A nonlinear differential-semblance algorithm for waveform inversion

Size: px
Start display at page:

Download "A nonlinear differential-semblance algorithm for waveform inversion"

Transcription

1 A nonlinear differential-semblance algorithm for waveform inversion Dong Sun The Rice Inversion Project Annual Review Meeting March 3, 212, 1/15

2 Agenda 1 Full Waveform Inversion 2 Extension and Differential Semblance Optimization (DSO) 3 Examples: Inversion in Layered Medium, 2/15

3 Full Waveform Inversion (FWI) A usual set-up: M = a set of models ({m(x)}), F : M D - forward map D = a space of data FWI (least-squares inversion): given d o D, solve min J LS := 1 m M 2 F[m] d o 2 [+ regularizing term(s)] Note: FWI - globally minimize the objective using local methods observed data d o = s d o(x r, t; s) - highly redundant & band-limited possibilities for acquisition parameter s include source position, offset, slowness (plane wave data),..., 3/15

4 Full Waveform Inversion (FWI) Studied since the 8 s, becoming feasible in last 1 yrs: + accommodates any modeling physics & provides quantitative inferences of subsurface (some spectacular successes) ± applicable to long-offset surface data (diving and refracted waves); most of successful inversions so far involve transmitted data inversion with reflection data still a challenge fundamental obstacles: 1. spectral data incompleteness - missing low frequencies in data leads to missing long scale components in estimated model 2. strong nonlinearity, many false local minima - descent methods fail, 3/15

5 Full Waveform Inversion (FWI) Remedies for reflection inversion: automatic migration velocity analysis (MVA) (e.g., DSO variants): decompose model into slowly & fast varying parts (background & reflectivity), then alternately a. build reflectivity via migration or linearized LS-inversion b. update background to reduce inconsistency of reflectivity gathers + infer global changes in model (long-scale updates) limited by linearization and scale separation assumptions nonlinear DSO: import MVA s concepts (image gathering, semblance measuring) into FWI and drop MVA limitations, 3/15

6 Agenda 1 Full Waveform Inversion 2 Extension and Differential Semblance Optimization (DSO) 3 Examples: Inversion in Layered Medium, 4/15

7 Formulate FWI via DSO Concept: relax FWI via extension then demand coherence of extended model FWI - attempt to match all data simultaneously with one model 1 min F[m] m M 2 d 2 := 1 2 ( F[m](s) d(s) 2 ) Extended WI - fit subsets of data with non-physical extended models 1 min 2 m M F[ m] d 2 := 1 2 Note: extended models M = { m(x, s)} m(x, s) = m(x) for all s) s ( F[ m(., s)](s) d(s) 2 ) s (M M, regarding m = m iff extended modeling F : M D by F[ m](s) = F[ m(, s)](s) Equivalent problem to FWI - find coherent solution to extended WI, 5/15

8 Formulate FWI via DSO Differential Semblance (with surface oriented extension): s finely sampled coherence criterion is m/ s = Differential Semblance Optimization: min m M s.t. J DS [ m] := 1 2 s m F[ m] d 2 (coherence measurement) (data-fitting constraints) Key to success: need a proper control in order to navigate through the feasible model set { m M : F[ m] d }, 5/15

9 Using LF data as control Concept: Cannot use independent long-scale model as control, as in MVA: low spatial frequency not well defined, depends on velocity. However, temporal passband is well-defined, and observed data lacks very low frequency energy (-3, -5,... Hz) with good s/n Generally, the impulsive inverse problem is solvable: LS inversion leads to unique model, if data d is not band-limited (good s/n down to Hz) So: use low-frequency data as control (analogous to long-scale model in MVA), 6/15

10 Using LF data as control Approach I: use low-frequency data as control - define low-frequency source complementary to missing passband, low-frequency modeling op F l and its extension F l - define complementary low-frequency data d l - define m[d l ] to be minimizer of 2 F[ m] + F l [ m] (d + d l )] 2 + σ 2 m s - ndso: determine d l by solving min d l s m[d l] Initial exploration: D. Sun (28), D. Sun & W. Symes (29), for plane wave / layered medium modeling slices of DS objective are convex, i.e., an enlargement of the domain of attraction of the global minimum is achieved Further thought: find a way to supply meaningful/consistent low frequency data 2, 6/15

11 Using LF data as control Approach II: generate low-frequency data from model - Given low frequency control model m l M, define extended model m = m[m l ] by minimizing 2 F[ m] + F l [ m] (d + F l [m l ])] 2 + σ 2 m s - ndso: determine m l by solving min m l s m[m l] Advantage of this approach: m l plays same role as migration velocity model, but no linearization, scale separation assumptions required by formulation. Current project: 2D constant-density acoustics, plane-wave sources (to minimize edge artifacts) 2, 6/15

12 DSO Algorithm Key step: compute m l gradient: where J DS [m l ] = DF l [m l ] T 1 2 DF l [ m[m l ]]H[ m[m l ]] s 2 m[m l] H[ m] = ( DF [ m] + DF l [ m] ) T ( DF [ m] + DFl [ m] ) Computational procedure: 1 initialize m l, etc. 2 solve sub-ls problem for m[m l ] 3 evaluate J DS [ m]. If stopping criterion satisfied, stop; else, continue. 4 compute updating direction g = J DS [m l ] 5 update m l, cycle, 7/15

13 Agenda 1 Full Waveform Inversion 2 Extension and Differential Semblance Optimization (DSO) 3 Examples: Inversion in Layered Medium, 8/15

14 Model x (km) 2 z (km) MPa x1 4 Three layer bulk modulus model. (acoustic velocity v = 1.5, 2.5, 2 km/s, density ρ = 1 g/cm 3 ) Two sets of inversion exercises: absorbing surface free surface, 9/15

15 Absorbing Surf: LS Inversion (standard FWI) Time (s) sign(p)p^2 (s^2/km^2) Band limited ( Hz) plane wave source - 31 slowness panels, 1/15

16 Absorbing Surf: LS Inversion (standard FWI) Time (s) sign(p)p^2 (s^2/km^2) time (s) sign(p)*p^2 (s^2/km^2) Target data (Top), Data residual (Bottom) : after 4 LBFGS iterations - RMS 32%, 1/15

17 Absorbing Surf: LS Inversion (standard FWI) x (km) 2 x true:blk, init:blue, fnl:red.2 1. z (km).4 bulk modulus (Mpa) MPa.2.4 Depth (km) Left: FWI estimate of bulk modulus after 4 LBFGS iterations; Right: final model slice at x = 1.5( km), 1/15

18 Absorbing Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa Inverted model m[m l ], m l = homogeneous model, 11/15

19 Absorbing Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa Inverted gather m[m l ], m l = homogeneous model, x = 1.5 km, 11/15

20 Absorbing Surf: DS Inversion with LF control x (km) 2 z (km) MPa x1 4 Low frequency control model m l after 7 updates, 11/15

21 Absorbing Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa x1 4 Inverted gather m[m l ], 7 updates of m l, x = 1.5 km, 11/15

22 Absorbing Surf: DS Inversion with LF control x1 4 init-models (true:blk, 1:ylw, 2-6:grn, 7:red, 8:blue) x1 4 fnl-models (true:blk, 1:ylw, 2-6:grn, 7:red, 8:blue) bulk modulus (Mpa).8.6 bulk modulus (Mpa) Depth (km).2.4 Depth (km) Left: m l at x = 1.5( km); Right: final model at x = 1.5( km), 11/15

23 Free Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa Inverted model m[m l ], m l = homogeneous model! multiple reflections got suppressed during LS inversion, 12/15

24 Free Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa LS gradient in 1st iteration (i.e., residual migration)! lots of multiple reflections, 12/15

25 Free Surf: DS Inversion with LF control Time (s) sign(p)p^2 (s^2/km^2) Time (s) 1 2 sign(p)p^2 (s^2/km^2) Target Data (Top), Predicted Data (Bottom) :after 6 LBFGS iterations, 12/15

26 Free Surf: DS Inversion with LF control Time (s) sign(p)p^2 (s^2/km^2) Data residual after 6 LBFGS iterations - RMS 8%, 12/15

27 Free Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) Inverted model gather m[m l ], m l = homogeneous model, x = 1.5 km, 12/15

28 Free Surf: DS Inversion with LF control x (km) 2 z (km) MPa x1 4 Low frequency control model m l in the 3rd DS-iteration, 12/15

29 Free Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) MPa x1 4 Inverted model m[m l ] in the 3rd DS-iteration, 12/15

30 Free Surf: DS Inversion with LF control sign(p)p^2 (s^2/km^2) z (km) Inverted model gather m[m l ] after 3 DS-iterations, x = 1.5 km DS-objective value reduced by 6%, 12/15

31 Free Surf: DS Inversion with LF control Time (s) sign(p)p^2 (s^2/km^2) Time (s) 1 2 sign(p)p^2 (s^2/km^2) Target Data (Top), Data Residual (Bottom) :after 6 LBFGS iterations - RMS 15% (in 3rd DS iteration), 12/15

32 Free Surf: DS Inversion with LF control init-mdl (true:blk, 1:grn, 2:blue, 3:red, 4:purp) fnl-mdl (true:blk, 1:grn, 2:blue, 3:red) x1 4 x bulk modulus (Mpa).8.6 bulk modulus (Mpa) Depth (km).2.4 Depth (km) Left: m l at x = 1.5( km); Right: final model at x = 1.5( km), 12/15

33 Free Surf: DS Inversion with LF control x (km) 2 z (km) MPa x1 4 Inverted model stack (in 3rd DS iteration), 12/15

34 Free Surf: DS Inversion with LF control Standard LS inversion staring from the final model stack from ndso x (km) 2 z (km) MPa x1 4 Inverted model after 153 LBFGS iterations (RMS residual 6%) (initial RMS res 77%; after 3 LBFGS RMS res 14%), 12/15

35 Free Surf: DS Inversion with LF control Standard LS inversion staring from the homogeneous model x (km) 2 z (km) MPa Inverted model after 3 LBFGS iterations (RMS residual 27%), 12/15

36 Free Surf: DS Inversion with LF control Time (s).5 1. x (km) x1 4 Data fitting (for shot with slowness ): Left, target data; Middle, residual for LS inv from DS-fnl-stack; Right, residual for LS inv from homogeneous model, 12/15

37 Free Surf: DS Inversion with LF control true:blk, init:blue, fnl:red true:blk, init:blue, fnl:red x1 4 x bulk modulus (Mpa).8 bulk modulus (Mpa) Depth (km).2.4 Depth (km) Left: LS inv fnl model at x = 1.5( km); Right: nds inv fnl model at x = 1.5( km), 12/15

38 Remarks Pros: - successfully infers global model updates for both absorbing surface and free surface - stack at least gives a good initial model for LS-FWI, 13/15

39 Remarks Cost: 3-7 DS-iterations, mainly consisting of: 1 LS inversion (for m[m l ]) direction computation g = DF l [m l ] T 1 2 DF l [ m[m l ]]H[ m[m l ]] s m[m 2 l ] solve H[ m[m l ]]q = 2 m[m s 2 l ] for q ( 3 CG iterations) to reduce cost: (a) pre-conditioning; (b) scaling strategies; (c) replacing H with I (might work)... compute g = DF l [m l ] T DF l [ m[m l ]] q (1 Born Sim + 1 Adj Comp) step-length computation (1 CG or Lin-LS + 1 Born Sim):, where ψ = s α = ψ, s m[m l] ψ, ψ ( DF [ m[ml ]] DF [m l ]g ), 13/15

40 Summary This approach may: combine best features of MVA and FWI (no linearization, scale separation assumptions required), address the spectral data incompleteness and local-minima issue, infer global changes in model and provide good initial model for FWI. Next to-do: explore this strategy with more tests, improve efficiency,..., 14/15

41 Acknowledgements Great thanks to my Ph.D. committee: William Symes, Matthias Heinkenschloss, Yin Zhang, Colin Zelt Present and former TRIP team members: Xin Wang, Marco Enriquez, Igor Terentyev, Tanya Vdovina, Rami Nammour ExxonMobil URC FWI team especially Dave Hinkley, Jerry Krebs WesternGeco FWI Management for support and permission to present here Sponsors of The Rice Inversion Project NSF DMS Thank you!, 15/15

Objective functions for full waveform inversion

Objective functions for full waveform inversion Objective functions for full waveform inversion William Symes The Rice Inversion Project EAGE 2012 Workshop: From Kinematic to Waveform Inversion A Tribute to Patrick Lailly Agenda Overview Challenges

More information

Education Ph.D. Candidate, Rice University, Houston, TX, USA, 08/ Present. M.S, Shanghai Jiao Tong University, Shanghai, China, 09/ /2009

Education Ph.D. Candidate, Rice University, Houston, TX, USA, 08/ Present. M.S, Shanghai Jiao Tong University, Shanghai, China, 09/ /2009 Yin Huang Education Ph.D. Candidate, Rice University, Houston, TX, USA, 08/2010 - Present Dissertation Topic: Nonlinear Extended Waveform Inversion M.A. with Master Thesis: Transparency property of one

More information

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Guanghui Huang Education University of Chinese Academy of Sciences, Beijing, China Ph.D. in Computational

More information

A Nonlinear Differential Semblance Strategy for Waveform Inversion: Experiments in Layered Media Dong Sun and William W Symes, Rice University

A Nonlinear Differential Semblance Strategy for Waveform Inversion: Experiments in Layered Media Dong Sun and William W Symes, Rice University A Nonlinear Differential Semblance Strategy for Waveform Inversion: Experiments in Layered Media Dong Sun and William W Symes, Rice University SUMMARY This paper proposes an alternative approach to the

More information

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012).

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012). Inversion Velocity Analysis via Differential Semblance Optimization in the Depth-oriented Extension Yujin Liu, William W. Symes, Yin Huang,and Zhenchun Li, China University of Petroleum (Huadong), Rice

More information

Full Waveform Inversion via Matched Source Extension

Full Waveform Inversion via Matched Source Extension Full Waveform Inversion via Matched Source Extension Guanghui Huang and William W. Symes TRIP, Department of Computational and Applied Mathematics May 1, 215, TRIP Annual Meeting G. Huang and W. W. Symes

More information

Source function estimation in extended full waveform inversion

Source function estimation in extended full waveform inversion Source function estimation in extended full waveform inversion Lei Fu The Rice Inversion Project (TRIP) May 6, 2014 Lei Fu (TRIP) Source estimation in EFWI May 6, 2014 1 Overview Objective Recover Earth

More information

Registration-guided least-squares waveform inversion

Registration-guided least-squares waveform inversion Registration-guided least-squares waveform inversion Hyoungsu Baek 1, Henri Calandra, Laurent Demanet 1 1 MIT Mathematics department, TOTAL S.A. January 15 013 Abstract Full waveform inversion with frequency

More information

Two-Scale Wave Equation Modeling for Seismic Inversion

Two-Scale Wave Equation Modeling for Seismic Inversion Two-Scale Wave Equation Modeling for Seismic Inversion Susan E. Minkoff Department of Mathematics and Statistics University of Maryland Baltimore County Baltimore, MD 21250, USA RICAM Workshop 3: Wave

More information

Wave-equation tomography for anisotropic parameters

Wave-equation tomography for anisotropic parameters Wave-equation tomography for anisotropic parameters Yunyue (Elita) Li and Biondo Biondi ABSTRACT Anisotropic models are recognized as more realistic representations of the subsurface where complex geological

More information

Full Waveform Inversion (FWI) with wave-equation migration. Gary Margrave Rob Ferguson Chad Hogan Banff, 3 Dec. 2010

Full Waveform Inversion (FWI) with wave-equation migration. Gary Margrave Rob Ferguson Chad Hogan Banff, 3 Dec. 2010 Full Waveform Inversion (FWI) with wave-equation migration (WEM) and well control Gary Margrave Rob Ferguson Chad Hogan Banff, 3 Dec. 2010 Outline The FWI cycle The fundamental theorem of FWI Understanding

More information

Abstract. A Nonlinear Differential Semblance Algorithm for Waveform Inversion. Dong Sun

Abstract. A Nonlinear Differential Semblance Algorithm for Waveform Inversion. Dong Sun 2 Abstract A Nonlinear Differential Semblance Algorithm for Waveform Inversion by Dong Sun This thesis proposes a nonlinear differential semblance approach to full waveform inversion as an alternative

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 Wei Huang *, Kun Jiao, Denes Vigh, Jerry Kapoor, David Watts, Hongyan Li, David Derharoutian, Xin Cheng WesternGeco Summary Since the 1990s, subsalt imaging in the Gulf of Mexico (GOM) has been a major

More information

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke Consortium 2010 FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke SLIM University of British Columbia Full Waveform Inversion The Full Waveform

More information

Progress and Prospects for Wave Equation MVA

Progress and Prospects for Wave Equation MVA Progress and Prospects for Wave Equation MVA William W. Symes TRIP Annual Review, January 007 Agenda MVA, Nonlinear Inversion, and Extended Modeling MVA with two different extensions: the coherent noise

More information

Seismic Modeling, Migration and Velocity Inversion

Seismic Modeling, Migration and Velocity Inversion Seismic Modeling, Migration and Velocity Inversion Inverse Scattering Bee Bednar Panorama Technologies, Inc. 14811 St Marys Lane, Suite 150 Houston TX 77079 May 30, 2014 Bee Bednar (Panorama Technologies)

More information

Youzuo Lin and Lianjie Huang

Youzuo Lin and Lianjie Huang PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Building Subsurface Velocity Models with Sharp Interfaces

More information

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX Summary Near-surface modeling for statics corrections is an integral part of a land

More information

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Gaurav Dutta, Kai Lu, Xin Wang and Gerard T. Schuster, King Abdullah University of Science and Technology

More information

Estimating a pseudounitary operator for velocity-stack inversion

Estimating a pseudounitary operator for velocity-stack inversion Stanford Exploration Project, Report 82, May 11, 2001, pages 1 77 Estimating a pseudounitary operator for velocity-stack inversion David E. Lumley 1 ABSTRACT I estimate a pseudounitary operator for enhancing

More information

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Tu N118 05 Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Y. Guo* (CGG), M. Fujimoto (INPEX), S. Wu (CGG) & Y. Sasaki (INPEX) SUMMARY Thrust-complex

More information

arxiv: v1 [physics.geo-ph] 6 Dec 2012

arxiv: v1 [physics.geo-ph] 6 Dec 2012 Seismic Solvability Problems August Lau and Chuan Yin Email contact: chuan.yin@apachecorp.com arxiv:1212.1350v1 [physics.geo-ph] 6 Dec 2012 December 6, 2012 Abstract Classical approach of solvability problem

More information

Reverse Time Shot-Geophone Migration and

Reverse Time Shot-Geophone Migration and Reverse Time Shot-Geophone Migration and velocity analysis, linearizing, inverse problems, extended models, etc. etc. William W. Symes PIMS Geophysical Inversion Workshop Calgary, Alberta July 2003 www.trip.caam.rice.edu

More information

Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann

Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann SLIM University of British Columbia van Leeuwen, T and Herrmann, F J (2013). Mitigating local minima

More information

Residual Statics using CSP gathers

Residual Statics using CSP gathers Residual Statics using CSP gathers Xinxiang Li and John C. Bancroft ABSTRACT All the conventional methods for residual statics analysis require normal moveout (NMO) correction applied on the seismic data.

More information

Downloaded 11/08/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/08/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Velocity tomography based on turning waves and finite-frequency sensitivity kernels Xiao-Bi Xie*, University of California at Santa Cruz, Jan Pajchel, Statoil, Norway Summary We present a velocity tomography

More information

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September Seismic Imaging William W. Symes C. I. M. E. Martina Franca September 2002 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram from the

More information

An Approximate Inverse to the Extended Born Modeling Operator Jie Hou, William W. Symes, The Rice Inversion Project, Rice University

An Approximate Inverse to the Extended Born Modeling Operator Jie Hou, William W. Symes, The Rice Inversion Project, Rice University Jie Hou, William W. Symes, The Rice Inversion Project, Rice University SUMMARY We modify RTM to create an approximate inverse to the extended Born modeling operator in 2D. The derivation uses asymptotic

More information

Accelerating. Extended Least Squares Migration. Jie Hou TRIP 2014 Review Meeting May 1st, 2015

Accelerating. Extended Least Squares Migration. Jie Hou TRIP 2014 Review Meeting May 1st, 2015 Accelerating Extended Least Squares Migration Jie Hou TRIP 2014 Review Meeting May 1st, 2015 Linearized Inverse Problem Fm = d Adjoint Operator m = F T d Approximate Inverse m = F d 2 Linearized Inverse

More information

Full waveform inversion in the Laplace and Laplace-Fourier domains

Full waveform inversion in the Laplace and Laplace-Fourier domains Full waveform inversion in the Laplace and Laplace-Fourier domains Changsoo Shin, Wansoo Ha, Wookeen Chung, and Ho Seuk Bae Summary We present a review of Laplace and Laplace-Fourier domain waveform inversion.

More information

Source estimation for frequency-domain FWI with robust penalties

Source estimation for frequency-domain FWI with robust penalties Source estimation for frequency-domain FWI with robust penalties Aleksandr Y. Aravkin, Tristan van Leeuwen, Henri Calandra, and Felix J. Herrmann Dept. of Earth and Ocean sciences University of British

More information

The Search for a Cycle-Skipping Cure: an Overview

The Search for a Cycle-Skipping Cure: an Overview The Search for a Cycle-Skipping Cure: an Overview William Symes Computational and Applied Mathematics & Earth Science, Rice University The Rice Inversion Project IPAM, May 2017 Agenda Fixes within FWI

More information

( ) ( ), 1, 1. Downloaded 10/14/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

( ) ( ), 1, 1. Downloaded 10/14/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Chao Zhang*, Jie Zhang, University of Science and Technology of China (USTC); Zhikun Sun, GeoTomo LLC Summary Refraction traveltimes have long been applied for deriving long-wavelength statics solutions.

More information

Elastic least-squares reverse time migration

Elastic least-squares reverse time migration CWP-865 Elastic least-squares reverse time migration Yuting Duan, Paul Sava, and Antoine Guitton Center for Wave Phenomena, Colorado School of Mines ABSTRACT Least-squares migration (LSM) can produce images

More information

Direct nonlinear traveltime inversion in layered VTI media Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco

Direct nonlinear traveltime inversion in layered VTI media Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco Summary We present a scheme for direct nonlinear inversion of picked moveout traveltimes in block-layered isotropic or

More information

Model Extensions and Inverse Scattering: Inversion for Seismic Velocities

Model Extensions and Inverse Scattering: Inversion for Seismic Velocities Model Extensions and Inverse Scattering: Inversion for Seismic Velocities William W. Symes Rice University October 2007 William W. Symes ( Rice University) Model Extensions and Inverse Scattering: Inversion

More information

W011 Full Waveform Inversion for Detailed Velocity Model Building

W011 Full Waveform Inversion for Detailed Velocity Model Building W011 Full Waveform Inversion for Detailed Velocity Model Building S. Kapoor* (WesternGeco, LLC), D. Vigh (WesternGeco), H. Li (WesternGeco) & D. Derharoutian (WesternGeco) SUMMARY An accurate earth model

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

Summary. Introduction

Summary. Introduction Detailed velocity model building in a carbonate karst zone and improving sub-karst images in the Gulf of Mexico Jun Cai*, Hao Xun, Li Li, Yang He, Zhiming Li, Shuqian Dong, Manhong Guo and Bin Wang, TGS

More information

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas Lingli Hu and Jianhang Zhou, CGGVeritas Summary The exploration interest in the Santos Basin offshore Brazil has increased with the large deep water pre-salt discoveries, such as Tupi and Jupiter. As the

More information

Downloaded 05/01/17 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 05/01/17 to Redistribution subject to SEG license or copyright; see Terms of Use at Mapping Imbricate Structures in the Thrust Belt of Southeast Turkey by Large-Offset Seismic Survey Oz Yilmaz*, Anatolian Geophysical, Istanbul, Turkey; and Serdar Uygun, Ali Ölmez, and Emel Çalı, Turkish

More information

Image-space wave-equation tomography in the generalized source domain

Image-space wave-equation tomography in the generalized source domain Image-space wave-equation tomography in the generalized source domain Yaxun Tang, Claudio Guerra, and Biondo Biondi ABSTRACT We extend the theory of image-space wave-equation tomography to the generalized

More information

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Technical paper WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Authors C. Zeng (TGS), S. Dong (TGS), B. Wang (TGS) & Z. Zhang* (TGS) 2016 TGS-NOPEC Geophysical Company ASA. All rights reserved.

More information

Nonlinear seismic imaging via reduced order model backprojection

Nonlinear seismic imaging via reduced order model backprojection Nonlinear seismic imaging via reduced order model backprojection Alexander V. Mamonov, Vladimir Druskin 2 and Mikhail Zaslavsky 2 University of Houston, 2 Schlumberger-Doll Research Center Mamonov, Druskin,

More information

Mathematics of Seismic Imaging Part 1: Modeling and Inverse Problems

Mathematics of Seismic Imaging Part 1: Modeling and Inverse Problems Mathematics of Seismic Imaging Part 1: Modeling and Inverse Problems William W. Symes Rice University 0. Introduction How do you turn lots of this... 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 (field seismogram

More information

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Summary After the synthetic data inversion examples, real 3D data sets have been

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Reflection Seismic Method

Reflection Seismic Method Reflection Seismic Method Data and Image sort orders; Seismic Impedance; -D field acquisition geometries; CMP binning and fold; Resolution, Stacking charts; Normal Moveout and correction for it; Stacking;

More information

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Raul Cova and Kris Innanen ABSTRACT Feasibility of using Full Waveform Inversion (FWI) to build velocity models has been increasing

More information

Presentation in Convex Optimization

Presentation in Convex Optimization Dec 22, 2014 Introduction Sample size selection in optimization methods for machine learning Introduction Sample size selection in optimization methods for machine learning Main results: presents a methodology

More information

Chapter 7. Seismic imaging. 7.1 Assumptions and vocabulary

Chapter 7. Seismic imaging. 7.1 Assumptions and vocabulary Chapter 7 Seismic imaging Much of the imaging procedure was already described in the previous chapters. An image, or a gradient update, is formed from the imaging condition by means of the incident and

More information

The 2D/3D i-cube Workflow for Subsurface Imaging of Complex Structures

The 2D/3D i-cube Workflow for Subsurface Imaging of Complex Structures The 2D/3D i-cube Workflow for Subsurface Imaging of Complex Structures Öz Yilmaz CTO, GeoTomo LLC With the i-cube workflow, you circumvent the velocity uncertainty in imaging complex structures, you preserve

More information

Enhancing Sub Basalt Imaging Using Depth Domain Processing

Enhancing Sub Basalt Imaging Using Depth Domain Processing Enhancing Sub Basalt Imaging Using Depth Domain Processing A.K.Sarkar*, P.V.Rao, S.Panigrahi and S.R.M.Karnawat Regional Computer Centre, ONGC, Vadodara, India E-mail:sarkararun@hotmail.com Summary Processing

More information

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge GSA Data Repository 176 1 5 6 7 9 1 11 1 SUPPLEMENTARY MATERIAL FOR: Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge Hanchao Jian 1,, Satish C. Singh *, Yongshun

More information

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy.

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy. Seismic Imaging Strategies for Thrust-Belt Exploration: Extended Offsets, Seismic/Gravity/EM simultaneous Joint-Inversion and Anisotropic Gaussian Beam Pre-Stack Depth Migration Daniele Colombo* Geosystem-WesternGeco,

More information

THE RICE INVERSION PROJECT

THE RICE INVERSION PROJECT THE RICE INVERSION PROJECT Mario Bencomo, Lei Fu, Jie Hou, Guanghui Huang, Rami Nammour, and William Symes Annual Report 6 Copyright 5-6 by Rice University i TRIP6 TABLE OF CONTENTS William W. Symes, The

More information

Dirty salt velocity inversion: The road to a clearer subsalt image

Dirty salt velocity inversion: The road to a clearer subsalt image GEOPHYSICS. VOL. 76, NO. 5 (SEPTEMBER-OCTOBER 2011); P. WB169 WB174, 8 FIGS. 10.1190/GEO2010-0392.1 Dirty salt velocity inversion: The road to a clearer subsalt image Shuo Ji 1, Tony Huang 1, Kang Fu 2,

More information

5. A step beyond linearization: velocity analysis

5. A step beyond linearization: velocity analysis 5. A step beyond linearization: velocity analysis 1 Partially linearized seismic inverse problem ( velocity analysis ): given observed seismic data S obs, find smooth velocity v E(X), X R 3 oscillatory

More information

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581 Oz Yilmaz* and Jie Zhang, GeoTomo LLC, Houston, Texas; and Yan Shixin, PetroChina, Beijing, China Summary PetroChina conducted a multichannel large-offset 2-D seismic survey in the Yumen Oil Field, Northwest

More information

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Folke Engelmark* PGS Multi-Transient EM, Asia-Pacific, Singapore folke.engelmark@pgs.com Summary Successful as

More information

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a a Published in Journal of Seismic Exploration, 23, no. 4, 303-312, (2014) Yangkang Chen, Tingting Liu, Xiaohong Chen,

More information

Upscaling Wave Computations

Upscaling Wave Computations Upscaling Wave Computations Xin Wang 2010 TRIP Annual Meeting 2 Outline 1 Motivation of Numerical Upscaling 2 Overview of Upscaling Methods 3 Future Plan 3 Wave Equations scalar variable density acoustic

More information

Uncertainty quantification for Wavefield Reconstruction Inversion

Uncertainty quantification for Wavefield Reconstruction Inversion Uncertainty quantification for Wavefield Reconstruction Inversion Zhilong Fang *, Chia Ying Lee, Curt Da Silva *, Felix J. Herrmann *, and Rachel Kuske * Seismic Laboratory for Imaging and Modeling (SLIM),

More information

Comments on the Geophysics paper Multiparameter 11norm. waveform fitting: Interpretation of Gulf of Mexico reflection

Comments on the Geophysics paper Multiparameter 11norm. waveform fitting: Interpretation of Gulf of Mexico reflection ,..-., Comments on the Geophysics paper Multiparameter 11norm waveform fitting: Interpretation of Gulf of Mexico reflection seismograms by H. Djikp&s6 and A. Tarantola Susan E. Minkoff * t and William

More information

Stolt residual migration for converted waves

Stolt residual migration for converted waves Stanford Exploration Project, Report 11, September 18, 1, pages 1 6 Stolt residual migration for converted waves Daniel Rosales, Paul Sava, and Biondo Biondi 1 ABSTRACT P S velocity analysis is a new frontier

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

A projected Hessian for full waveform inversion

A projected Hessian for full waveform inversion CWP-679 A projected Hessian for full waveform inversion Yong Ma & Dave Hale Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA (c) Figure 1. Update directions for one iteration

More information

Compressive sampling meets seismic imaging

Compressive sampling meets seismic imaging Compressive sampling meets seismic imaging Felix J. Herrmann fherrmann@eos.ubc.ca http://slim.eos.ubc.ca joint work with Tim Lin and Yogi Erlangga Seismic Laboratory for Imaging & Modeling Department of

More information

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys 25 th January, 2018 Aleksandr Nikitin a.nikitin@gwl-geo.com Geology Without Limits Overview 2011-2016 GWL Acquired over 43000 km 2D seismic

More information

Waveform inversion for attenuation estimation in anisotropic media Tong Bai & Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines

Waveform inversion for attenuation estimation in anisotropic media Tong Bai & Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines Waveform inversion for attenuation estimation in anisotropic media Tong Bai & Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines SUMMARY Robust estimation of attenuation coefficients remains

More information

Full-Waveform Inversion with Gauss- Newton-Krylov Method

Full-Waveform Inversion with Gauss- Newton-Krylov Method Full-Waveform Inversion with Gauss- Newton-Krylov Method Yogi A. Erlangga and Felix J. Herrmann {yerlangga,fherrmann}@eos.ubc.ca Seismic Laboratory for Imaging and Modeling The University of British Columbia

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Wenyong Pan and Lianjie Huang. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA

Wenyong Pan and Lianjie Huang. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 019 SGP-TR-14 Adaptive Viscoelastic-Waveform Inversion Using the Local Wavelet

More information

Compressive Sensing Applied to Full-wave Form Inversion

Compressive Sensing Applied to Full-wave Form Inversion Compressive Sensing Applied to Full-wave Form Inversion Felix J. Herrmann* fherrmann@eos.ubc.ca Joint work with Yogi Erlangga, and Tim Lin *Seismic Laboratory for Imaging & Modeling Department of Earth

More information

Full waveform inversion with wave equation migration and well control

Full waveform inversion with wave equation migration and well control FWI by WEM Full waveform inversion with wave equation migration and well control Gary F. Margrave, Robert J. Ferguson and Chad M. Hogan ABSTRACT We examine the key concepts in full waveform inversion (FWI)

More information

Anisotropic tomography for TTI and VTI media Yang He* and Jun Cai, TGS

Anisotropic tomography for TTI and VTI media Yang He* and Jun Cai, TGS media Yang He* and Jun Cai, TGS Summary A simultaneous anisotropic tomographic inversion algorithm is developed. Check shot constraints and appropriate algorithm preconditioning play an important role

More information

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Seminar des FA Ultraschallprüfung Vortrag 1 More info about this article: http://www.ndt.net/?id=20944 Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Thomas

More information

Summary. We present the results of the near-surface characterization for a 3D survey in thrust belt area in Sharjah, United Arab Emirates.

Summary. We present the results of the near-surface characterization for a 3D survey in thrust belt area in Sharjah, United Arab Emirates. Near-surface characterization, challenges, and solutions for high-density, high-productivity, Alexander Zarkhidze*, Claudio Strobbia, Abdallah Ibrahim, WesternGeco; Luis Viertel Herrera, Abdulla Al Qadi,

More information

Elastic least-squares migration with two-way wave equation forward and adjoint operators

Elastic least-squares migration with two-way wave equation forward and adjoint operators Elastic least-squares migration with two-way wave equation forward and adjoint operators Ke Chen and Mauricio D. Sacchi, Department of Physics, University of Alberta Summary Time domain elastic least-squares

More information

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION Hiroazu Kameoa The University of Toyo / Nippon Telegraph and Telephone Corporation ABSTRACT This paper proposes a novel

More information

Extensions and Nonlinear Inverse Scattering

Extensions and Nonlinear Inverse Scattering Extensions and Nonlinear Inverse Scattering William W. Symes CAAM Colloquium, September 2004 Data parameters: time t, source location x s, and receiver location x r, (vector) half offset h = x r x s, scalar

More information

Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method

Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method Ludovic Métivier, Romain Brossier, Jean Virieux, Stéphane Operto To cite this version: Ludovic Métivier, Romain

More information

2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function Pure Appl. Geophys. Ó 213 Springer Basel DOI 1.17/s24-13-651-4 Pure and Applied Geophysics 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function EUNJIN PARK, 1 WANSOO HA,

More information

Time domain sparsity promoting LSRTM with source estimation

Time domain sparsity promoting LSRTM with source estimation Time domain sparsity promoting LSRTM with source estimation Mengmeng Yang, Philipp Witte, Zhilong Fang & Felix J. Herrmann SLIM University of British Columbia Motivation Features of RTM: pros - no dip

More information

Hydrogeophysics - Seismics

Hydrogeophysics - Seismics Hydrogeophysics - Seismics Matthias Zillmer EOST-ULP p. 1 Table of contents SH polarized shear waves: Seismic source Case study: porosity of an aquifer Seismic velocities for porous media: The Frenkel-Biot-Gassmann

More information

Towards full waveform inversion: A torturous path

Towards full waveform inversion: A torturous path FWI Towards full waveform inversion: A torturous path J. Helen Isaac and Gary F. Margrave ABSTRACT Full waveform inversion (FWI) can be viewed as an iterative cycle involving forward modelling, pre-stack

More information

Trace balancing with PEF plane annihilators

Trace balancing with PEF plane annihilators Stanford Exploration Project, Report 84, May 9, 2001, pages 1 333 Short Note Trace balancing with PEF plane annihilators Sean Crawley 1 INTRODUCTION Land seismic data often shows large variations in energy

More information

Nonlinear acoustic imaging via reduced order model backprojection

Nonlinear acoustic imaging via reduced order model backprojection Nonlinear acoustic imaging via reduced order model backprojection Alexander V. Mamonov 1, Vladimir Druskin 2, Andrew Thaler 3 and Mikhail Zaslavsky 2 1 University of Houston, 2 Schlumberger-Doll Research

More information

Modeling, migration, and inversion in the generalized source and receiver domain

Modeling, migration, and inversion in the generalized source and receiver domain Modeling, migration, and inversion in the generalized source and receiver domain Yaxun Tang ABSTRACT I extend the theory of Born modeling, migration and inversion to the generalized source and receiver

More information

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil Y. Huang* (CGGVeritas), D. Lin (CGGVeritas), B. Bai (CGGVeritas), S. Roby (CGGVeritas) & C. Ricardez (CGGVeritas) SUMMARY Several discoveries,

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Lecture 17: Numerical Optimization October 2014

Lecture 17: Numerical Optimization October 2014 Lecture 17: Numerical Optimization 36-350 22 October 2014 Agenda Basics of optimization Gradient descent Newton s method Curve-fitting R: optim, nls Reading: Recipes 13.1 and 13.2 in The R Cookbook Optional

More information

Scattering-based decomposition of sensitivity kernels for full-waveform inversion

Scattering-based decomposition of sensitivity kernels for full-waveform inversion Scattering-based decomposition of sensitivity kernels for full-waveform inversion Daniel Leal Macedo (Universidade Estadual de Campinas) and Ivan asconcelos (Schlumberger Cambridge Research) Copyright

More information

Improving Resolution with Spectral Balancing- A Case study

Improving Resolution with Spectral Balancing- A Case study P-299 Improving Resolution with Spectral Balancing- A Case study M Fatima, Lavendra Kumar, RK Bhattacharjee, PH Rao, DP Sinha Western Offshore Basin, ONGC, Panvel, Mumbai Summary: The resolution limit

More information

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC)

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Summary We develop an elastic full waveform inversion

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements K. Key (Scripps Institution of Oceanography), Z. Du* (PGS), J. Mattsson (PGS), A.

More information

Detailed Program of the Workshop

Detailed Program of the Workshop Detailed Program of the Workshop Inverse Problems: Theoretical and Numerical Aspects Laboratoire de Mathématiques de Reims, December 17-19 2018 December 17 14h30 Opening of the Workhop 15h00-16h00 Mourad

More information

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Summary The traditional methods for acquiring and processing CSEM data are very different from those for seismic

More information