INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Size: px
Start display at page:

Download "INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc."

Transcription

1 INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

2 Summary of the previous lecture Multivariate stochastic models Multisite Markov model X EX Gε = + t+ t where X t is a p x vector of standardized values of the variable generated at time t, E is a p x p diagonal matrix whose j th diagonal element is ρ j (), G is a p x p diagonal matrix whose j th diagonal element is 2 ρ j ε is a p x vector of random variates Matalas model X = AX + Bε t+ t t+ 2

3 Multivariate Stochastic models Matalas (967) has given a multisite normal generation model that preserves the mean, variance, lag one serial correlation, lag one crosscorrelation and lag zero cross-correlation. X = AX + Bε where X t and X t+ are p x vectors representing standardized data corresponding to p sites at time steps t and t+ resp. t+ t t+ Assumption is that the model is multivariate normal. Ref.: Matalas, N.C. (967) Mathematical assessment of synthetic hydrology, Water Resources Research 3(4):

4 Multivariate Stochastic models ε t+ is N(0,); p x vector with ε t+ independent of X t. A and B are coefficient matrices of size p x p. B is assumed to be lower triangular matrix M = E X X 0 t t M 0 is the cross-correlation matrix (size pxp) of lag zero m 0 ( i, j) Q Q Q Q = n s s n it, i jt, j t= i j 4

5 Multivariate Stochastic models The expectation of X t X t- is denoted by M M = E X X t t If m (i, j) is a element of M matrix (size p x p) in the i th row and j th column, m i, j = E X i, t X j, t n (, ) = x( i, t) x( j, t ) m i j n t= 2 Expected value of a matrix is matrix of expected values of individual elements n is no. of time periods 5

6 Multivariate Stochastic models (, ) m i j Q Q Q Q = n s s n it, i jt, j t= 2 i j Q is the original random variable before standardization e.g., stream flow i.e., m (i, j) represents lag one cross correlation between the data at sites i and j. Therefore M is the cross-correlation matrix of lag one. 6

7 Multivariate Stochastic models Considering the model, X = AX + Bε t+ t t+ Post multiplying with X t on both sides and taking the expectation,. E Xt X t AE XtXt BE ε + = + t+ X t M A 0 = = AM + M M ε t+ and X t are independent 7

8 Multivariate Stochastic models Post multiplying with X t+ on both sides and taking the expectation,. X = AX + Bε t+ t t+ X X = AX X + Bε X t+ t+ t t+ t+ t+ E Xt X t AE XtXt BE ε + + = + + t+ X t+ M 0 8

9 Multivariate Stochastic models M M = E X X t t { } E XtX t = { } = E XtX t = E Xt Xt or M = E XtX t + 9

10 Multivariate Stochastic models ε X = ε { AX + Bε } t+ t+ t+ t t+ ε = XA+ ε ε t+ t t+ t+ Taking expectation on both sides, E εt X t E εt XtA ε ε + + = + + t+ t+ B B = E εt XtA E ε ε + + t+ t+ B = 0 + IB = B Since ε t+ has unit variance 0

11 Multivariate Stochastic models Substituting in the equation, E Xt X t AE XtXt BE ε + + = + + t+ X t+ M = AM + BB 0 M = M M M + BB 0 0 A = M M 0 BB = M M M M 0 0 If C = BB C = M M M M 0 0

12 Multivariate Stochastic models B does not have a unique solution. One method is to assume B to be a lower triangular matrix. BB b, b, b 2,... b p, b 2, b 2, b 2, 2... b p, 2 = b( p, ) b( p,2 )... b( p, p) b( p, p) (,) (, 2) (,3 ).. (, ) ( 2,) ( 2, 2) ( 2,3 ).. ( 2, ) c c c c p c c c c p C = c( p, ) c( p,2 )... c( p, p) 2

13 Multivariate Stochastic models The diagonal elements of the B matrix are obtained as, b, = c, { } b 2, 2 = c 2, 2 b 2,... These elements are obtained one by one, using also the expressions for the k th row elements given in the next slide (, ) = (, ) (, ) (, 2 )... (,) { } bkk ckk b kk b kk b k

14 Multivariate Stochastic models The elements in the k th row are obtained as, (, ) b k j b k, b k,2... = = c k, b, c k,2 b 2, b k, b 2, 2 (, ) (,) (,) (,2) (,2)... (, ) (, ) b( j, j) c k j b j b k b j b k b j j b k j = 4

15 Example The annual flow in MCM at two sites P and Q is given below. Generate the first two values of data from these two sites. Year Annual flow at site P (MCM) Annual flow at site Q (MCM) Year Annual flow at site P (MCM) Annual flow at site Q (MCM)

16 Example (Contd.) Site P Q Mean Std.dev M 0 matrix is cross correlation matrix of lag zero P Q M 0 P r PP, 0 rpq, 0 = Q r QP, 0 rqq, 0 6

17 Example (Contd.) r PQ, 0 = n i= ( x ) Pi, xp xqi, xq n s s P Q M = M matrix is cross correlation matrix of lag one P Q M P r PP, rpq, = Q r QP, rqq, 7

18 Example (Contd.) r PQ, = n i= ( x ) Pi, xp xqi, + xq ( n ) s s P Q M = A = M M 0 M =

19 Example (Contd.) A = M M = A =

20 Example (Contd.) C = M M M M 0 0 M 0 M = = M M = = C =

21 Example (Contd.) c, = 0.89, c, 2 = c 2, = 0.76, c b b 2, 2 = , = c, = 0.89 = 0.94 c( 2,) , = = = 0.8 b, 0.94 { } { } 2 2 b 2, 2 = c 2, 2 b 2, 2 2 = = 0.54 (,) b k = (,) (,) c k b 2

22 Example (Contd.) b, = 0.94, b 2, = 0.8, b 2, 2 = 0.54 B = X = AX + Bε t+ t t+ xpt, xpt, ε Pt, + x = x ε Qt, + Qt, Qt, + 22

23 Example (Contd.) xpt, xpt, ε Pt, + x = x ε Qt, + Qt, Qt, + The initial value of x P,0 and x Q,0 are considered as zero ε P, = and ε Q, = xp, x = Q, =

24 Example (Contd.) xp, xp, ε P,2 x = x ε Q, Q, Q,2 ε P,2 =.639 and ε Q,2 = 0.34 xp, x = Q, =

25 Example (Contd.) Generated annual flow at Site X : Q x x X s X, = X +, X Q X, = *25. = 59.2 MCM Q x x X s X,2 = X +,2 X Q X,2 = *25. = 7069 MCM Similarly at Site Y : Q Y, = *823.5 = MCM Q Y,2 = *823.5 = MCM Site X Y Mean Std.dev

26 CASE STUDIES 26

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Multivariate stochastic models Matalas

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Case study -3: Monthly streamflows

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 9 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. 1 Summary of the previous lecture

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Data Extension & Forecasting Moving

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture IDF relationship Procedure for creating

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Frequency factors Normal distribution

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Goodness of fit Chi-square test χ

More information

MTH 215: Introduction to Linear Algebra

MTH 215: Introduction to Linear Algebra MTH 215: Introduction to Linear Algebra Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 20, 2017 1 LU Factorization 2 3 4 Triangular Matrices Definition

More information

Statistical Properties o[ Multivariate Fractional Noise Processes

Statistical Properties o[ Multivariate Fractional Noise Processes VOL. 7, NO. 6 WATER RESOURCES RESEARCH DECEMBER 1971 Statistical Properties o[ Multivariate Fractional Noise Processes 1. C. MATALAS U.S. Geological Survey, Washington, D. C. œ0œ œ J. R. WALLIS IBM Research

More information

Problem Set # 1 Solution, 18.06

Problem Set # 1 Solution, 18.06 Problem Set # 1 Solution, 1.06 For grading: Each problem worths 10 points, and there is points of extra credit in problem. The total maximum is 100. 1. (10pts) In Lecture 1, Prof. Strang drew the cone

More information

Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields.

Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields. Optimal Interpolation ( 5.4) We now generalize the least squares method to obtain the OI equations for vectors of observations and background fields. Optimal Interpolation ( 5.4) We now generalize the

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Solving Consistent Linear Systems

Solving Consistent Linear Systems Solving Consistent Linear Systems Matrix Notation An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

More information

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication.

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. 7-6 Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. The following equations generalize to matrices of any size. Multiplying a matrix from the left by a diagonal matrix

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

Algebra 2 Matrices. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find.

Algebra 2 Matrices. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find. Algebra 2 Matrices Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find. Evaluate the determinant of the matrix. 2. 3. A matrix contains 48 elements.

More information

Lecture 03 Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their Properties

Lecture 03 Positive Semidefinite (PSD) and Positive Definite (PD) Matrices and their Properties Applied Optimization for Wireless, Machine Learning, Big Data Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture 03 Positive Semidefinite (PSD)

More information

Review : Powers of a matrix

Review : Powers of a matrix Review : Powers of a matrix Given a square matrix A and a positive integer k, we define A k = AA A } {{ } k times Note that the multiplications AA, AAA,... make sense. Example. Suppose A=. Then A 0 2 =

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Course Contents Introduction to Random Variables (RVs) Probability Distributions

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

Empirical properties of large covariance matrices in finance

Empirical properties of large covariance matrices in finance Empirical properties of large covariance matrices in finance Ex: RiskMetrics Group, Geneva Since 2010: Swissquote, Gland December 2009 Covariance and large random matrices Many problems in finance require

More information

Elementary operation matrices: row addition

Elementary operation matrices: row addition Elementary operation matrices: row addition For t a, let A (n,t,a) be the n n matrix such that { A (n,t,a) 1 if r = c, or if r = t and c = a r,c = 0 otherwise A (n,t,a) = I + e t e T a Example: A (5,2,4)

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Operations and Elementary Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes LU Decomposition 30.3 Introduction In this Section we consider another direct method for obtaining the solution of systems of equations in the form AX B. Prerequisites Before starting this Section you

More information

Perron Frobenius Theory

Perron Frobenius Theory Perron Frobenius Theory Oskar Perron Georg Frobenius (1880 1975) (1849 1917) Stefan Güttel Perron Frobenius Theory 1 / 10 Positive and Nonnegative Matrices Let A, B R m n. A B if a ij b ij i, j, A > B

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

Math for ML: review. CS 1675 Introduction to ML. Administration. Lecture 2. Milos Hauskrecht 5329 Sennott Square, x4-8845

Math for ML: review. CS 1675 Introduction to ML. Administration. Lecture 2. Milos Hauskrecht 5329 Sennott Square, x4-8845 CS 75 Introduction to ML Lecture Math for ML: review Milos Hauskrecht milos@cs.pitt.edu 5 Sennott Square, x4-45 people.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Prof. Milos Hauskrecht

More information

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS EXAM Exam #3 Math 2360, Spring 200 April 24, 200 ANSWERS i 40 pts Problem In this problem, we will work in the vectorspace P 3 = { ax 2 + bx + c a, b, c R }, the space of polynomials of degree less than

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 Felix Kwok February 27, 2004 Written Problems 1. (Heath E3.10) Let B be an n n matrix, and assume that B is both

More information

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model.

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model. American Journal of Engineering Research (AJER) 24 American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-3, Issue-3, pp-274-279 www.ajer.org Research Paper Open Access

More information

5: MULTIVARATE STATIONARY PROCESSES

5: MULTIVARATE STATIONARY PROCESSES 5: MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalarvalued random variables on the same probability

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

LA lecture 4: linear eq. systems, (inverses,) determinants

LA lecture 4: linear eq. systems, (inverses,) determinants LA lecture 4: linear eq. systems, (inverses,) determinants Yesterday: ˆ Linear equation systems Theory Gaussian elimination To follow today: ˆ Gaussian elimination leftovers ˆ A bit about the inverse:

More information

Math Camp Notes: Linear Algebra II

Math Camp Notes: Linear Algebra II Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other

More information

1 Some Facts on Symmetric Matrices

1 Some Facts on Symmetric Matrices 1 Some Facts on Symmetric Matrices Definition: Matrix A is symmetric if A = A T. Theorem: Any symmetric matrix 1) has only real eigenvalues; 2) is always iagonalizable; 3) has orthogonal eigenvectors.

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 TMA4115 - Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115 - Calculus 3, Lecture 21 Review of last week s lecture Last week

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

On the Stability of LU-Factorizations

On the Stability of LU-Factorizations Australian Journal of Basic and Applied Sciences 5(6): 497-503 2011 ISSN 1991-8178 On the Stability of LU-Factorizations R Saneifard and A Asgari Department of Mathematics Oroumieh Branch Islamic Azad

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra Econometrics I Professor William Greene Stern School of Business Department of Economics 3-1/29 Econometrics I Part 3 Least Squares Algebra 3-2/29 Vocabulary Some terms to be used in the discussion. Population

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd..

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Indian Institute of Technology Jodhpur, Year 2017-2018 Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play?

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play? Overview Last week introduced the important Diagonalisation Theorem: An n n matrix A is diagonalisable if and only if there is a basis for R n consisting of eigenvectors of A. This week we ll continue

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

(I AL BL 2 )z t = (I CL)ζ t, where

(I AL BL 2 )z t = (I CL)ζ t, where ECO 513 Fall 2011 MIDTERM EXAM The exam lasts 90 minutes. Answer all three questions. (1 Consider this model: x t = 1.2x t 1.62x t 2 +.2y t 1.23y t 2 + ε t.7ε t 1.9ν t 1 (1 [ εt y t = 1.4y t 1.62y t 2

More information

EXAM. Exam #3. Math 2360 Fall 2000 Morning Class. Nov. 29, 2000 ANSWERS

EXAM. Exam #3. Math 2360 Fall 2000 Morning Class. Nov. 29, 2000 ANSWERS EXAM Exam # Math 6 Fall Morning Class Nov. 9, ANSWERS i 5 pts. Problem. In each part you are given the augmented matrix of a system of linear equations, with the coefficent matrix in reduced row echelon

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 12 Probability Distribution of Continuous RVs (Contd.)

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

Large Steps in Cloth Simulation. Safeer C Sushil Kumar Meena Guide: Prof. Parag Chaudhuri

Large Steps in Cloth Simulation. Safeer C Sushil Kumar Meena Guide: Prof. Parag Chaudhuri Large Steps in Cloth Simulation Safeer C Sushil Kumar Meena Guide: Prof. Parag Chaudhuri Introduction Cloth modeling a challenging problem. Phenomena to be considered Stretch, shear, bend of cloth Interaction

More information

Math 896 Coding Theory

Math 896 Coding Theory Math 896 Coding Theory Problem Set Problems from June 8, 25 # 35 Suppose C 1 and C 2 are permutation equivalent codes where C 1 P C 2 for some permutation matrix P. Prove that: (a) C 1 P C 2, and (b) if

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2. MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Lecture 8: QR Decomposition

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture No. #13 Probability Distribution of Continuous RVs (Contd

More information

Structural Vector Autoregressions with Markov Switching. Markku Lanne University of Helsinki. Helmut Lütkepohl European University Institute, Florence

Structural Vector Autoregressions with Markov Switching. Markku Lanne University of Helsinki. Helmut Lütkepohl European University Institute, Florence Structural Vector Autoregressions with Markov Switching Markku Lanne University of Helsinki Helmut Lütkepohl European University Institute, Florence Katarzyna Maciejowska European University Institute,

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras

Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 46 Tri-diagonal Matrix Algorithm: Derivation In the last

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mathematics SKE, Strand J STRAND J: TRANSFORMATIONS, VECTORS and MATRICES J4 Matrices Text Contents * * * * Section J4. Matrices: Addition and Subtraction J4.2 Matrices: Multiplication J4.3 Inverse Matrices:

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

Quadratic reformulation techniques for 0-1 quadratic programs

Quadratic reformulation techniques for 0-1 quadratic programs OSE SEMINAR 2014 Quadratic reformulation techniques for 0-1 quadratic programs Ray Pörn CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY ÅBO NOVEMBER 14th 2014 2 Structure

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

Math 215 HW #11 Solutions

Math 215 HW #11 Solutions Math 215 HW #11 Solutions 1 Problem 556 Find the lengths and the inner product of 2 x and y [ 2 + ] Answer: First, x 2 x H x [2 + ] 2 (4 + 16) + 16 36, so x 6 Likewise, so y 6 Finally, x, y x H y [2 +

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix 1 Matrix Algebra Reading [SB] 81-85, pp 153-180 11 Matrix Operations 1 Addition a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn + b 11 b 12 b 1n b 21 b 22 b 2n b m1 b m2 b mn a 11 + b 11 a 12 + b 12 a 1n

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

DESCRIPTION OF ClimGen, A WEATHER GENERATION PROGRAM

DESCRIPTION OF ClimGen, A WEATHER GENERATION PROGRAM Introduction DESCRIPTION OF ClimGen, A WEATHER GENERATION PROGRAM Long-term series of daily weather data are often required for the analysis of weather-impacted systems (e.g., cropping management systems,

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Dynamic Behavior of Chemical Processes (Contd.) (Refer Slide

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Power Flow VI (Refer Slide Time: 00:57) Welcome to lesson 21. In this

More information

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow Math 343 Midterm I Fall 006 sections 00 003 Instructor: Scott Glasgow 1 Assuming A B are invertible matrices of the same size, prove that ( ) 1 1 AB B A 1 = (11) B A 1 1 is the inverse of AB if only if

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Lecture 6: Selection on Multiple Traits

Lecture 6: Selection on Multiple Traits Lecture 6: Selection on Multiple Traits Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Genetic vs. Phenotypic correlations Within an individual, trait values

More information