Dirty salt velocity inversion: The road to a clearer subsalt image

Size: px
Start display at page:

Download "Dirty salt velocity inversion: The road to a clearer subsalt image"

Transcription

1 GEOPHYSICS. VOL. 76, NO. 5 (SEPTEMBER-OCTOBER 2011); P. WB169 WB174, 8 FIGS /GEO Dirty salt velocity inversion: The road to a clearer subsalt image Shuo Ji 1, Tony Huang 1, Kang Fu 2, and Zhengxue Li 1 ABSTRACT For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach. INTRODUCTION For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries (Haugen et al, 2009). In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved due to advances in acquisition, velocity model building, and migration algorithms (Huang and Yu, 2009, Bowling et al, 2010). But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. Due to the complex salt tectonic environment in deep-water Gulf of Mexico, inclusions within salt (dirty salt), are common. Most of them are sutures where salt and sediments are mixed together. Historically, the salt body has been treated as homogeneous in the Gulf of Mexico. In common industry practice, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. Figure 1 shows a good example from the Gulf of Mexico Garden Banks area, where sutures and inclusions are quite obvious in the seismic images. When looking at the subsalt area, we see clearly a shadow zone underneath the dirty salt body located directly above the base of salt event. Subsalt events lose focus and continuity there. Similar observations can be found from other areas, especially when those inclusion bodies are close to the base of salt event. We observed that the base of salt distortion, subsalt event jittering, and subsalt dim zones correlate with dirty salt occurrence. Several approaches have been proposed to solve the problem of dirty salt. Among those, full waveform inversion (FWI) (Tarantola, 1984, Zhang and Wang, 2009) and intrasalt tomography have a lot of potential. Thus far with FWI, we are still trying to learn the limitations of the method, and we believe there is significant room for improvement. Intrasalt traveltime based tomography will yield good results if there are enough reflections within the salt. To our knowledge, the only significant success with this method was in the Brazil Santos Basin, where tomography corrected the velocity for layered evaporites in the salt and thus yielded a superior presalt image (Huang et al., 2009). When it comes to the Gulf of Mexico, however, intrasalt tomography fails to produce a comparable uplift in most areas. The typical size of Gulf of Mexico inclusions is too small for tomography updates, and their sparse spatial distribution poses a poor constraint for global inversion, resulting in incorrectly smeared velocity updates. Manual picking of dirty salt is another alternative. Industry practice shows that significant uplift for subsalt images can be achieved by this method (Schoemann et al., 2010). However, this method requires a clear boundary between inclusions and the background Manuscript received by the Editor 30 November 2010; revised manuscript received 15 March 2011; published online 21 November CGGVeritas, Houston, Texas, USA. Shuo.Ji@cggveritas.com; Tony.Huang@cggveritas.com; Zhengxue.Li@cggveritas.com. 2 British Petroleum, London, UK. Kang.Fu@bp.com; 2011 Society of Exploration Geophysicists. All rights reserved. WB169

2 WB170 Ji et al. salt, and picking horizons for those small bodies is very time consuming. Furthermore, accurately determining the velocity of those inclusions requires velocity scans, making it very expensive for tiny inclusions. In general, it is only practical for solving specific problems. For a better definition of internal salt geometry, we developed a reflectivity-based inversion scheme to update dirty salt velocity. Reflectivity was measured based on a true-amplitude reverse time migration (RTM) (Zhang and Sun, 2009) volume. Using the intrasalt reflectivity, an initial dirty salt velocity was then estimated, followed by iterative migrations to fine tune the inversion. THEORY Reflectivity, or impedance-based inversion, has been a common practice in the oil industry (Tsemahman, 1995). Following the same concept, using a 1D assumption, we developed a velocity inversion scheme based on the reflectivity. Starting from R ¼ ðρvþ inc ðρvþ salt ðρvþ inc þðρvþ salt Figure 1. Typical subsalt image degradation due to dirty salt. Figure 2. A 2D synthetic RTM comparison. Left: Image using the clean salt model. Right: Image using the exact (dirty) model. ð1þ where R is the reflection coefficient, ρ is density, and V is velocity, we can rewrite the equation to get the following expression for V inc V inc ¼ V salt ð1 þ RÞρ salt ð1 RÞρ inc (2) For all those terms on the right side of equation 2, the reflectivity R can be measured from a true-amplitude RTM volume. The salt velocity and density are known, and the only unknown is the density of the salt inclusions. In Gulf of Mexico, we believe most of the inclusions are sediment bodies inside the salt, so we can bypass ρ inc by using an empirical formula for sediment density; for example, Gardner s equation (Gardner et al., 1974) ρ ¼ αv β p. (3) In this paper, we use α ¼ 0.23 and β ¼ 0.25, with ρ in g cm 3, V in ft/s. 2D SYNTHETIC EXAMPLE To confirm the impact of dirty salt, and to test the different approaches we discussed earlier, a 2D synthetic data set was created by forward modeling using a dirty salt model that had many intrasalt inclusions added to salt body. Under the assumption that those inclusions were sediment bodies within salt, all the inclusions had a velocity slower than salt. Their sizes were small, roughly m wide and m thick. The salt density was assigned to those inclusion bodies during forward modeling. A clean salt velocity model with the same external salt geometry was also created. Two RTM volumes were generated with these two models. The image comparison is in Figure 2. We clearly see the impact of the dirty salt on both the base of salt event and subsalt events. The base of salt became more rugose and less focused. When we look at the subsalt, the shadow zones of the intrasalt inclusions are obvious: The amplitude of subsalt events became much weaker and continuity of subsalt events degraded significantly. Some fault-like structures were introduced to the image due to this distortion. The inaccuracy of the velocity model also produced more migration swings. To check if travel-time based tomography can solve the dirty salt problem, RTM subsurface angle gathers were created with the clean salt model and exact dirty salt model. The impact of dirty salt is clear: Ignoring dirty salt introduces curvature variations in RTM angle gathers (Figure 3). Unlike big sediment basins, where the relationship between curvatures in common image gathers (CIGs) and velocity error is fairly simple, the curvatures caused by velocity error from those inclusion bodies are much harder to interpret. Despite the fact that the velocity is too fast in a clean salt model for all the inclusion bodies, we still observe base of salt and subsalt events curving up (in CIGs) right beneath those inclusion bodies. This comes from the fact that only near angle energy will go through those inclusion bodies and is pushed down by a salt velocity which is too fast. The small dimension of those inclusion bodies (compared to input data total offset) also explains the rapid curvature variation along the x-axis, which is a big challenge for

3 Dirty salt velocity inversion WB171 tomography updates. Preliminary ray-tracing based travel-time tomography tests show that the resolution required by small sediment inclusion bodies is very hard to achieve. We further tested reflectivity-based dirty salt inversion on this 2D synthetic data. The RTM image comparison between the clean salt model and inverted dirty salt model can be found in Figure 4. The reflectivity-based dirty salt model produces a base of salt with much better focusing and continuity, recovers the amplitude of those subsalt events, and greatly reduces migration swings. Similar uplift can be observed in the FWI result, where the distortion of base of salt and subsalt events due to ignoring those inclusion bodies is substantially reduced by the FWI model (Figure 5). The comparison between different velocity models can be found in Figure 6. No additional editing to salt horizons has been carried out, and all the models share the same external salt geometry. From top to bottom, we show a clean salt model, a dirty salt model from reflectivity inversion, a dirty salt model from FWI, and an exact model. It is easy to observe both reflectivitybased inversion and FWI catch those major inclusion bodies successfully. 3D WIDE-AZIMUTH REAL DATA EXAMPLE Encouraged by the 2D synthetic result, we further tested our reflectivity inversion scheme on real 3D wide-azimuth data, on areas with many intrasalt inclusions. Figure 7 and Figure 8 show the comparison between a clean salt velocity model and a reflectivitybased inversion model. From the 2D synthetic test, we expected to see the improved focusing and continuity on both base of salt and subsalt events. Indeed, this was the case. The uplift from the improved internal salt geometry can be observed in both examples. In Figure 7, the inverted model removes the discontinuity that existed in the clean salt velocity result, yielding a continuous base of salt event. The better defined salt geometry, both internal and external, leads to a better subsalt image, especially in the areas circled in this example. By removing the sag in the shallow subsalt events, the inverted model yielded a simpler structure with stronger amplitude; for the deep subsalt, the broken events in the clean salt model now connect to each other, giving us much higher confidence in the structure down deep. In Figure 8, the reflectivity-based dirty salt velocity inversion helped to remove the sag in base of salt and produced a much flatter base of salt, which fits well with the surrounding salt geometry. The major uplift for this area from the inverted model is the improved subsalt continuity and more balanced amplitude. Now we can easily map those events across the section. We also want to point out the image change of those inclusion bodies. After the inversion, because the velocity is slower, the inclusion bodies also shrink in size, but in general the intrasalt reflections have better focusing, indicating that the local velocity update is going toward the right direction. Figure 3. A 2D synthetic RTM angle gather comparison. The yellow box in the upper panel shows the location of CIGs. Lower left: CIGs using the clean salt model. Lower right: CIGs using the exact (dirty) model. The incident angle range is from 0 to 60. Figure 4. A 2D synthetic RTM comparison. Left: Image using the clean salt model. Right: Image using the reflectivity-based inverted salt model. Figure 5. A 2D synthetic RTM comparison. Left: Image using the clean salt model. Right: Image using the FWI inverted salt model.

4 WB172 Ji et al. DISCUSSION Figure 6. A 2D salt model comparison. (a) Clean salt model, (b) reflection based inversion dirty salt model, (c) FWI model, and (d) exact model. Velocity models in Figure 7 and Figure 8 share the same color bar. The color bar represents a velocity from 1500 m/s to 4500 m/s. Figure 7. An RTM volume comparison using real wide-azimuth data: (a) image using the clean salt velocity, (b) image using the reflectivity inverted dirty salt velocity, (c) clean salt model, (d) dirty salt model. The salt horizons have been adjusted during iterative migration to match the image; subsalt velocities are the same. One of the benefits of this reflectivity-based inversion method is its ability to catch small scale inclusion bodies. In our 2D example, all the inclusions are fairly small; the dimensions of those bodies are roughly the same order as the wavelength of a 15 Hz wave propagating inside the salt. Tiny as they are, those inclusions have a big impact on base of salt and subsalt imaging. The reflectivity method catches most of those small inclusion bodies, as long as the reflections from those bodies show up in the stack image. For our 2D synthetic test, the main target is to understand/confirm the impact of those inclusion bodies on base of salt and subsalt events, so we keep the external salt geometry the same. In real data, where true external salt geometry is unknown, this reflectivity-based dirty salt inversion actually can help better define the external salt geometry, especially for regions where small inclusion bodies are clustered together. Figure 7 and Figure 8 show a good example, where Figure 7 shows the image along dip direction and Figure 8 shows the image along strike direction. In this real 3D wide-azimuth data test the external salt geometry in this case, the base of salt has been updated based on the dirty salt RTM image. Comparing the clean salt model (Figures_7c and 8c) and dirty salt model (Figures 7d and 8d) in both Figures, the maximum salt thickness change is around 250 meters, which is a fairly small change considering the major salt body is more than 3000 m thick. But the impact of these small salt changes (due to both dirty salt inversion and the base of salt change) on the subsalt image is not small. Our reflectivity-based inversion generally improves internal salt geometry resolution, which in turn improves external salt geometry as well. Now let us discuss the limitation of this method. When we look at equation 2, we have uncertainties in both R and ρ inc. Because this method is reflectivity-based, noises (migration swings, artifacts, etc.) inside salt bodies will affect the measurement of R, and thus impact the accuracy of the inversion. A clean image is the key for this method. In general, there are two types of noise in a migrated volume: input-related or migrationrelated. When the noise comes from the input data, a good preprocessing flow, especially the denoise and demultiple, is critical. This method works best with wide-azimuth data, as the strong stacking power of wide-azimuth data over noise helps to produce cleaner images for those intrasalt reflectors. This flow tends to work well in regions where external salt geometry is not extremely complex. For regions where external salt geometry has complexities, the accuracy of this method decreases due to uneven distribution of

5 Dirty salt velocity inversion WB173 Figure 8. An RTM volume comparison using real wide-azimuth data: (a) image using the clean salt velocity, (b) image using the reflectivity inverted dirty salt velocity, (c) clean salt model, and (d) dirty Salt Model. The salt horizons have been adjusted during iterative migration to match the image; subsalt velocities are the same. illumination inside salt bodies. The uneven distribution of illumination needs to be considered in two aspects: the spatial distribution at different intrasalt locations, and the angular distribution at different incident angles. The first will apparently affect our amplitude picking, and thus the velocity estimation. The second will cause migration swings, weaken true reflectors inside the salt, and most importantly, invalidate our 1D reflection assumption. Another uncertainty lies in ρ inc. In Gardner s equation, α and β are empirically derived constants that depend on the geology; a single set parameter might not fit a big area. Because we do not always have sonic and density well logs to calibrate those parameters, region by region estimation is recommended, followed by migration to confirm the uplift. Despite the limitations, we believe this method moves one step closer to better salt velocity model building, and our tests, both 2D synthetic and 3D real data, showed improvements in salt definition and subsalt imaging. CONCLUSION As external salt geometries reach higher levels of accuracy, the industry is realizing the importance of internal salt geometry. The effects of salt inclusions, or dirty salt, once believed negligible, actually have a significant impact on subsalt imaging. Ignoring those inclusions leads to degradations in the subsalt image. For regions where many inclusions exist inside salt bodies, the impact of internal salt geometry could be as big as that of external salt geometry. Proper handling of those inclusions is critical for subsalt imaging. Travel time based tomography has a hard time updating velocity for small inclusion bodies with a sparse spatial distribution. Full waveform inversion is still not a common practice in industry due to its high computational cost. Manual picking is human labor intensive. Compared to these approaches, our reflectivity-based dirty salt velocity inversion scheme provides another practical solution. In both 2D synthetic data and 3D real wide-azimuth data tests, this approach has significantly improved the subsalt image for certain areas. We believe the output from this method is, in general, better than the clean salt velocity model used in the industry, and can be combined with other methods to produce an even better result. For example, it can help manual picking determine the velocity for those inclusion bodies, and it can be used as the new starting model for faster FWI converging. The reflectivity-based inversion assumes 1D reflection, which is not always true in reality; however, the method generally works with simple to moderately complex salt bodies. Because 3D wide-azimuth acquisition provides adequate coverage of incident angles, it thus reduces the sensitivity to incident angle, as it works with RTM stack image, which is the summation of all incident angles. Moreover, the key value of the method is that it detects velocity contrast with high spatial resolution, and by recovering the high frequency velocity components within salt body, the base of salt is better defined, which is crucial for subsalt imaging. We believe that this method, simple though it is, has captured some fundamental physics and thus produces a better salt model than the traditional clean salt model approach. ACKNOWLEDGMENTS We want to thank CGGVeritas for permission to publish this work. We want to thank Jerry Young and Yu Zhang for discussion and reviewing. We want to thank Scott Shonbeck and Kristin Johnston for reviewing this work. We want to thank Timmy Dy and Monica Thomas for their contributions to the paper. REFERENCES Bowling, J., S. Ji, D. Lin, D. Chergotis, B. Nolte, and D. Yanchak, 2010, Mad Dog TTI RTM: Better than expected, 80th Annual International Meeting, SEG, Expanded Abstracts, 29, 3313, doi: / Gardner, G. H. F., L. W. Gardner, and A. R. Gregory, 1974, Formation velocity and density The diagnostic basis for stratigraphic traps: Geophysics, 39, doi: / Haugen, J. A., B. Arntsen, and J. Mispel, 2009, Modeling of dirty salt : 79th Annual International Meeting, SEG, Expanded Abstracts. Huang, T., and B. Yu, 2009, Unlocking the Potential of WAZ data at the Tongo discovery with TTI reverse time migration: 79th Annual International Meeting, SEG, Expanded Abstracts. Huang, Y., D. Lin, B. Bai, and C. Ricardez, 2009, Pre-salt depth imaging of Santos Basin, Brazil: 79th Annual International Meeting, SEG, Expanded Abstracts. Schoemann, M., S. McLallen, D. Valasek, B. Yu, and R. Zhong, 2010, Incorporation of sediment inclusions in detailed salt modeling improves subsalt imaging in the Gulf of Mexico: 72nd EAGE Conference, Extended Abstracts.

6 WB174 Ji et al. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, doi: / Tsemahman, A. S., M. J. Jones, and F. Hron, 1995, P-Wave velocity and density estimates from the linear inversion of VSP data: Canadian Journal of Exploration Geophysics, 31, Zhang, Y., and J. Sun, 2009, Practical issues of reverse time migration: True-amplitude gathers, noise removal and harmonic-source encoding: First Break, 27, Zhang, Y., and D. Wang, 2009, Traveltime information-based wave-equation inversion: Geophysics, 74, no. 6, WCC27 WCC36, /

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil Y. Huang* (CGGVeritas), D. Lin (CGGVeritas), B. Bai (CGGVeritas), S. Roby (CGGVeritas) & C. Ricardez (CGGVeritas) SUMMARY Several discoveries,

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 Wei Huang *, Kun Jiao, Denes Vigh, Jerry Kapoor, David Watts, Hongyan Li, David Derharoutian, Xin Cheng WesternGeco Summary Since the 1990s, subsalt imaging in the Gulf of Mexico (GOM) has been a major

More information

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas Lingli Hu and Jianhang Zhou, CGGVeritas Summary The exploration interest in the Santos Basin offshore Brazil has increased with the large deep water pre-salt discoveries, such as Tupi and Jupiter. As the

More information

Summary. Introduction

Summary. Introduction with constrained iterative tomography: Methodology and application Hans Kristian Helgesen* (Statoil), Jun Tang (WesternGeco), Jinjun Liu (Statoil), Antoun Salama, Randolph Pepper, Sam Madden, Marta Woodward,

More information

Summary. Introduction

Summary. Introduction Detailed velocity model building in a carbonate karst zone and improving sub-karst images in the Gulf of Mexico Jun Cai*, Hao Xun, Li Li, Yang He, Zhiming Li, Shuqian Dong, Manhong Guo and Bin Wang, TGS

More information

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU)

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) U008 Seismic Imaging Below "Dirty" Salt J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) SUMMARY Base and sub salt seismic imaging is still an unresolved issue. To solve

More information

Th P7 02 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling

Th P7 02 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling Th P7 0 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling J. Kumar* (Petroleum Geo-Services), M. Salem (ENI E&P), D.E. Cegani (ENI E&P) Summary Converted waves can be recorded

More information

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Summary After the synthetic data inversion examples, real 3D data sets have been

More information

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC) Downloaded 01/03/14 to 16.01.198.34. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ 3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie

More information

Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia

Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia Paul Bouloudas, Apache Energy, Juergen Fruehn, ION GX Technology Introduction Situated offshore south-eastern

More information

W011 Full Waveform Inversion for Detailed Velocity Model Building

W011 Full Waveform Inversion for Detailed Velocity Model Building W011 Full Waveform Inversion for Detailed Velocity Model Building S. Kapoor* (WesternGeco, LLC), D. Vigh (WesternGeco), H. Li (WesternGeco) & D. Derharoutian (WesternGeco) SUMMARY An accurate earth model

More information

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Tu N118 05 Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Y. Guo* (CGG), M. Fujimoto (INPEX), S. Wu (CGG) & Y. Sasaki (INPEX) SUMMARY Thrust-complex

More information

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico E. Medina* (WesternGeco), A. Lovatini (WesternGeco), F. Golfré Andreasi (WesternGeco),

More information

Anisotropy in the salt outcrop at Cardona, Catalonia implications for seismic imaging

Anisotropy in the salt outcrop at Cardona, Catalonia implications for seismic imaging Anisotropy in the salt outcrop at Cardona, Catalonia implications for seismic imaging Martin Landrø, 1* Cai Puigdefabregas 1 and Børge Arntsen 1 Abstract The world s largest oil discoveries in recent years

More information

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Technical paper WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Authors C. Zeng (TGS), S. Dong (TGS), B. Wang (TGS) & Z. Zhang* (TGS) 2016 TGS-NOPEC Geophysical Company ASA. All rights reserved.

More information

Summary. Introduction

Summary. Introduction Multi-layer tomography and its application for improved depth imaging Patrice Guillaume, Steve Hollingworth*, Xiaoming Zhang, Anthony Prescott, Richard Jupp, Gilles Lambaré, Owen Pape, CGGVeritas Summary

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

COVER STORY LUKE TWIGGER, CGG, UK, EXAMINES RECENT ADVANCES IN SEISMIC TECHNOLOGY THAT REDUCE SUBSALT RISK.

COVER STORY LUKE TWIGGER, CGG, UK, EXAMINES RECENT ADVANCES IN SEISMIC TECHNOLOGY THAT REDUCE SUBSALT RISK. COVER STORY LUKE TWIGGER, CGG, UK, EXAMINES RECENT ADVANCES IN SEISMIC TECHNOLOGY THAT REDUCE SUBSALT RISK. O il and gas exploration, especially in areas of complex geology such as salt provinces, is a

More information

3D beam prestack depth migration with examples from around the world

3D beam prestack depth migration with examples from around the world A Publication of Petroleum Geo-Services Vol. 8 No. 8 August 2008 3D beam prestack depth migration with examples from around the world Introduction In 1999 AGS specialized in 2D seismic depth processing.

More information

Anisotropic tomography for TTI and VTI media Yang He* and Jun Cai, TGS

Anisotropic tomography for TTI and VTI media Yang He* and Jun Cai, TGS media Yang He* and Jun Cai, TGS Summary A simultaneous anisotropic tomographic inversion algorithm is developed. Check shot constraints and appropriate algorithm preconditioning play an important role

More information

2010 SEG SEG Denver 2010 Annual Meeting

2010 SEG SEG Denver 2010 Annual Meeting Anisotropic model building with wells and horizons: Gulf of Mexico case study comparing different approaches Andrey Bakulin*, Olga Zdraveva, Yangjun (Kevin) Liu, Kevin Lyons, WesternGeco/Schlumberger Summary

More information

Investigating fault shadows in a normally faulted geology

Investigating fault shadows in a normally faulted geology Investigating fault shadows in a normally faulted geology Sitamai Ajiduah* and Gary Margrave CREWES, University of Calgary, sajiduah@ucalgary.ca Summary Fault shadow poses a potential development risk

More information

Anisotropic Depth Migration and High-Resolution Tomography in Gulf of Mexico: A Case History

Anisotropic Depth Migration and High-Resolution Tomography in Gulf of Mexico: A Case History Anisotropic Depth Migration and High-Resolution Tomography in Gulf of Mexico: A Case History Gary Rodriguez, Sherry Yang, Diane Yang, Quincy Zhang, Steve Hightower, TGS Summary We present a case study

More information

Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada

Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada Page 1 of 10 Home Articles Interviews Print Editions Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada DECEMBER 2012 FOCUS ARTICLE Summary Gaussian-beam depth migration

More information

Dip-constrained tomography with weighting flow for paleo-canyons: a case study in Para- Maranhao Basin, Brazil Guang Chen and Lingli Hu, CGG

Dip-constrained tomography with weighting flow for paleo-canyons: a case study in Para- Maranhao Basin, Brazil Guang Chen and Lingli Hu, CGG Dip-constrained tomography with weighting flow for paleo-canyons: a case study in Para- Maranhao Basin, Brazil Guang Chen and Lingli Hu, CGG Summary Para-Maranhao Basin offshore Brazil is well-known for

More information

Th N Seismic Imaging in Gas Obscured Areas - Q Anomaly Detection and Q Migration Applied to Broadband Data

Th N Seismic Imaging in Gas Obscured Areas - Q Anomaly Detection and Q Migration Applied to Broadband Data Th N107 11 Seismic Imaging in Gas Obscured Areas - Q Anomaly Detection and Q Migration Applied to Broadband Data A. Castiello* (ION GXT), Y. Ren (ION GXT), S. Greenwood (ION GXT), T. Martin (ION GXT),

More information

Statics preserving projection filtering Yann Traonmilin*and Necati Gulunay, CGGVeritas

Statics preserving projection filtering Yann Traonmilin*and Necati Gulunay, CGGVeritas Yann Traonmilin*and Necati Gulunay, CGGVeritas Summary Projection filtering has been used for many years in seismic processing as a tool to extract a meaningful signal out of noisy data. We show that its

More information

Velocity model building challenges and solutions for seabed- and paleo-canyons: a case study in Campos Basin, Brazil

Velocity model building challenges and solutions for seabed- and paleo-canyons: a case study in Campos Basin, Brazil Velocity model building challenges and solutions for seabed- and paleo-canyons: a case study in Campos Basin, Brazil Kai Zhang, Javier Subia, Chevron; Chanjuan Sun, Hao Shen, Nuree Han, CGG Summary The

More information

The seismic response to strong vertical velocity change

The seismic response to strong vertical velocity change 10 th Biennial International Conference & Exposition P-073 The seismic response to strong vertical velocity change Ian F. Jones, ION GX Technology Summary Conventional seismic data processing, whether

More information

Summary. Tomography with geological constraints

Summary. Tomography with geological constraints : an alternative solution for resolving of carbonates Olga Zdraveva*, Saeeda Hydal, and Marta Woodward, WesternGeco Summary Carbonates are often present in close proximity to salt in the sedimentary basins

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

Improving the quality of Velocity Models and Seismic Images. Alice Chanvin-Laaouissi

Improving the quality of Velocity Models and Seismic Images. Alice Chanvin-Laaouissi Improving the quality of Velocity Models and Seismic Images Alice Chanvin-Laaouissi 2015, 2015, PARADIGM. PARADIGM. ALL RIGHTS ALL RIGHTS RESERVED. RESERVED. Velocity Volumes Challenges 1. Define sealed

More information

One-step extrapolation method for reverse time migration

One-step extrapolation method for reverse time migration GEOPHYSICS VOL. 74 NO. 4 JULY-AUGUST 2009; P. A29 A33 5 FIGS. 10.1190/1.3123476 One-step extrapolation method for reverse time migration Yu Zhang 1 and Guanquan Zhang 2 ABSTRACT We have proposed a new

More information

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS SUMMARY Anelastic properties of the earth cause frequency dependent energy

More information

From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing

From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing Sergio Grion, CGGVeritas Summary This paper discusses present

More information

Towed Streamer EM data from Barents Sea, Norway

Towed Streamer EM data from Barents Sea, Norway Towed Streamer EM data from Barents Sea, Norway Anwar Bhuiyan*, Eivind Vesterås and Allan McKay, PGS Summary The measured Towed Streamer EM data from a survey in the Barents Sea, undertaken in the Norwegian

More information

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study Yungui Xu 1,2, Gabril Chao 3 Xiang-Yang Li 24 1 Geoscience School, University of Edinburgh, UK

More information

Acoustic anisotropic wavefields through perturbation theory

Acoustic anisotropic wavefields through perturbation theory GEOPHYSICS, VOL. 78, NO. 5 (SEPTEMBER-OCTOBER 2013); P. WC41 WC50, 22 FIGS. 10.1190/GEO2012-0391.1 Acoustic anisotropic wavefields through perturbation theory Tariq Alkhalifah 1 ABSTRACT Solving the anisotropic

More information

Velocity model building in complex media by multi-layer non-linear slope tomography. Summary Introduction Non-linear slope tomography

Velocity model building in complex media by multi-layer non-linear slope tomography. Summary Introduction Non-linear slope tomography Velocity model building in complex media by multi-layer non-linear slope tomography. Patrice Guillaume, Jean-Philippe Montel*, Xiaoming Zhang, Gilles Lambaré, Anthony Prescott, Matthieu Reinier, Richard

More information

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

RC 1.3. SEG/Houston 2005 Annual Meeting 1307 from seismic AVO Xin-Gong Li,University of Houston and IntSeis Inc, De-Hua Han, and Jiajin Liu, University of Houston Donn McGuire, Anadarko Petroleum Corp Summary A new inversion method is tested to directly

More information

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence Amplitude variation with offset AVO and Direct Hydrocarbon Indicators DHI Reflection at vertical incidence Reflection coefficient R(p) c α 1 S wavespeed β 1 density ρ 1 α 2 S wavespeed β 2 density ρ 2

More information

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model IPTC 16575 Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model Chuck Peng, John Dai and Sherman Yang, Schlumberger WesternGeco Copyright 2013, International

More information

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block

Seismic Response and Wave Group Characteristics of Reef Carbonate Formation of Karloff-Oxford Group in Asser Block Seismic Response and Wave Group Characteristics of Reef Zeng zhongyu Zheng xuyao Hong qiyu Zeng zhongyu Zheng xuyao Hong qiyu Institute of Geophysics, China Earthquake Administration, Beijing 100081, China,

More information

Time vs depth in a North Sea case study of the ugly truth Abstract

Time vs depth in a North Sea case study of the ugly truth Abstract Time vs depth in a North Sea case study of the ugly truth Thomas Massip 1, Lauren Braidwood 1, Juergen Fruehn 1, Owen Isaac 1, Jonathan Denly 1, Robert Richardson 2, Phil Mollicone 3 1 ION Geophysical;

More information

Youzuo Lin and Lianjie Huang

Youzuo Lin and Lianjie Huang PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Building Subsurface Velocity Models with Sharp Interfaces

More information

A 3D illumination study to investigate fault shadow effects over the Hoop Fault Complex Anthony Hardwick* and Litty Rajesh, TGS

A 3D illumination study to investigate fault shadow effects over the Hoop Fault Complex Anthony Hardwick* and Litty Rajesh, TGS A 3D illumination study to investigate fault shadow effects over the Hoop Fault Complex Anthony Hardwick* and Litty Rajesh, TGS Summary Fault shadows represent zones of unreliable seismic imaging in the

More information

Seismic modeling evaluation of fault illumination in the Woodford Shale Sumit Verma*, Onur Mutlu, Kurt J. Marfurt, The University of Oklahoma

Seismic modeling evaluation of fault illumination in the Woodford Shale Sumit Verma*, Onur Mutlu, Kurt J. Marfurt, The University of Oklahoma Seismic modeling evaluation of fault illumination in the Woodford Shale Sumit Verma*, Onur Mutlu, Kurt J. Marfurt, The University of Oklahoma Summary The Woodford Shale is one of the more important resource

More information

A Petroleum Geologist's Guide to Seismic Reflection

A Petroleum Geologist's Guide to Seismic Reflection A Petroleum Geologist's Guide to Seismic Reflection William Ashcroft WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Contents Preface Acknowledgements xi xiii Part I Basic topics and 2D interpretation

More information

H Seismic imaging in and around salt bodies: problems and pitfalls. Ian Jones 1, Ian Davison 2. Summary

H Seismic imaging in and around salt bodies: problems and pitfalls. Ian Jones 1, Ian Davison 2. Summary H1-2-3 Seismic imaging in and around salt bodies: problems and pitfalls Ian Jones 1, Ian Davison 2 1 ION, Chertsey, UK, 2 EarthMoves, Egham, UK Summary Salt movement often results in steeply-dipping complex

More information

Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D)

Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D) Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D) Dan Negut* and Mark Ng, Divestco Inc. Copyright 2008, ACGGP This paper was selected for presentation

More information

Depth Imaging for Unconventional Reservoir Characterization: Canadian Plains Case Study

Depth Imaging for Unconventional Reservoir Characterization: Canadian Plains Case Study Depth Imaging for Unconventional Reservoir Characterization: Canadian Plains Case Study Bill Goodway 1, Greg Purdue 1, Shiang Yong Looi 2, Lijuan (Kathy) Du 2, Mark Rowland 2 1 Apache Canada, 2 Schlumberger

More information

Summary. We present the results of the near-surface characterization for a 3D survey in thrust belt area in Sharjah, United Arab Emirates.

Summary. We present the results of the near-surface characterization for a 3D survey in thrust belt area in Sharjah, United Arab Emirates. Near-surface characterization, challenges, and solutions for high-density, high-productivity, Alexander Zarkhidze*, Claudio Strobbia, Abdallah Ibrahim, WesternGeco; Luis Viertel Herrera, Abdulla Al Qadi,

More information

Downloaded 11/08/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/08/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Velocity tomography based on turning waves and finite-frequency sensitivity kernels Xiao-Bi Xie*, University of California at Santa Cruz, Jan Pajchel, Statoil, Norway Summary We present a velocity tomography

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Salt interpretation validated by salt tectonic study in the offshore Gulf of Mexico Li Li *, Itze Chang and Quincy Zhang, TGS-NOPEC Geophysical Company Summary To identify and define a complex salt body

More information

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX Summary Near-surface modeling for statics corrections is an integral part of a land

More information

Tu N Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf

Tu N Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf Tu N118 06 Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf S. Birdus* (CGG), V. Ganivet (CGG), A. Artemov (CGG), R. Teakle (Chevron)

More information

Imaging complex structure with crosswell seismic in Jianghan oil field

Imaging complex structure with crosswell seismic in Jianghan oil field INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Imaging complex structure with crosswell seismic in Jianghan oil field QICHENG DONG and BRUCE MARION, Z-Seis, Houston, Texas, U.S. JEFF MEYER, Fusion

More information

We LHR5 03 Seismic Diffraction Response from Boreholes

We LHR5 03 Seismic Diffraction Response from Boreholes We LHR5 3 Seismic Diffraction Response from Boreholes T.J. Moser* (Moser Geophysical Services), B. Arntsen (Norwegian University of Science and Technology), S. Johansen (Norwegian University of Science

More information

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581 Oz Yilmaz* and Jie Zhang, GeoTomo LLC, Houston, Texas; and Yan Shixin, PetroChina, Beijing, China Summary PetroChina conducted a multichannel large-offset 2-D seismic survey in the Yumen Oil Field, Northwest

More information

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough K. Shiraishi* (JAMSTEC), M. Robb (Emerson Paradigm), K. Hosgood (Emerson

More information

OBS wavefield separation and its applications

OBS wavefield separation and its applications P-088 OBS wavefield separation and its applications Sergio Grion*, CGGVeritas Summary This paper discusses present trends in ocean-bottom seismic (OBS) data processing. Current industrial practices for

More information

Chapter 1. Introduction EARTH MODEL BUILDING

Chapter 1. Introduction EARTH MODEL BUILDING Chapter 1 Introduction Seismic anisotropy in complex earth subsurface has become increasingly important in seismic imaging due to the increasing offset and azimuth in modern seismic data. To account for

More information

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin P-276 Summary Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin K.L.Mandal*, R.K.Srivastava, S.Saha, Oil India Limited M.K.Sukla, Indian Institute of Technology, Kharagpur

More information

Improved image aids interpretation: A case history

Improved image aids interpretation: A case history Ye Zheng, Scott Cheadle (Veritas GeoServices, Calgary, Canada) Glenn M. Rising (Perez Companc Norcen Corod, Venezuela) SUMMARY The Oritupano-Leona 3D of Eastern Venezuela was originally acquired and processed

More information

Tu SRS2 07 A Full-waveform Inversion Case Study from Offshore Gabon

Tu SRS2 07 A Full-waveform Inversion Case Study from Offshore Gabon Tu SRS2 07 A Full-waveform Inversion Case Study from Offshore Gabon A. Privitera (CGG), A. Ratcliffe* (CGG) & N. Kotova (CGG) SUMMARY We applied full waveform inversion to a seismic dataset from offshore

More information

2012 SEG DOI SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG DOI  SEG Las Vegas 2012 Annual Meeting Page 1 Full-azimuth towed-streamer seismic: An exploration tool for pre-salt hydrocarbon exploration offshore Brazil Alex Cooke*, Franck Le Diagon, Ricardo De Marco, Daniela Amazonas, Timothy Bunting, Nick Moldoveanu,

More information

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO*

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* *This paper has been submitted to the EAGE for presentation at the June 2001 EAGE meeting. SUMMARY

More information

Pitfalls of seismic interpretation in prestack time- vs. depthmigration

Pitfalls of seismic interpretation in prestack time- vs. depthmigration 2104181 Pitfalls of seismic interpretation in prestack time- vs. depthmigration data Tengfei Lin 1, Hang Deng 1, Zhifa Zhan 2, Zhonghong Wan 2, Kurt Marfurt 1 1. School of Geology and Geophysics, University

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 3D full-waveform inversion at Mariner a shallow North Sea reservoir Marianne Houbiers 1 *, Edward Wiarda 2, Joachim Mispel 1, Dmitry Nikolenko 2, Denes Vigh 2, Bjørn-Egil Knudsen 1, Mark Thompson 1, and

More information

Full waveform inversion in the Laplace and Laplace-Fourier domains

Full waveform inversion in the Laplace and Laplace-Fourier domains Full waveform inversion in the Laplace and Laplace-Fourier domains Changsoo Shin, Wansoo Ha, Wookeen Chung, and Ho Seuk Bae Summary We present a review of Laplace and Laplace-Fourier domain waveform inversion.

More information

Subsalt imaging by common-azimuth migration

Subsalt imaging by common-azimuth migration Stanford Exploration Project, Report 100, April 20, 1999, pages 113 125 Subsalt imaging by common-azimuth migration Biondo Biondi 1 keywords: migration, common-azimuth, wave-equation ABSTRACT The comparison

More information

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge GSA Data Repository 176 1 5 6 7 9 1 11 1 SUPPLEMENTARY MATERIAL FOR: Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge Hanchao Jian 1,, Satish C. Singh *, Yongshun

More information

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Petr Kolinsky 1, Leo Eisner 1, Vladimir Grechka 2, Dana Jurick 3, Peter Duncan 1 Summary Shear

More information

Use of prestack depth migration for improving the accuracy of horizontal drilling in unconventional reservoirs

Use of prestack depth migration for improving the accuracy of horizontal drilling in unconventional reservoirs Use of prestack depth migration for improving the accuracy of horizontal drilling in unconventional reservoirs Marianne Rauch-Davies 1, Scott Sutherland 1, Michael Bradshaw 2, Jeff Codd 2, and David Kessler

More information

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy.

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy. Seismic Imaging Strategies for Thrust-Belt Exploration: Extended Offsets, Seismic/Gravity/EM simultaneous Joint-Inversion and Anisotropic Gaussian Beam Pre-Stack Depth Migration Daniele Colombo* Geosystem-WesternGeco,

More information

Deterministic and stochastic inversion techniques used to predict porosity: A case study from F3-Block

Deterministic and stochastic inversion techniques used to predict porosity: A case study from F3-Block Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2015 Deterministic and stochastic inversion techniques used to predict porosity: A

More information

G002 An Integrated Regional Framework for Seismic Depth Imaging in the Deepwater Gulf of Mexico

G002 An Integrated Regional Framework for Seismic Depth Imaging in the Deepwater Gulf of Mexico G002 An Integrated Regional Framework for Seismic Depth Imaging in the Deepwater Gulf of Mexico M. Davidson (Fugro Multi Client Services), M. Leander (Fugro Multi Client Services), K. Mohn (Fugro Multi

More information

Seismic attributes of time-vs. depth-migrated data using self-adaptive window

Seismic attributes of time-vs. depth-migrated data using self-adaptive window Seismic attributes of time-vs. depth-migrated data using self-adaptive window Tengfei Lin*, Bo Zhang, The University of Oklahoma; Zhifa Zhan, Zhonghong Wan, BGP., CNPC; Fangyu Li, Huailai Zhou and Kurt

More information

Repeatability in geophysical data processing: A case study of seismic refraction tomography.

Repeatability in geophysical data processing: A case study of seismic refraction tomography. Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (5):1915-1922 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Repeatability

More information

Principles of 3-D Seismic Interpretation and Applications

Principles of 3-D Seismic Interpretation and Applications Principles of 3-D Seismic Interpretation and Applications Instructor: Dominique AMILHON Duration: 5 days Level: Intermediate-Advanced Course Description This course delivers techniques related to practical

More information

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion Velocity Calibrated Seismic Imaging and Interpretation Accurate Solution for Prospect Depth, Size & Geometry Accurate Time-to-Depth Conversion was founded to provide geologically feasible solutions for

More information

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys 25 th January, 2018 Aleksandr Nikitin a.nikitin@gwl-geo.com Geology Without Limits Overview 2011-2016 GWL Acquired over 43000 km 2D seismic

More information

Seismic Inversion on 3D Data of Bassein Field, India

Seismic Inversion on 3D Data of Bassein Field, India 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 526-532 Seismic Inversion on 3D Data of Bassein Field, India K.Sridhar, A.A.K.Sundaram, V.B.G.Tilak & Shyam Mohan Institute

More information

Post-stack inversion of the Hussar low frequency seismic data

Post-stack inversion of the Hussar low frequency seismic data Inversion of the Hussar low frequency seismic data Post-stack inversion of the Hussar low frequency seismic data Patricia E. Gavotti, Don C. Lawton, Gary F. Margrave and J. Helen Isaac ABSTRACT The Hussar

More information

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS Cuesta, Julián* 1, Pérez, Richard 1 ; Hernández, Freddy 1 ; Carrasquel, Williams 1 ; Cabrera,

More information

Plane-wave migration in tilted coordinates

Plane-wave migration in tilted coordinates Stanford Exploration Project, Report 124, April 4, 2006, pages 1 16 Plane-wave migration in tilted coordinates Guojian Shan and Biondo Biondi ABSTRACT Plane-wave migration in tilted coordinates is powerful

More information

Building more robust low-frequency models for seismic impedance inversion

Building more robust low-frequency models for seismic impedance inversion first break volume 34, May 2016 technical article Building more robust low-frequency models for seismic impedance inversion Amit Kumar Ray 1 and Satinder Chopra 1* Abstract Seismic impedance inversion

More information

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study K. Osypov* (WesternGeco), D. Nichols (WesternGeco), Y. Yang (WesternGeco), F. Qiao (WesternGeco), M. O'Briain

More information

Residual Statics using CSP gathers

Residual Statics using CSP gathers Residual Statics using CSP gathers Xinxiang Li and John C. Bancroft ABSTRACT All the conventional methods for residual statics analysis require normal moveout (NMO) correction applied on the seismic data.

More information

IMAGING WITH REVERSE VERTICAL SEISMIC PROFILES USING A DOWNHOLE, HYDRAULIC, AXIAL VIBRATOR

IMAGING WITH REVERSE VERTICAL SEISMIC PROFILES USING A DOWNHOLE, HYDRAULIC, AXIAL VIBRATOR IMAGING WITH REVERSE VERTICAL SEISMIC PROFILES USING A DOWNHOLE, HYDRAULIC, AXIAL VIBRATOR Mary Krasovec and Roger Turpening Earth Resources Laboratory Department of Earth, Atmospheric, and Planetary Sciences

More information

P S-wave polarity reversal in angle domain common-image gathers

P S-wave polarity reversal in angle domain common-image gathers Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? P S-wave polarity reversal in angle domain common-image gathers Daniel Rosales and James Rickett 1 ABSTRACT The change in the reflection

More information

Observations of Azimuthal Anisotropy in Prestack Seismic Data

Observations of Azimuthal Anisotropy in Prestack Seismic Data Observations of Azimuthal Anisotropy in Prestack Seismic Data David Gray* CGGVeritas, Calgary, AB, Canada dave.gray@cggveritas.com Summary A method for displaying prestack seismic data that highlights

More information

Downloaded 09/10/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/10/15 to Redistribution subject to SEG license or copyright; see Terms of Use at The role of legacy seismic in exploring new offshore hydrocarbon provinces or can you teach old data new tricks (technologies)? Howard Nicholls, Lauren Penn, Anna Marszalek, Paolo Esestime, Karyna Rodriguez,

More information

P Edward Knight 1, James Raffle 2, Sian Davies 2, Henna Selby 2, Emma Evans 2, Mark Johnson 1. Abstract

P Edward Knight 1, James Raffle 2, Sian Davies 2, Henna Selby 2, Emma Evans 2, Mark Johnson 1. Abstract P1-3-10 De-risking Drill Decisions. A case study on the benefit of re-processing conventionally acquired seismic data with the latest broadband processing technology Edward Knight 1, James Raffle 2, Sian

More information

Near surface velocity adjustments in presence of rugose water bottom A quantitative approach for Canyon Scaling

Near surface velocity adjustments in presence of rugose water bottom A quantitative approach for Canyon Scaling 10 th Biennial International Conference & Exposition P 406 Near surface velocity adjustments in presence of rugose water bottom A quantitative approach for Canyon Scaling Himanshu Kumar*, Pramod Srivastava*,

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical

Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical Attenuation compensation in viscoacoustic reserve-time migration Jianyong Bai*, Guoquan Chen, David Yingst, and Jacques Leveille, ION Geophysical Summary Seismic waves are attenuated during propagation.

More information

Towards full waveform inversion: A torturous path

Towards full waveform inversion: A torturous path FWI Towards full waveform inversion: A torturous path J. Helen Isaac and Gary F. Margrave ABSTRACT Full waveform inversion (FWI) can be viewed as an iterative cycle involving forward modelling, pre-stack

More information

( ) ( ), 1, 1. Downloaded 10/14/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

( ) ( ), 1, 1. Downloaded 10/14/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Chao Zhang*, Jie Zhang, University of Science and Technology of China (USTC); Zhikun Sun, GeoTomo LLC Summary Refraction traveltimes have long been applied for deriving long-wavelength statics solutions.

More information

Delineating Karst features using Advanced Interpretation

Delineating Karst features using Advanced Interpretation P-152 Asheesh Singh, Sibam Chakraborty*, Shafique Ahmad Summary We use Amplitude, Instantaneous Phase, Trace Envelope and Dip of Maximum Similarity Attributes as a tool to delineate Karst induced features

More information