Zermelo-Fraenkel Set Theory

Size: px
Start display at page:

Download "Zermelo-Fraenkel Set Theory"

Transcription

1 Zermelo-Fraenkel Set Theory Zak Mesyan University of Colorado Colorado Springs

2 The Real Numbers In the 19th century attempts to prove facts about the real numbers were limited by the lack of a rigorous definition of real number. Definition (Richard Dedekind, 1872) A real number is a partition of the rational numbers into two sets, L and U, where every element of L is less than every element of U.

3 The Real Numbers In the 19th century attempts to prove facts about the real numbers were limited by the lack of a rigorous definition of real number. Definition (Richard Dedekind, 1872) A real number is a partition of the rational numbers into two sets, L and U, where every element of L is less than every element of U. Theorem (Georg Cantor, 1874) Set R of the real numbers (as defined by Dedekind) is uncountable, i.e., it cannot be put into one-to-one correspondence with N = {0, 1, 2,... }.

4 The Real Numbers In the 19th century attempts to prove facts about the real numbers were limited by the lack of a rigorous definition of real number. Definition (Richard Dedekind, 1872) A real number is a partition of the rational numbers into two sets, L and U, where every element of L is less than every element of U. Theorem (Georg Cantor, 1874) Set R of the real numbers (as defined by Dedekind) is uncountable, i.e., it cannot be put into one-to-one correspondence with N = {0, 1, 2,... }. In particular, there are infinite sets of different sizes.

5 Russell s Paradox Suppose that every set-builder formula defines a set. Then y = {x x / x} is a set.

6 Russell s Paradox Suppose that every set-builder formula defines a set. Then y = {x x / x} is a set. If y y, then, by the definition of y, we have y / y.

7 Russell s Paradox Suppose that every set-builder formula defines a set. Then y = {x x / x} is a set. If y y, then, by the definition of y, we have y / y. If y / y, then, by the definition of y, we have y y.

8 Russell s Paradox Suppose that every set-builder formula defines a set. Then y = {x x / x} is a set. If y y, then, by the definition of y, we have y / y. If y / y, then, by the definition of y, we have y y. Either way there is a contradiction.

9 Axiomatization of Set Theory To avoid paradoxes, in 1908 Ernst Zermelo proposed a system of axioms (i.e., basic assumptions) for set theory, where sets could be constructed only in certain limited ways.

10 Axiomatization of Set Theory To avoid paradoxes, in 1908 Ernst Zermelo proposed a system of axioms (i.e., basic assumptions) for set theory, where sets could be constructed only in certain limited ways. Abraham Fraenkel, Thoralf Skolem, and John von Neumann built on Zermelo s work to produce the now commonly accepted system of set theory axioms ZFC, or Zermelo-Fraenkel set theory with the Axiom of Choice (around 1930).

11 Axiomatization of Set Theory To avoid paradoxes, in 1908 Ernst Zermelo proposed a system of axioms (i.e., basic assumptions) for set theory, where sets could be constructed only in certain limited ways. Abraham Fraenkel, Thoralf Skolem, and John von Neumann built on Zermelo s work to produce the now commonly accepted system of set theory axioms ZFC, or Zermelo-Fraenkel set theory with the Axiom of Choice (around 1930). Since the ascent of set theory, all mathematical objects (e.g., natural numbers, functions, graphs, groups, topologies, etc.) have been redefined in terms of sets. So ZFC provides an axiomatic basis for all of mathematics.

12 Axiom of Extensionality x y [ z (z x z y) x = y] Intuitively: two sets are equal if they have the same elements.

13 Axiom of Extensionality x y [ z (z x z y) x = y] Intuitively: two sets are equal if they have the same elements. This allows one to define a set by describing its elements.

14 Axiom of Pairing x y z w [w z (w = x w = y)] Intuitively: given sets x and y, there exists a set z (= {x, y}) whose elements are precisely x and y.

15 Axiom of Pairing x y z w [w z (w = x w = y)] Intuitively: given sets x and y, there exists a set z (= {x, y}) whose elements are precisely x and y. This allows one to define sets consisting of complicated objects. For example, an ordered pair (x, y) is formally defined as {{x}, {x, y}}.

16 Axiom of Union x y z [z y w (w x z w)] Intuitively: for any set x, there is a set y = x whose members are precisely all the members of all the members of x. Or: the union of a set is a set.

17 Axiom of Union x y z [z y w (w x z w)] Intuitively: for any set x, there is a set y = x whose members are precisely all the members of all the members of x. Or: the union of a set is a set. For example, if x = {{1, 2}, {3}, {4, 5, 6}}, then y = {1, 2, 3, 4, 5, 6}.

18 Axiom of Union x y z [z y w (w x z w)] Intuitively: for any set x, there is a set y = x whose members are precisely all the members of all the members of x. Or: the union of a set is a set. For example, if x = {{1, 2}, {3}, {4, 5, 6}}, then y = {1, 2, 3, 4, 5, 6}. This, together with the axiom of pairing allows us to construct the familiar unions of sets, such as {1, 2} {3, 4} = {1, 2, 3, 4}.

19 Axiom of Power Set x y z [z y w (w z w x)] Intuitively: for every set x there exists a set y whose elements are the subsets of x.

20 Axiom of Power Set x y z [z y w (w z w x)] Intuitively: for every set x there exists a set y whose elements are the subsets of x. For example, the power set of x = {1, 2} is y = {, {1}, {2}, {1, 2}}.

21 Axiom of Power Set x y z [z y w (w z w x)] Intuitively: for every set x there exists a set y whose elements are the subsets of x. For example, the power set of x = {1, 2} is y = {, {1}, {2}, {1, 2}}. This axiom implies that there is no biggest set, since given any set one can construct a set with greater cardinality by taking its power set.

22 Axiom Schema of Separation z w 1 w 2... w n y x [x y (x z φ)] where φ = φ(x, z, w 1,..., w n ) is any formula in the language of set theory with free variables among x, z, w 1,..., w n. Intuitively: given a set z and a condition φ, there is a set y = {x z φ(x)} consisting of those elements of z that satisfy φ.

23 Axiom Schema of Separation z w 1 w 2... w n y x [x y (x z φ)] where φ = φ(x, z, w 1,..., w n ) is any formula in the language of set theory with free variables among x, z, w 1,..., w n. Intuitively: given a set z and a condition φ, there is a set y = {x z φ(x)} consisting of those elements of z that satisfy φ. This is a schema because it is an infinite collection of axioms one for every φ.

24 Axiom Schema of Separation z w 1 w 2... w n y x [x y (x z φ)] where φ = φ(x, z, w 1,..., w n ) is any formula in the language of set theory with free variables among x, z, w 1,..., w n. Intuitively: given a set z and a condition φ, there is a set y = {x z φ(x)} consisting of those elements of z that satisfy φ. This is a schema because it is an infinite collection of axioms one for every φ. This allows us to use set-builder notation to define new sets, such as the empty set: = {x y (x x) (x x)}, where y is any existing set.

25 Axiom Schema of Separation z w 1 w 2... w n y x [x y (x z φ)] where φ = φ(x, z, w 1,..., w n ) is any formula in the language of set theory with free variables among x, z, w 1,..., w n. Intuitively: given a set z and a condition φ, there is a set y = {x z φ(x)} consisting of those elements of z that satisfy φ. This is a schema because it is an infinite collection of axioms one for every φ. This allows us to use set-builder notation to define new sets, such as the empty set: = {x y (x x) (x x)}, where y is any existing set. This schema avoids Russell s Paradox because it only creates subsets of already existing sets.

26 Axiom of Infinity x [ x y (y x y {y} x)] Intuitively, this constructs the infinite set consisting of the following elements: { } (= { }) { } {{ }} (= {, { }}).

27 Axiom of Infinity x [ x y (y x y {y} x)] Intuitively, this constructs the infinite set consisting of the following elements: { } (= { }) { } {{ }} (= {, { }}). Labeling the sets as above as 0 =, 1 = { }, 2 = {, { }},..., we get the natural numbers!

28 Axiom of Regularity x [x y (y x z (z x (z y)))] Intuitively: every nonempty set x contains a minimal element y such that x y =.

29 Axiom of Regularity x [x y (y x z (z x (z y)))] Intuitively: every nonempty set x contains a minimal element y such that x y =. This implies that no set is an element of itself. In particular, there is no set of all sets.

30 Axiom of Regularity x [x y (y x z (z x (z y)))] Intuitively: every nonempty set x contains a minimal element y such that x y =. This implies that no set is an element of itself. In particular, there is no set of all sets. This axiom also makes induction a valid proof technique.

31 Axiom Schema of Replacement w 1... w n d [( x d!y φ(x, y, w 1,..., w n, d)) r y (y r x d φ(x, y, w 1,..., w n, d))] where φ = φ(x, y, w 1,..., w n, d) is any formula in the language of set theory with free variables among x, y, w 1,..., w n, d. Intuitively: if the expression φ represents a function f with domain d, then the range of f is a set.

32 Axiom Schema of Replacement w 1... w n d [( x d!y φ(x, y, w 1,..., w n, d)) r y (y r x d φ(x, y, w 1,..., w n, d))] where φ = φ(x, y, w 1,..., w n, d) is any formula in the language of set theory with free variables among x, y, w 1,..., w n, d. Intuitively: if the expression φ represents a function f with domain d, then the range of f is a set. This axiom is included in ZFC mostly because without it one could not construct certain desirable infinite sets.

33 Axiom of Choice x [ / x f (f : x x y x (f (y) y)] Intuitively: if x is a set whose members are all non-empty, then there exists a choice function f from x to the union of the members of x, such that f (y) y for all y x. Or: given a collection of sets, there is a function that chooses an element from each of the sets.

34 Axiom of Choice x [ / x f (f : x x y x (f (y) y)] Intuitively: if x is a set whose members are all non-empty, then there exists a choice function f from x to the union of the members of x, such that f (y) y for all y x. Or: given a collection of sets, there is a function that chooses an element from each of the sets. This is need to prove that every (infinite-dimensional) vector space has a basis, that any onto function has a right inverse, that the Cartesian product of any family of nonempty sets is nonempty, and many other commonly used mathematical facts.

35 Axiom of Choice x [ / x f (f : x x y x (f (y) y)] Intuitively: if x is a set whose members are all non-empty, then there exists a choice function f from x to the union of the members of x, such that f (y) y for all y x. Or: given a collection of sets, there is a function that chooses an element from each of the sets. This is need to prove that every (infinite-dimensional) vector space has a basis, that any onto function has a right inverse, that the Cartesian product of any family of nonempty sets is nonempty, and many other commonly used mathematical facts. This axiom was controversial for a long time because it asserts the existence of an object without explicitly constructing it.

36 Thank you!

mat.haus project Zurab Janelidze s Lectures on UNIVERSE OF SETS last updated 18 May 2017 Stellenbosch University 2017

mat.haus project Zurab Janelidze s Lectures on UNIVERSE OF SETS last updated 18 May 2017 Stellenbosch University 2017 Zurab Janelidze s Lectures on UNIVERSE OF SETS last updated 18 May 2017 Stellenbosch University 2017 Contents 1. Axiom-free universe of sets 1 2. Equality of sets and the empty set 2 3. Comprehension and

More information

Axiomatic set theory. Chapter Why axiomatic set theory?

Axiomatic set theory. Chapter Why axiomatic set theory? Chapter 1 Axiomatic set theory 1.1 Why axiomatic set theory? Essentially all mathematical theories deal with sets in one way or another. In most cases, however, the use of set theory is limited to its

More information

This section will take the very naive point of view that a set is a collection of objects, the collection being regarded as a single object.

This section will take the very naive point of view that a set is a collection of objects, the collection being regarded as a single object. 1.10. BASICS CONCEPTS OF SET THEORY 193 1.10 Basics Concepts of Set Theory Having learned some fundamental notions of logic, it is now a good place before proceeding to more interesting things, such as

More information

Set Theory History. Martin Bunder. September 2015

Set Theory History. Martin Bunder. September 2015 Set Theory History Martin Bunder September 2015 What is a set? Possible Definition A set is a collection of elements having a common property Abstraction Axiom If a(x) is a property ( y)( x)(x y a(x))

More information

Russell Sets, Topology, and Cardinals

Russell Sets, Topology, and Cardinals Russell Sets, Topology, and Cardinals Ethan Thomas Undergraduate Honors Thesis Professor Marcia Groszek, Advisor Department of Mathematics Dartmouth College May, 2014 i Abstract The Axiom of Choice is

More information

Introduction to Logic and Axiomatic Set Theory

Introduction to Logic and Axiomatic Set Theory Introduction to Logic and Axiomatic Set Theory 1 Introduction In mathematics, we seek absolute rigor in our arguments, and a solid foundation for all of the structures we consider. Here, we will see some

More information

MATH 320 SET THEORY BURAK KAYA

MATH 320 SET THEORY BURAK KAYA Abstract. These are the lecture notes I used for a 14-week introductory set theory class I taught at the Department of Mathematics of Middle East Technical University during Spring 2018. In order to determine

More information

Math 5801 General Topology and Knot Theory

Math 5801 General Topology and Knot Theory Lecture 3-8/27/2012 Math 5801 Ohio State University August 27, 2012 Course Info Textbook (required) J. R. Munkres, Topology (2nd Edition), Prentice Hall, Englewood Cliffs, NJ, 2000. ISBN-10: 0131816292

More information

Section 0.7. The Axiom of Choice, Order, and Zorn s Lemma

Section 0.7. The Axiom of Choice, Order, and Zorn s Lemma 0.7. The Axiom of Choice, Order, and Zorn s Lemma 1 Section 0.7. The Axiom of Choice, Order, and Zorn s Lemma Note. In this section, we state the Axiom of Choice and two statements equivalent to it (Zorn

More information

Section 0. Sets and Relations

Section 0. Sets and Relations 0. Sets and Relations 1 Section 0. Sets and Relations NOTE. Mathematics is the study of ideas, not of numbers!!! The idea from modern algebra which is the focus of most of this class is that of a group

More information

Tutorial on Axiomatic Set Theory. Javier R. Movellan

Tutorial on Axiomatic Set Theory. Javier R. Movellan Tutorial on Axiomatic Set Theory Javier R. Movellan Intuitively we think of sets as collections of elements. The crucial part of this intuitive concept is that we are willing to treat sets as entities

More information

Math 5801 General Topology and Knot Theory

Math 5801 General Topology and Knot Theory Lecture 2-8/24/2012 Math 5801 Ohio State University August 24, 2012 Course Info Textbook (required) J. R. Munkres, Topology (2nd Edition), Prentice Hall, Englewood Cliffs, NJ, 2000. ISBN-10: 0131816292

More information

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9 1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions

More information

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

Undergraduate logic sequence: the notes

Undergraduate logic sequence: the notes Undergraduate logic sequence: the notes November 21, 2014 ii Contents 1 Zermelo Fraenkel set theory 1 1.1 Historical context........................... 1 1.2 The language of the theory.....................

More information

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

Contents Propositional Logic: Proofs from Axioms and Inference Rules

Contents Propositional Logic: Proofs from Axioms and Inference Rules Contents 1 Propositional Logic: Proofs from Axioms and Inference Rules... 1 1.1 Introduction... 1 1.1.1 An Example Demonstrating the Use of Logic in Real Life... 2 1.2 The Pure Propositional Calculus...

More information

Handbook of Logic and Proof Techniques for Computer Science

Handbook of Logic and Proof Techniques for Computer Science Steven G. Krantz Handbook of Logic and Proof Techniques for Computer Science With 16 Figures BIRKHAUSER SPRINGER BOSTON * NEW YORK Preface xvii 1 Notation and First-Order Logic 1 1.1 The Use of Connectives

More information

Equivalent Forms of the Axiom of Infinity

Equivalent Forms of the Axiom of Infinity Equivalent Forms of the Axiom of Infinity Axiom of Infinity 1. There is a set that contains each finite ordinal as an element. The Axiom of Infinity is the axiom of Set Theory that explicitly asserts that

More information

1. (B) The union of sets A and B is the set whose elements belong to at least one of A

1. (B) The union of sets A and B is the set whose elements belong to at least one of A 1. (B) The union of sets A and B is the set whose elements belong to at least one of A or B. Thus, A B = { 2, 1, 0, 1, 2, 5}. 2. (A) The intersection of sets A and B is the set whose elements belong to

More information

(1.3.1) and in English one says a is an element of M. The statement that a is not an element of M is written as a M

(1.3.1) and in English one says a is an element of M. The statement that a is not an element of M is written as a M 1.3 Set Theory I As long as the terms of a mathematical theory are names of concrete objects as concrete as mothers breast, the very first object that received a name in human languages - there is not

More information

RESOLVING RUSSELL S PARADOX WITHIN CANTOR S INTUITIVE SET THEORY. Feng Xu ( Abstract

RESOLVING RUSSELL S PARADOX WITHIN CANTOR S INTUITIVE SET THEORY. Feng Xu (  Abstract RESOLVING RUSSELL S PARADOX WITHIN CANTOR S INTUITIVE SET THEORY Feng Xu (e-mail: xtwan@yahoo.com) Abstract The set of all the subsets of a set is its power set, and the cardinality of the power set is

More information

B1.2 Set Theory. Lecture notes HT 2018 Jonathan Pila

B1.2 Set Theory. Lecture notes HT 2018 Jonathan Pila 1 B1.2 Set Theory Lecture notes HT 2018 Jonathan Pila Contents 1. Introduction 2. The language of Set Theory and the first axioms 3. The Powerset axiom 4. The Axiom of Infinity and the natural numbers

More information

MAGIC Set theory. lecture 2

MAGIC Set theory. lecture 2 MAGIC Set theory lecture 2 David Asperó University of East Anglia 22 October 2014 Recall from last time: Syntactical vs. semantical logical consequence Given a set T of formulas and a formula ', we write

More information

Sets and Infinity. James Emery. Edited: 2/25/ Cardinal Numbers 1. 2 Ordinal Numbers 6. 3 The Peano Postulates for the Natural Numbers 7

Sets and Infinity. James Emery. Edited: 2/25/ Cardinal Numbers 1. 2 Ordinal Numbers 6. 3 The Peano Postulates for the Natural Numbers 7 Sets and Infinity James Emery Edited: 2/25/2017 Contents 1 Cardinal Numbers 1 2 Ordinal Numbers 6 3 The Peano Postulates for the Natural Numbers 7 4 Metric Spaces 8 5 Complete Metric Spaces 8 6 The Real

More information

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS INDEPENDENCE OF THE CONTINUUM HYPOTHESIS CAPSTONE MATT LUTHER 1 INDEPENDENCE OF THE CONTINUUM HYPOTHESIS 2 1. Introduction This paper will summarize many of the ideas from logic and set theory that are

More information

Axioms for Set Theory

Axioms for Set Theory Axioms for Set Theory The following is a subset of the Zermelo-Fraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

Undergraduate logic sequence: the notes

Undergraduate logic sequence: the notes Undergraduate logic sequence: the notes December 8, 2015 ii Contents 1 Zermelo Fraenkel set theory 1 1.1 Historical context........................... 1 1.2 The language of the theory.....................

More information

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET DO FIVE OUT OF SIX ON EACH SET PROBLEM SET 1. THE AXIOM OF FOUNDATION Early on in the book (page 6) it is indicated that throughout the formal development set is going to mean pure set, or set whose elements,

More information

CHAPTER 0: BACKGROUND (SPRING 2009 DRAFT)

CHAPTER 0: BACKGROUND (SPRING 2009 DRAFT) CHAPTER 0: BACKGROUND (SPRING 2009 DRAFT) MATH 378, CSUSM. SPRING 2009. AITKEN This chapter reviews some of the background concepts needed for Math 378. This chapter is new to the course (added Spring

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15 Before we start, I want to point out that these notes are not checked for typos. There are prbally many typeos in them and if you find any, please let me know as it s extremely difficult to find them all

More information

Chapter 2 Axiomatic Set Theory

Chapter 2 Axiomatic Set Theory Chapter 2 Axiomatic Set Theory Ernst Zermelo (1871 1953) was the first to find an axiomatization of set theory, and it was later expanded by Abraham Fraenkel (1891 1965). 2.1 Zermelo Fraenkel Set Theory

More information

Zermelo-Frankel Set Theory and Well Orderings

Zermelo-Frankel Set Theory and Well Orderings Zermelo-Frankel Set Theory and Well Orderings Menaka Lashitha Bandara 16 May 2006 Abstract In 1883, Georg Cantor proposed that it was a valid law of thought that every set can be well ordered. This Well

More information

Axioms as definitions: revisiting Hilbert

Axioms as definitions: revisiting Hilbert Axioms as definitions: revisiting Hilbert Laura Fontanella Hebrew University of Jerusalem laura.fontanella@gmail.com 03/06/2016 What is an axiom in mathematics? Self evidence, intrinsic motivations an

More information

Lecture Notes for MATH Mathematical Logic 1

Lecture Notes for MATH Mathematical Logic 1 Lecture Notes for MATH2040 - Mathematical Logic 1 Michael Rathjen School of Mathematics University of Leeds Autumn 2009 Chapter 0. Introduction Maybe not all areas of human endeavour, but certainly the

More information

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic: x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which

More information

The Search for the Perfect Language

The Search for the Perfect Language The Search for the Perfect Language I'll tell you how the search for certainty led to incompleteness, uncomputability & randomness, and the unexpected result of the search for the perfect language. Bibliography

More information

INTRODUCTION TO CARDINAL NUMBERS

INTRODUCTION TO CARDINAL NUMBERS INTRODUCTION TO CARDINAL NUMBERS TOM CUCHTA 1. Introduction This paper was written as a final project for the 2013 Summer Session of Mathematical Logic 1 at Missouri S&T. We intend to present a short discussion

More information

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox A BRIEF INTRODUCTION TO ZFC CHRISTOPHER WILSON Abstract. We present a basic axiomatic development of Zermelo-Fraenkel and Choice set theory, commonly abbreviated ZFC. This paper is aimed in particular

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

Cantor and sets: La diagonale du fou

Cantor and sets: La diagonale du fou Judicaël Courant 2011-06-17 Lycée du Parc (moving to Lycée La Martinière-Monplaisir) Outline 1 Cantor s paradise 1.1 Introduction 1.2 Countable sets 1.3 R is not countable 1.4 Comparing sets 1.5 Cardinals

More information

1.3. The Completeness Axiom.

1.3. The Completeness Axiom. 13 The Completeness Axiom 1 13 The Completeness Axiom Note In this section we give the final Axiom in the definition of the real numbers, R So far, the 8 axioms we have yield an ordered field We have seen

More information

Products, Relations and Functions

Products, Relations and Functions Products, Relations and Functions For a variety of reasons, in this course it will be useful to modify a few of the settheoretic preliminaries in the first chapter of Munkres. The discussion below explains

More information

A Set Theory Formalization

A Set Theory Formalization Research Practice Final Report A Set Theory Formalization Alejandro Calle-Saldarriaga acalles@eafit.edu.co Mathematical Engineering, Universidad EAFIT Tutor: Andrés Sicard-Ramírez June 3, 2017 1 Problem

More information

A topological set theory implied by ZF and GPK +

A topological set theory implied by ZF and GPK + 1 42 ISSN 1759-9008 1 A topological set theory implied by ZF and GPK + ANDREAS FACKLER Abstract: We present a system of axioms motivated by a topological intuition: The set of subsets of any set is a topology

More information

hal , version 1-21 Oct 2009

hal , version 1-21 Oct 2009 ON SKOLEMISING ZERMELO S SET THEORY ALEXANDRE MIQUEL Abstract. We give a Skolemised presentation of Zermelo s set theory (with notations for comprehension, powerset, etc.) and show that this presentation

More information

1 of 8 7/15/2009 3:43 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 6. Cardinality Definitions and Preliminary Examples Suppose that S is a non-empty collection of sets. We define a relation

More information

Description of the book Set Theory

Description of the book Set Theory Description of the book Set Theory Aleksander B laszczyk and S lawomir Turek Part I. Basic set theory 1. Sets, relations, functions Content of the chapter: operations on sets (unions, intersection, finite

More information

Löwnheim Skolem Theorem

Löwnheim Skolem Theorem Löwnheim Skolem Theorem David Pierce September 17, 2014 Mimar Sinan Fine Arts University http://mat.msgsu.edu.tr/~dpierce/ These notes are part of a general investigation of the Compactness Theorem. They

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

Notes on ordinals and cardinals

Notes on ordinals and cardinals Notes on ordinals and cardinals Reed Solomon 1 Background Terminology We will use the following notation for the common number systems: N = {0, 1, 2,...} = the natural numbers Z = {..., 2, 1, 0, 1, 2,...}

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

VISUALIZATION OF INTUITIVE SET THEORY

VISUALIZATION OF INTUITIVE SET THEORY VISUALIZATION OF INTUITIVE SET THEORY K K NAMBIAR Abstract Ackermann functions are used recursively to define the transfinite cardinals of Cantor Continuum Hypothesis and Axiom of Choice are derived from

More information

Short Introduction to Admissible Recursion Theory

Short Introduction to Admissible Recursion Theory Short Introduction to Admissible Recursion Theory Rachael Alvir November 2016 1 Axioms of KP and Admissible Sets An admissible set is a transitive set A satisfying the axioms of Kripke-Platek Set Theory

More information

Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis

Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis Outside ZF - Set Cardinality, the Axiom of Choice, and the Continuum Hypothesis Tali Magidson June 6, 2017 Synopsis In June 2002, "Two Classical Surprises Concerning the Axiom of Choice and the Continuum

More information

CITS2211 Discrete Structures (2017) Cardinality and Countability

CITS2211 Discrete Structures (2017) Cardinality and Countability CITS2211 Discrete Structures (2017) Cardinality and Countability Highlights What is cardinality? Is it the same as size? Types of cardinality and infinite sets Reading Sections 45 and 81 84 of Mathematics

More information

Foundations of Abstract Mathematics. Paul L. Bailey

Foundations of Abstract Mathematics. Paul L. Bailey Foundations of Abstract Mathematics Paul L. Bailey Department of Mathematics, Southern Arkansas University E-mail address: plbailey@saumag.edu Date: January 21, 2009 i Contents Preface vii 1. Purpose

More information

Set Theory and the Foundation of Mathematics. June 19, 2018

Set Theory and the Foundation of Mathematics. June 19, 2018 1 Set Theory and the Foundation of Mathematics June 19, 2018 Basics Numbers 2 We have: Relations (subsets on their domain) Ordered pairs: The ordered pair x, y is the set {{x, y}, {x}}. Cartesian products

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University Sets, Models and Proofs I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University 2000; revised, 2006 Contents 1 Sets 1 1.1 Cardinal Numbers........................ 2 1.1.1 The Continuum

More information

Math 280A Fall Axioms of Set Theory

Math 280A Fall Axioms of Set Theory Math 280A Fall 2009 1. Axioms of Set Theory Let V be the collection of all sets and be a membership relation. We consider (V, ) as a mathematical structure. Analogy: A group is a mathematical structure

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY by arxiv:170109087v1 [mathca] 9 Jan 017 MAGNUS D LADUE 0 Abstract In [1] Grossman Turett define the Cantor game In [] Matt Baker proves several results

More information

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT Lecture Notes on Discrete Mathematics October 15, 2018 2 Contents 1 Basic Set Theory 5 1.1 Basic Set Theory....................................... 5 1.1.1 Union and Intersection of Sets...........................

More information

Part II. Logic and Set Theory. Year

Part II. Logic and Set Theory. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 60 Paper 4, Section II 16G State and prove the ǫ-recursion Theorem. [You may assume the Principle of ǫ- Induction.]

More information

Sets and Games. Logic Tea, ILLC Amsterdam. 14. September Stefan Bold. Institute for Logic, Language and Computation. Department of Mathematics

Sets and Games. Logic Tea, ILLC Amsterdam. 14. September Stefan Bold. Institute for Logic, Language and Computation. Department of Mathematics Sets and Games 14. September 2004 Logic Tea, ILLC Amsterdam Stefan Bold Mathematical Logic Group Department of Mathematics University of Bonn Institute for Logic, Language and Computation University of

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation

INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation to Mathematics Series Department of Mathematics Ohio

More information

X = { X f X i A i : (œx, y 0 X)[x /= y œi[ x i /= y i ]]}.

X = { X f X i A i : (œx, y 0 X)[x /= y œi[ x i /= y i ]]}. CARDINALS II James T. Smith San Francisco State University These notes develop the part of cardinal arithmetic that depends on the axiom of choice. The first result is the comparability theorem: every

More information

Infinite constructions in set theory

Infinite constructions in set theory VI : Infinite constructions in set theory In elementary accounts of set theory, examples of finite collections of objects receive a great deal of attention for several reasons. For example, they provide

More information

A Primer on Intuitive Set Theory

A Primer on Intuitive Set Theory A Primer on Intuitive Set Theory Sam Smith January 2005 No one shall expel us from the paradise which Cantor has created for us. David Hilbert Introduction. In these notes, we give highlights of the theory

More information

Mathematical Logic. Giuseppe Peano ( ) Core Logic 2004/05-1ab p. 2/2

Mathematical Logic. Giuseppe Peano ( ) Core Logic 2004/05-1ab p. 2/2 Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of first-order logic (1879-1928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental

More information

Zermelo-Fraenkel Set Theory

Zermelo-Fraenkel Set Theory Zermelo-Fraenkel Set Theory H.C. Doets April 17, 2002 Contents 1 Introduction 3 2 Axioms 5 3 Natural Numbers 11 3.1 Peano Axioms................................... 11 3.2 Set-theoretic Definition of IN..........................

More information

Digital Logic Design: a rigorous approach c

Digital Logic Design: a rigorous approach c Digital Logic Design: a rigorous approach c Chapter 1: Sets and Functions Guy Even Moti Medina School of Electrical Engineering Tel-Aviv Univ. October 25, 2017 Book Homepage: http://www.eng.tau.ac.il/~guy/even-medina

More information

S ) is wf as well. (Exercise) The main example for a wf Relation is the membership Relation = {( x, y) : x y}

S ) is wf as well. (Exercise) The main example for a wf Relation is the membership Relation = {( x, y) : x y} (October 14/2010) 1 Well-foundedness Let R be a Relation on the class X ( R X X ) We say that the structure ( X, R ) is well-founded (wf) if the following holds true: Y X { x X [ y( yrx y Y) x Y]} Y =

More information

Descriptive Set Theory: Why Should We Study It?

Descriptive Set Theory: Why Should We Study It? Descriptive Set Theory: Why Should We Study It? Thomas D. Gilton 1 Department of Mathematics College of Arts & Sciences Faculty Mentor: Mentor s Department: Mentor s College: Dr. John Krueger Mathematics

More information

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Outline 1 Logistics: Who, Where, When, What, How, Why, Stuff 2 Methods of Proof 3 Sets 4 Binary Relations

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY Gödel s Proof Victoria Gitman and Thomas Johnstone New York City College of Technology, CUNY vgitman@nylogic.org http://websupport1.citytech.cuny.edu/faculty/vgitman tjohnstone@citytech.cuny.edu March

More information

Model Theory MARIA MANZANO. University of Salamanca, Spain. Translated by RUY J. G. B. DE QUEIROZ

Model Theory MARIA MANZANO. University of Salamanca, Spain. Translated by RUY J. G. B. DE QUEIROZ Model Theory MARIA MANZANO University of Salamanca, Spain Translated by RUY J. G. B. DE QUEIROZ CLARENDON PRESS OXFORD 1999 Contents Glossary of symbols and abbreviations General introduction 1 xix 1 1.0

More information

MAGIC Set theory. lecture 1

MAGIC Set theory. lecture 1 MAGIC Set theory lecture 1 David Asperó University of East Anglia 15 October 2014 Welcome Welcome to this set theory course. This will be a 10 hour introduction to set theory. The only prerequisite is

More information

Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling

Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling José Meseguer University of Illinois at Urbana-Champaign Urbana, IL 61801, USA c José Meseguer, 2008 and 2009; all rights reserved.

More information

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 22M:132 Fall 07 J. Simon Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 Chapter 1 contains material on sets, functions, relations, and cardinality that

More information

Countability. 1 Motivation. 2 Counting

Countability. 1 Motivation. 2 Counting Countability 1 Motivation In topology as well as other areas of mathematics, we deal with a lot of infinite sets. However, as we will gradually discover, some infinite sets are bigger than others. Countably

More information

Part II Logic and Set Theory

Part II Logic and Set Theory Part II Logic and Set Theory Theorems Based on lectures by I. B. Leader Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

2. Prime and Maximal Ideals

2. Prime and Maximal Ideals 18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

More information

Logic of paradoxes in classical set theories

Logic of paradoxes in classical set theories Synthese (2013) 190:525 547 DOI 10.1007/s11229-011-0047-x Logic of paradoxes in classical set theories Boris Čulina Received: 15 December 2005 / Accepted: 9 November 2011 / Published online: 3 December

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

An Iterated Forcing Extension In Which All Aleph-1 Dense Sets of Reals Are Isomorphic

An Iterated Forcing Extension In Which All Aleph-1 Dense Sets of Reals Are Isomorphic San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2010 An Iterated Forcing Extension In Which All Aleph-1 Dense Sets of Reals Are Isomorphic Michael

More information

CSCE 222 Discrete Structures for Computing

CSCE 222 Discrete Structures for Computing CSCE 222 Discrete Structures for Computing Sets and Functions Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Sets Sets are the most fundamental discrete structure on which all other discrete

More information

{x : P (x)} P (x) = x is a cat

{x : P (x)} P (x) = x is a cat 1. Sets, relations and functions. 1.1. Set theory. We assume the reader is familiar with elementary set theory as it is used in mathematics today. Nonetheless, we shall now give a careful treatment of

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

The random graph. Peter J. Cameron University of St Andrews Encontro Nacional da SPM Caparica, 14 da julho 2014

The random graph. Peter J. Cameron University of St Andrews Encontro Nacional da SPM Caparica, 14 da julho 2014 The random graph Peter J. Cameron University of St Andrews Encontro Nacional da SPM Caparica, 14 da julho 2014 The random graph The countable random graph is one of the most extraordinary objects in mathematics.

More information

The Axiom of Choice and the Banach-Tarski Paradox

The Axiom of Choice and the Banach-Tarski Paradox The Axiom of Choice and the Banach-Tarski Paradox Department of Mathematical Sciences Lakehead University March 2011 The Axiom of Choice Axiom of Choice (Suppes 1960) For any set A there is a function

More information

Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory

Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory Chapter 4 Basic Set Theory There are two good reasons for studying set theory. First, it s a indispensable tool for both logic and mathematics, and even for other fields including computer science, linguistics,

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information