P. Marevic 1,2, R.D. Lasseri 2, J.-P. Ebran 1, E. Khan 2, T. Niksic 3, D.Vretenar 3

Size: px
Start display at page:

Download "P. Marevic 1,2, R.D. Lasseri 2, J.-P. Ebran 1, E. Khan 2, T. Niksic 3, D.Vretenar 3"

Transcription

1 -Nuclear Clustering in the Energy Density Functional Approach- P. Marevic 1,2, R.D. Lasseri 2, J.-P. Ebran 1, E. Khan 2, T. Niksic 3, D.Vretenar 3 1 CEA,DAM,DIF 2 IPNO 3 University of Zagreb 1

2 Introduction Nuclear systems as a mixture of 4 types of fermion r p T=0 MeV Fermi liquid proton neutron BEC BCS pairing Mott line Clustering a 2-component Fermi gas O O a a a t h a h a t t a a h QPT crossover 3-component Fermi gas r n subsaturation density saturation density These features leave fingerprints in finite nuclei 2

3 Nuclei at high spin/energy Introduction Emergence of ordered sub-structures inside nuclei proton neutron a low energy resonance deformation clustering skin halo molecular orbital Nuclear EDFs provide a unified and consistent description of these various properties 3

4 Introduction Outline Theoretical framework : EDF Pair correlations Nuclear clustering 4

5 - Theoretical framework : EDF- 5

6 EDF Nuclear many-body problem : strategies Many-body approaches as implementation of different strategies to apprehend the many-body problem Traditional starting point of a many-body approach : HF product state + + Fermi correlations E E RHF missing correlations E GS How to incorporate such correlations starting with a HF product state? 6

7 EDF Nuclear many-body problem : strategies Vertical Philosophy Excit. 2p2h non collective excitations Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Fermi correlations Major contribution Dynamical correlations in all nuclei HF E E RHF E GS 7

8 EDF Nuclear many-body problem : strategies Vertical Philosophy Excit. 2p2h non collective excitations Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + comparable contributions Fermi correlations Dynamical correlations in all nuclei HF Nondynamical correlations open shell systems E HF E RHF E GS 8

9 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Nondynamical correlations open shell systems E RHF E HF E RHF E UHF q E GS E GS Arg(q) 9

10 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Initial wave function Nondynamical correlations open shell systems E RHF E HF E RHF E UHF q Optimized wave function with {q (1) } E GS E GS Arg(q) 10

11 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Nondynamical correlations open shell systems E RHF E HF E RHF E UHF q E GS E GS Arg(q) 11

12 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Nondynamical correlations open shell systems E RHF E HF E RHF E UHF q E GS E GS Arg(q) 12

13 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Nondynamical correlations open shell systems E RHF E HF E RHF E UHF q E GS E GS Arg(q) 13

14 EDF Vertical Philosophy Nuclear many-body problem : strategies Horizontal philosophy Excit. 2p2h non collective excitations broken symmetries Excit. 1p1h physics accounted through numerous rearrangements of nucleons within the orbitals given by the reference vacuum (0,0 ) (q 0,j 0 ) (q 0,j 1 ) (q 1,j 0 ) conservation of symmetries Reference vacuum i j = C 0 + C 1p-1h i + C 2p-2h j + Dynamical correlations comparable contributions in all nuclei HF Fermi correlations Collective excitations Physics accounted for through spontaneous symmetry breaking + fluctuations of the order parameter dynamical correlations transferred in E = dq f(q) H eff (, ) ( q, arg(q)) Nondynamical correlations open shell systems E RHF E HF E RHF E GS Novel many-body approaches combining both philosophies P. Arthuis, J. Ripoche, T. Duguet, D. Lacroix, J.-P. Ebran J.Ripoche et al PRC 95, (2017) T. Duguet et al EPJA 51, 162 (2015) E proj E GS E UHF Arg(q) q 14

15 - Pair correlations - 15

16 Pair correlation How to describe a pair of nucleons in the medium? Reduced density matrix Form of the A-body wave function All the information of a many-body system is contained in its Nth-order density matrix BCS assumption: all the pairs of fermions occupy the same pair wave function : Only keep information about p- cluster embedded in the medium composed by the other N-p particles : 2-RDM : eigenfunctions provide an in-medium pair wave function 16

17 Pair correlation Covariant HFB with projection on good particle number prior to variation 2-neutron distribution properties r n rms d nn R.D. Lasseri et al, in prep 17

18 Pair correlation 2-neutron distribution properties R.D. Lasseri et al, in prep 18

19 - Nuclear Clustering - 19

20 Nuclear clustering How do es clustering show up in nuclear EDFs? First indicator: mass density at the MF level Marevic et al, submitted to PRC

21 Nuclear clustering How do es clustering show up in nuclear EDFs? Localization measure Conditional probability Reinhard et al, Phys. Rev. C 83, (2011) 0.5 : signals a nearly homogeneous Fermi gas 1 : localized a-like state (in N=Z systems) 16 O 4 He 20 Ne r C 21

22 Nuclear clustering How do es clustering show up in nuclear EDFs? Beyond MF level Marevic et al, submitted to PRC 22

23 Nuclear clustering How do es clustering show up in nuclear EDFs? Beyond MF level Marevic et al, submitted to PRC 23

24 Nuclear clustering How do es clustering show up in nuclear EDFs? rotation-vibration bands Bijker (2016) Marevic et al, in prep Work in progress Ebran et al, in prep 24

25 Nuclear clustering Deepe r understanding about nuclear clustering Guidance : the localization parameter particle number depth of the confining potential average inter-particle distance density α~1 crystal localization quantum liquid Ebran, Khan, Niksic & Vretenar, Nature 487, (2012) - PRC 87, (2013) 25

26 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the particle number particle number Clustering is more likely to be found in light systems Ebran, Khan, Niksic & Vretenar, PRC 87, (2013) - PRC 89, (R) (2014) 26

27 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the density average inter-particle distance density Ebran, Khan, Niksic & Vretenar, PRC 89,031303(R) (2014) Girod & Schuck, PRL 111, (2013) 27

28 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the confining potential Deeper confining potential depth of the confining potential Electrons in quantum dots Yannouleas and Landman, Rep.Prog.Phys. 70, 2067 (2007) Neutral bosons in rotating trap Nucleons in 40 Ca 28

29 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the confining potential 29

30 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the confining potential depth of the confining potential 30

31 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the confining potential Harmonic oscillator case Nazarewicz et. al., AIP Conf. Proc. 259, 30 (1992) 31

32 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the neutron excess 2-center cluster in a N=Z system Neutron rich isotope melting Covalent bonding p s p * Be case p*3/2 d5/2 p1/2 p3/2 8 p1/2 s1/2 6 N=8 magic number breaking p3/2 s1/2 32

33 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the neutron excess Be 12 Be 14 Be 33

34 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the neutron excess 34

35 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the neutron excess 35

36 Nuclear clustering Deepe r understanding about nuclear clustering Influence of the neutron excess 36

37 Conclusion & Perspectives Nuclear EDFs frame the various nuclear properties in a unified and consistent way Key feature : breaking/restoration of symmetries to efficiently account for nondynamical correlations Di-neutron like configuration at the surface of superfluid nuclei Clustering in ground and excited states of nuclei : impact of the average density and the depth of the confining potential Covalent bonding in neutron rich systems Particle number projection, conditional probability distribution, form factor, quarteting under development Thank you for your attention 37

38 EDF Nuclear many-body problem : strategies Good description of the ground state of ~50 nuclei 38

39 EDF Nuclear many-body problem : strategies Breaking U(1) : good description of the ground state of ~300 nuclei 39

40 EDF Nuclear many-body problem : strategies Breaking U(1) and O(3) : good description of the ground state of all nuclei 40

Cluster and shape in stable and unstable nuclei

Cluster and shape in stable and unstable nuclei luster and shape in stable and unstable nuclei Y. Kanada-En yo (Kyoto Univ.) ollaborators: Y. Hidaka (GOE-PD->Riken) F. Kobayashi (D2, Kyoto Univ.) T. Suhara (Kyoto Univ.->Tsukuba Univ.) Y. Taniguchi (Tsukuba

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

α Particle Condensation in Nuclear systems

α Particle Condensation in Nuclear systems Particle Condensation in Nuclear systems A. Tohsaki, H. Horiuchi, G. Röpke, P. Sch. T. Yamada and Y. Funaki -condensation in matter 8 Be and Hoyle state in 12 C -condensate wave function Effective GPE

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I École Joliot-Curie 27 September - 3 October 2009 Lacanau - France Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I Marcella

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Self-consistent study of spin-isospin resonances and its application in astrophysics

Self-consistent study of spin-isospin resonances and its application in astrophysics Tensor Interaction in Nuclear and Hadron Physics November 1 3, Beihang University, Beijing, China Self-consistent study of spin-isospin resonances and its application in astrophysics Haozhao Liang School

More information

Status of the Density Functional Theory in nuclei

Status of the Density Functional Theory in nuclei Status of the Density Functional Theory in nuclei 2 issues: Many body problem What is the nucleon-nucleon interaction? Specific Features: Fermionic system with 2 types (n and p): alpha Non elementary particles:

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Chemistry Vocabulary. These vocabulary words appear on the Chemistry CBA in addition to being tested on the Chemistry Vocabulary Test.

Chemistry Vocabulary. These vocabulary words appear on the Chemistry CBA in addition to being tested on the Chemistry Vocabulary Test. Chemistry Vocabulary These vocabulary words appear on the Chemistry CBA in addition to being tested on the Chemistry Vocabulary Test. atom the smallest unit of an element that still represents that element.

More information

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology [1] Ch. 4 in Metal Clusters,

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Symmetry breaking and symmetry restoration in mean-field based approaches

Symmetry breaking and symmetry restoration in mean-field based approaches Symmetry breaking and symmetry restoration in mean-field based approaches Héloise Goutte GANIL Caen, France goutte@ganil.fr Cliquez pour modifier le style des sous-titres du masque With the kind help of

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols Towards the improvement of spin-isospin properties in nuclear energy density functionals Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-20133 Milano,

More information

Nuclear Landscape not fully known

Nuclear Landscape not fully known Nuclear Landscape not fully known Heaviest Elements? Known Nuclei Limit of proton rich nuclei? Fission Limit? Possible Nuclei Limit of Neutron Rich Nuclei? Nuclear Radii Textbooks: R = r 00 A 1/3 1/3 I.

More information

Nuclear Alpha-Particle Condensation

Nuclear Alpha-Particle Condensation Nuclear Alpha-Particle Condensation 40 Ca+ 12 C, 25 AMeV with CHIMERA First experimental evidence of alpha-particle condensation for the Hoyle state Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci,

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

Nuclear Shell Model. Experimental evidences for the existence of magic numbers; Nuclear Shell Model It has been found that the nuclei with proton number or neutron number equal to certain numbers 2,8,20,28,50,82 and 126 behave in a different manner when compared to other nuclei having

More information

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Some (more) High(ish)-Spin Nuclear Structure Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Paddy Regan Department of Physics Univesity of Surrey Guildford, UK p.regan@surrey.ac.uk

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

arxiv: v1 [nucl-th] 3 May 2018

arxiv: v1 [nucl-th] 3 May 2018 Localization of pairing correlations in nuclei within relativistic mean field models R.-D. Lasseri and E. Khan Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France

More information

Shell and pairing gaps: theory

Shell and pairing gaps: theory Shell and pairing gaps: theory Michael Bender Université Bordeaux 1; CNRS/IN2P3; Centre d Etudes Nucléaires de Bordeaux Gradignan, UMR5797 Chemin du Solarium, BP120, 33175 Gradignan, France Nuclear Structure

More information

Collective excitations of Λ hypernuclei

Collective excitations of Λ hypernuclei Collective excitations of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) F. Minato (JAEA) 1. Introduction 2. Deformation of Lambda hypernuclei 3. Collective

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yu-Min Zhao (Speaker: Yi-Yuan Cheng) 2 nd International Workshop & 12 th RIBF Discussion on Neutron-Proton Correlations, Hong Kong July 6-9, 2015 Outline

More information

Functional Orsay

Functional Orsay Functional «Theories» @ Orsay Researchers: M. Grasso, E. Khan, J. Libert, J. Margueron, P. Schuck. Emeritus: N. Van Giai. Post-doc: D. Pena-Arteaga. PhD: J.-P. Ebran, A. Fantina, H. Liang. Advantages of

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

Ch(3)Matter & Change. John Dalton

Ch(3)Matter & Change. John Dalton Ch(3)Matter & Change John Dalton What is Matter? Matter is anything that contains mass & volume (takes up space) Energy, such as light, heat, and sound, is NOT matter. The Particle Theory of Matter 1.

More information

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur? From last time Hydrogen atom Multi-electron atoms This week s honors lecture: Prof. Brad Christian, Positron Emission Tomography Course evaluations next week Tues. Prof Montaruli Thurs. Prof. Rzchowski

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei Contents of the lecture 1. Resonances and complex scaling method 2. Many-body resonances of He-isotopes and their mirror nuclei 3. Coulomb

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

RPA and QRPA calculations with Gaussian expansion method

RPA and QRPA calculations with Gaussian expansion method RPA and QRPA calculations with Gaussian expansion method H. Nakada (Chiba U., Japan) @ DCEN11 Symposium (YITP, Sep. 6, 11) Contents : I. Introduction II. Test of GEM for MF calculations III. Test of GEM

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

The Island of of Inversion from a nuclear moments perspective

The Island of of Inversion from a nuclear moments perspective The Island of of Inversion from a nuclear moments perspective Gerda Neyens Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium the LISE-NMR collaboration @ GANIL: E437 (,32,33 g-factors) E437a

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Collective excitations of Lambda hypernuclei

Collective excitations of Lambda hypernuclei Collective excitations of Lambda hypernuclei Kouichi Hagino (Tohoku Univ.) Myaing Thi Win (Lashio Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) 1. Introduction 2. Deformation of Lambda hypernuclei

More information

Observation information obtained through the senses; observation in science often involves measurement

Observation information obtained through the senses; observation in science often involves measurement Review Sheet Unit 1: The Atom Chemistry the study of the composition of matter and the changes matter undergoes Scientific Method Scientific method a logical, systematic approach to the solution of a scientific

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Physics Letters B 695 (2011) Contents lists available at ScienceDirect. Physics Letters B.

Physics Letters B 695 (2011) Contents lists available at ScienceDirect. Physics Letters B. Physics Letters B 695 (2011) 507 511 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Configuration interactions constrained by energy density functionals B.

More information

Nuclear Physics News Publication details, including instructions for authors and subscription information:

Nuclear Physics News Publication details, including instructions for authors and subscription information: This article was downloaded by: [Dario Vretenar] On: 1 December 011, At: 11:40 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 107954 Registered office: Mortimer

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems

Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Application of Equation of Motion Phonon Method to Nuclear and Exotic Nuclear Systems Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/ seminar at UTEF ČVUT,

More information

Collective excitations in nuclei away from the valley of stability

Collective excitations in nuclei away from the valley of stability Collective excitations in nuclei away from the valley of stability A. Horvat 1, N. Paar 16.7.14, CSSP 14, Sinaia, Romania 1 Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

The Research Overview and Historical Review of. Nuclear Forces and Nuclear Structure

The Research Overview and Historical Review of. Nuclear Forces and Nuclear Structure The Research Overview and Historical Review of Nuclear Forces and Nuclear Structure Yibing Qiu yibing.qiu@hotmail.com With regard to the nuclear basic constituents and overall structure, and the nuclear

More information

TDHF Basic Facts. Advantages. Shortcomings

TDHF Basic Facts. Advantages. Shortcomings TDHF Basic Facts Advantages! Fully microscopic, parameter-free description of nuclear collisions! Use same microscopic interaction used in static calculations! Successful in describing low-energy fusion,

More information

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France A microscopic approach to nuclear dynamics Cédric Simenel CEA/Saclay, France Introduction Quantum dynamics of complex systems (nuclei, molecules, BEC, atomic clusters...) Collectivity: from vibrations

More information

STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES

STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES NUCLEAR PHYSICS STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES SABINA ANGHEL 1, GHEORGHE CATA-DANIL 1,2, NICOLAE VICTOR AMFIR 2 1 University POLITEHNICA of Bucharest, 313 Splaiul

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

The role of isospin symmetry in collective nuclear structure. Symposium in honour of David Warner

The role of isospin symmetry in collective nuclear structure. Symposium in honour of David Warner The role of isospin symmetry in collective nuclear structure Symposium in honour of David Warner The role of isospin symmetry in collective nuclear structure Summary: 1. Coulomb energy differences as

More information

arxiv: v1 [nucl-th] 16 Sep 2008

arxiv: v1 [nucl-th] 16 Sep 2008 New supersymmetric quartet of nuclei: 192,193 Os- 193,194 Ir arxiv:0809.2767v1 [nucl-th] 16 Sep 2008 R. Bijker, J. Barea, A. Frank, G. Graw, R. Hertenberger, J. Jolie and H.-F. Wirth ICN-UNAM, AP 7543,

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

arxiv: v2 [nucl-th] 28 Aug 2014

arxiv: v2 [nucl-th] 28 Aug 2014 Pigmy resonance in monopole response of neutron-rich Ni isotopes? Ikuko Hamamoto 1,2 and Hiroyuki Sagawa 1,3 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, arxiv:1408.6007v2

More information

Collective aspects of microscopic mean-field evolution along the fission path

Collective aspects of microscopic mean-field evolution along the fission path Collective aspects of microscopic mean-field evolution along the fission path Yusuke Tanimura 1, Denis Lacroix 1 and Guillaume Scamps 2 1 IPN Orsay, 2 Tohoku University Y. Tanimura, D. Lacroix, and G.

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline:

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline: Celebration of X. Viñas retirement, Milano 19-20 Sept. 2017 Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter Outline: Denis Lacroix Brief historical

More information

Nuclear structure theory

Nuclear structure theory Nuclear structure theory Thomas Papenbrock and Lecture 2: Traditional shell model National Nuclear Physics Summer School 2008 George Washington University Shell structure in nuclei Mass differences: Liquid

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Microscopic Theories of Nuclear Masses

Microscopic Theories of Nuclear Masses MSU/NSCL JINA - Pizza Lunch seminar, MSU, 02/26/2007 Outline 1 Introduction 2 Nuclear Energy Density Functional approach: general characteristics 3 EDF mass tables from the Montreal-Brussels group 4 Towards

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei Ground-state properties of some N=Z medium mass heavy nuclei Serkan Akkoyun 1, Tuncay Bayram 2, Şevki Şentürk 3 1 Department of Physics, Faculty of Science, Cumhuriyet University, Sivas, Turkey 2 Department

More information

The Shell Model: An Unified Description of the Structure of th

The Shell Model: An Unified Description of the Structure of th The Shell Model: An Unified Description of the Structure of the Nucleus (I) ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) TSI2015 Triumf, July 2015

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Single particle degrees of freedom in fission

Single particle degrees of freedom in fission Single particle degrees of freedom in fission Heloise Goutte SPhN division CEA Saclay CEA-Saclay/DSM/Irfu Service de Physique Nucléaire PND2 PAGE 1 Non exhaustive Focused on: - Fission fragment yields

More information

Properties of Nuclei deduced from the Nuclear Mass

Properties of Nuclei deduced from the Nuclear Mass Properties of Nuclei deduced from the Nuclear Mass -the 2nd lecture- @Milano March 16-20, 2015 Yoshitaka Fujita Osaka University Image of Nuclei Our simple image for Nuclei!? Nuclear Physics by Bohr and

More information

Two neutron transfer in Sn isotopes

Two neutron transfer in Sn isotopes Kyoto, October 24th, 2011 slide 1/21 Two neutron transfer in Sn isotopes Grégory Potel Aguilar (Sevilla) Andrea Idini (Milano) Francisco Barranco Paulano (Sevilla) Enrico Vigezzi (Milano) Francesco Marini

More information