 1 O-notation: Asymptotic upper bound f(n) = O(g(n)) if positive constants c, n 0 such that 0 f(n) cg(n), n n 0 f(n) = O(g(n)) cg(n) f(n) Asymptotic running

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

The equivalence axiom and univalent models of type theory.

The equivalence axiom and univalent models of type theory. The equivalence axiom and univalent models of type theory. (Talk at CMU on February 4, 2010) By Vladimir Voevodsky Abstract I will show how to define, in any type system with dependent sums, products and

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

What is a proof? Proofing as a social process, a communication art.

What is a proof? Proofing as a social process, a communication art. Proof Methods What is a proof? Proofing as a social process, a communication art. Theoretically, a proof of a mathematical statement is no different than a logically valid argument starting with some premises

More information

Basic Proof Examples

Basic Proof Examples Basic Proof Examples Lisa Oberbroeckling Loyola University Maryland Fall 2015 Note. In this document, we use the symbol as the negation symbol. Thus p means not p. There are four basic proof techniques

More information

In case (1) 1 = 0. Then using and from Friday,

In case (1) 1 = 0. Then using and from Friday, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

How Far Mathematical Foundations Direct Measurement

How Far Mathematical Foundations Direct Measurement {Abstract A significant amount of mathematics is used in the How Far Away Is It channel video books. Although mathematical equations are identified, they were not the focus. They served to deepen understanding

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

SOME TRANSFINITE INDUCTION DEDUCTIONS

SOME TRANSFINITE INDUCTION DEDUCTIONS SOME TRANSFINITE INDUCTION DEDUCTIONS SYLVIA DURIAN Abstract. This paper develops the ordinal numbers and transfinite induction, then demonstrates some interesting applications of transfinite induction.

More information

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS INDEPENDENCE OF THE CONTINUUM HYPOTHESIS CAPSTONE MATT LUTHER 1 INDEPENDENCE OF THE CONTINUUM HYPOTHESIS 2 1. Introduction This paper will summarize many of the ideas from logic and set theory that are

More information

A Simple Proof that ζ(n 2) is Irrational

A Simple Proof that ζ(n 2) is Irrational A Simple Proof that ζ(n 2) is Irrational Timothy W. Jones February 3, 208 Abstract We prove that partial sums of ζ(n) = z n are not given by any single decimal in a number base given by a denominator of

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 1. Real Number System 1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly familiar with

More information

06 Recursive Definition and Inductive Proof

06 Recursive Definition and Inductive Proof CAS 701 Fall 2002 06 Recursive Definition and Inductive Proof Instructor: W. M. Farmer Revised: 30 November 2002 1 What is Recursion? Recursion is a method of defining a structure or operation in terms

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

1 Existence of the Néron model

1 Existence of the Néron model Néron models Setting: S a Dedekind domain, K its field of fractions, A/K an abelian variety. A model of A/S is a flat, separable S-scheme of finite type X with X K = A. The nicest possible model over S

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Math 104: Homework 1 solutions

Math 104: Homework 1 solutions Math 10: Homework 1 solutions 1. The basis for induction, P 1, is true, since 1 3 = 1. Now consider the induction step, assuming P n is true and examining P n+1. By making use of the result (1 + +... +

More information

Arithmetical classification of the set of all provably recursive functions

Arithmetical classification of the set of all provably recursive functions Arithmetical classification of the set of all provably recursive functions Vítězslav Švejdar April 12, 1999 The original publication is available at CMUC. Abstract The set of all indices of all functions

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

Notes on the Banach-Tarski Paradox

Notes on the Banach-Tarski Paradox Notes on the Banach-Tarski Paradox Donald Brower May 6, 2006 The Banach-Tarski paradox is not a logical paradox, but rather a counter intuitive result. It says that a ball can be broken into a finite number

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Analysis I. Classroom Notes. H.-D. Alber

Analysis I. Classroom Notes. H.-D. Alber Analysis I Classroom Notes H-D Alber Contents 1 Fundamental notions 1 11 Sets 1 12 Product sets, relations 5 13 Composition of statements 7 14 Quantifiers, negation of statements 9 2 Real numbers 11 21

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics Examiners: D. Burbulla, P. Glynn-Adey, S. Homayouni Time: 7-10

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Mathematics Review for Business PhD Students

Mathematics Review for Business PhD Students Mathematics Review for Business PhD Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

A CHARACTERIZATION OF COMPLETE LATTICES

A CHARACTERIZATION OF COMPLETE LATTICES A CHARACTERIZATION OF COMPLETE LATTICES ANNE C. DAVIS 1. Introduction. A complete lattice 21 = (A, < } has the property that every increasing function on A to A has a fixpoint. 1 Tarski raised the question

More information

Lecture 1: The arithmetic hierarchy

Lecture 1: The arithmetic hierarchy MODEL THEORY OF ARITHMETIC Lecture 1: The arithmetic hierarchy Tin Lok Wong 8 October, 2014 [These theorems] go a long way to explaining why recursion theory is relevant to the study of models of arithmetic.

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Sets, Structures, Numbers

Sets, Structures, Numbers Chapter 1 Sets, Structures, Numbers Abstract In this chapter we shall introduce most of the background needed to develop the foundations of mathematical analysis. We start with sets and algebraic structures.

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism The Curry-Howard Isomorphism Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) The Curry-Howard Isomorphism MFES 2008/09

More information

Cylindrical Algebraic Decomposition in Coq

Cylindrical Algebraic Decomposition in Coq Cylindrical Algebraic Decomposition in Coq MAP 2010 - Logroño 13-16 November 2010 Assia Mahboubi INRIA Microsoft Research Joint Centre (France) INRIA Saclay Île-de-France École Polytechnique, Palaiseau

More information

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Example: Use well-ordering property to prove

More information

1 The Well Ordering Principle, Induction, and Equivalence Relations

1 The Well Ordering Principle, Induction, and Equivalence Relations 1 The Well Ordering Principle, Induction, and Equivalence Relations The set of natural numbers is the set N = f1; 2; 3; : : :g. (Some authors also include the number 0 in the natural numbers, but number

More information

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 1 November 2017

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 1 November 2017 Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 1 November 2017 1. Real Number System 1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly familiar with

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

A Note on Singular Cardinals in Set Theory without Choice

A Note on Singular Cardinals in Set Theory without Choice arxiv:0709.2436v1 [math.lo] 15 Sep 2007 A Note on Singular Cardinals in Set Theory without Choice Denis I. Saveliev 2007 August 11, Beijing Partially supported by grant 06-01-00608-a of Russian Foundation

More information

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008 Studying Rudin s Principles of Mathematical Analysis Through Questions Mesut B. Çakır c August 4, 2008 ii Contents 1 The Real and Complex Number Systems 3 1.1 Introduction............................................

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Boolean Algebra Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Hybrid Logic and Uncertain Logic

Hybrid Logic and Uncertain Logic Journal of Uncertain Systems Vol.3, No.2, pp.83-94, 2009 Online at: www.jus.org.uk Hybrid Logic and Uncertain Logic Xiang Li, Baoding Liu Department of Mathematical Sciences, Tsinghua University, Beijing,

More information

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology. MATH 501 Discrete Mathematics Lecture 6: Number theory Prof. Dr. Slim Abdennadher, slim.abdennadher@guc.edu.eg German University Cairo, Department of Media Engineering and Technology 1 Number theory Number

More information