Random walk through Anomalous processes: some applications of Fractional calculus

Size: px
Start display at page:

Download "Random walk through Anomalous processes: some applications of Fractional calculus"

Transcription

1 Random walk through Anomalous processes: some applications of Fractional calculus Nickolay Korabel Fractional Calculus UCMerced 12 June 2013

2 Fractional Calculus Mathematics Engineering Physics

3 Levy flights for foraging and knowledge Humphries et al PNAS (2012) R. Metzler, I.M. Sokolov, R. Klages G. Zaslavsky A. Gopinathan KC Huang A. Chechkin E. Barkai, J. Klafter

4 My great teachers

5 Sub-diffusive map CTRW-like behavior NK, R. Klages, Chechkin, Sokolov

6 Time fractional Fokker-Plank equation for sub-diffusion Montroll-Weiss equation jump length pdf waiting time pdf See works of F. Mainardi and R. Gorenflo Caputo fractional derivative

7 Infinite invariant density NK, E. Barkai

8 Paradoxes of sub-diffusion: anomalous infiltration Riemann Liouville operator: NK, E. Barkai

9 Fractional equations with long range interactions Non-linear Schroedinger equations Continuous non-linear Schroedinger equations: Discrete lattice of coupled osccillators: Conserved quantities: Stationary solutions in the form: For large N DNLS is not integrable and chaotic solutions are possible. Osccillators with all-to-all long range interactions: Equations of motion: NK, G. Zaslavsky, V. Tarasov, N. Laskin

10 Fractional equations with long range interactions: Non-linear Schroedinger equation Equations of motion: Transition to continuous equation: Polylogarithmic function NK, G. Zaslavsky, V. Tarasov, N. Laskin

11 Fractional equations with long range interactions: Non-linear Schroedinger equation To visualize numerical results we use: Surface - Power spectum: Phase portrait of the central osccillator: Amplitude of central osccillator: Initial conditions: NK, G. Zaslavsky, V. Tarasov, N. Laskin

12 Fractional equations with long range interactions Non-linear Schroedinger equation To visualize numerical results we use: Surface - M NK, G. Zaslavsky, V. Tarasov, N. Laskin

13 Fractional equations with long range interactions Non-linear Schroedinger equation NK, G. Zaslavsky, V. Tarasov, N. Laskin

14 Fractional equations with long range interactions Sine-Gordon Equation NK, G. Zaslavsky, V. Tarasov, N. Laskin

15 Fractional equations with long range interactions Sine-Gordon Equation NK, G. Zaslavsky, V. Tarasov, N. Laskin

16 Modeling optimality in cytoskeleton transport Ajay Gopinathan Kerwyn Casey Huang

17 Cytoskeleton network is required for structure, organization, and transport Lammelipodium in a neuron

18 A complex cellular transportation system Microtubules are like freeways and actin filaments are like local surface streets. Organelles can move on both types of filaments. Different types of motors work together. How does network architecture influence transport? Are there optimal transport regimes in terms of network residence time, network density, filament length and orientation?

19 Continuum model of a cytoskeletal network Binding rate (probability per unit time) Network residence time

20 There is an optimal network residence time Diffusion constants in the bulk and on the network: Binding rate: Reactivity is defined as the inverse of the mean first passage time G = reactivity/(bulk reactivity) G>1 gain reactivity G<1 lose reactivity

21 There is an optimal network residence time Diffusion constants in the bulk and on the network: Binding rate: Reactivity is defined as the inverse of the mean first passage time G = reactivity/(bulk reactivity) G>1 gain reactivity G<1 lose reactivity

22 How network topology influences transport?

23 Filament orientation affects transport

24

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

Weak Ergodicity Breaking. Manchester 2016

Weak Ergodicity Breaking. Manchester 2016 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Burov, Froemberg, Garini, Metzler PCCP 16 (44), 24128 (2014) Akimoto, Saito Manchester 2016 Outline Experiments: anomalous diffusion of single molecules

More information

arxiv: v1 [cond-mat.stat-mech] 23 Apr 2010

arxiv: v1 [cond-mat.stat-mech] 23 Apr 2010 Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces. B.. Henry Department of Applied Mathematics, School of Mathematics and Statistics, University of New South Wales,

More information

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Sperlonga, 20-24 September 2010 From normal to

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES Aleksei V. Chechkin, 1,2 Michael Hofmann 3, and Igor M. Sokolov 3 1 School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

More information

Time fractional Schrödinger equation

Time fractional Schrödinger equation Time fractional Schrödinger equation Mark Naber a) Department of Mathematics Monroe County Community College Monroe, Michigan, 48161-9746 The Schrödinger equation is considered with the first order time

More information

Random Walk Model with Waiting Times Depending on the Preceding Jump Length

Random Walk Model with Waiting Times Depending on the Preceding Jump Length Journal of Statistical Physics, Vol. 123, No. 4, May 2006 ( C 2006 ) DOI: 10.1007/s10955-006-9104-z Random Walk Model with Waiting Times Depending on the Preceding Jump Length Vasily Yu. Zaburdaev 1 Received

More information

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations Fractional Fokker-Planck dynamics: Numerical algorithm and simulations E. Heinsalu, 1,2 M. Patriarca, 1 I. Goychuk, 1 G. Schmid, 1 and P. Hänggi 1 1 Institut für Physik, Universität Augsburg, Universitätsstrasse

More information

Covariance structure of continuous time random walk limit processes

Covariance structure of continuous time random walk limit processes Covariance structure of continuous time random walk limit processes Alla Sikorskii Department of Statistics and Probability Michigan State University Fractional Calculus, Probability and Non-local Operators:

More information

Coupled continuous time random walks in finance

Coupled continuous time random walks in finance Physica A 37 (26) 114 118 www.elsevier.com/locate/physa Coupled continuous time random walks in finance Mark M. Meerschaert a,,1, Enrico Scalas b,2 a Department of Mathematics and Statistics, University

More information

Volatility and Returns in Korean Futures Exchange Markets

Volatility and Returns in Korean Futures Exchange Markets Volatility and Returns in Korean Futures Exchange Markets Kyungsik Kim*,, Seong-Min Yoon and Jum Soo Choi Department of Physics, Pukyong National University, Pusan 608-737, Korea Division of Economics,

More information

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion Lecture notes for 12.086/12.586, Modeling Environmental Complexity D. H. Rothman, MIT September 24, 2014 Contents 1 Anomalous diffusion 1 1.1 Beyond the central limit theorem................ 2 1.2 Large

More information

arxiv: v1 [q-bio.nc] 5 Dec 2015

arxiv: v1 [q-bio.nc] 5 Dec 2015 Modelling axon growing using CTRW arxiv:1512.02603v1 [q-bio.nc] 5 Dec 2015 Xavier Descombes, Inria Sophia Antipolis, France Elena Zhizhina, Sergey Komech Institute for Information Transmission Problems,

More information

Anomalous diffusion of volcanic earthquakes

Anomalous diffusion of volcanic earthquakes Anomalous diffusion of volcanic earthquakes SUMIYOSHI ABE 1,2 and NORIKAZU SUZUKI 3 1 Department of Physical Engineering, Mie University, Mie 514-8507, Japan 2 Institute of Physics, Kazan Federal University,

More information

Anomalous diffusion in cells: experimental data and modelling

Anomalous diffusion in cells: experimental data and modelling Anomalous diffusion in cells: experimental data and modelling Hugues BERRY INRIA Lyon, France http://www.inrialpes.fr/berry/ CIMPA School Mathematical models in biology and medicine H. BERRY - Anomalous

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Oct 2002

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Oct 2002 arxiv:cond-mat/21166v2 [cond-mat.dis-nn] 11 Oct 22 REVISITING THE DERIVATION OF THE FRACTIONAL DIFFUSION EQUATION ENRICO SCALAS Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

Continuous time random walks in finite domains and general boundary conditions: some formal considerations

Continuous time random walks in finite domains and general boundary conditions: some formal considerations IOP PUBISHING JOURNA OF PHYSICS A: MATHEMATICA AND THEORETICA J. Phys. A: Math. Theor. 41 (008) 15004 (11pp) doi:10.1088/1751-8113/41/1/15004 Continuous time random walks in finite domains and general

More information

Lecture 25: Large Steps and Long Waiting Times

Lecture 25: Large Steps and Long Waiting Times Lecture 25: Large Steps and Long Waiting Times Scribe: Geraint Jones (and Martin Z. Bazant) Department of Economics, MIT Proofreader: Sahand Jamal Rahi Department of Physics, MIT scribed: May 10, 2005,

More information

Contents. Preface. Notation

Contents. Preface. Notation Contents Preface Notation xi xv 1 The fractional Laplacian in one dimension 1 1.1 Random walkers with constant steps.............. 1 1.1.1 Particle number density distribution.......... 2 1.1.2 Numerical

More information

Brownian motion 18.S995 - L03 & 04

Brownian motion 18.S995 - L03 & 04 Brownian motion 18.S995 - L03 & 04 Typical length scales http://www2.estrellamountain.edu/faculty/farabee/biobk/biobookcell2.html dunkel@math.mit.edu Brownian motion Brownian motion Jan Ingen-Housz (1730-1799)

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

arxiv: v1 [math.ca] 28 Feb 2014

arxiv: v1 [math.ca] 28 Feb 2014 Communications in Nonlinear Science and Numerical Simulation. Vol.18. No.11. (213) 2945-2948. arxiv:142.7161v1 [math.ca] 28 Feb 214 No Violation of the Leibniz Rule. No Fractional Derivative. Vasily E.

More information

The Portevin-Le Chatelier effect in the Continuous Time Random Walk. framework

The Portevin-Le Chatelier effect in the Continuous Time Random Walk. framework The Portevin-Le Chatelier effect in the Continuous Time Random Walk framework A. Sarkar * and P. Barat Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata 764, India PACS numbers: 62.2.Fe, 5.4.Fb,

More information

Abstract. 1. Introduction

Abstract. 1. Introduction MONTE CARLO RANDOM WALK SIMULATIONS BASED ON DISTRIBUTED ORDER DIFFERENTIAL EQUATIONS WITH APPLICATIONS TO CELL BIOLOGY Erik Andries,, Sabir Umarov,, Stanly Steinberg Abstract In this paper the multi-dimensional

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction During recent years the interest of physicists in nonlocal field theories has been steadily increasing. The main reason for this development is the expectation that the use of these

More information

A short story about FRAP (fluourescence recovery after photobleaching)

A short story about FRAP (fluourescence recovery after photobleaching) 1 A short story about FRAP (fluourescence recovery after photobleaching) Bob Pego (Carnegie Mellon) work involving team leader: James McNally (NCI Lab of Receptor Biology & Gene Expression) Biophysicists:

More information

Composite Fractional Time Evolutions of Cumulants in Fractional Generalized Birth Processes

Composite Fractional Time Evolutions of Cumulants in Fractional Generalized Birth Processes Adv. Studies Theor. Phys., Vol. 8, 214, no. 5, 195-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/astp.214.312143 Composite Fractional Time Evolutions of Cumulants in Fractional Generalized

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Feb 2000

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Feb 2000 Fractional Kramers Equation arxiv:cond-mat/22v1 [cond-mat.stat-mech] 1 Feb 2 E. Barkai and R.J. Silbey Department of Chemistry and Center for Materials Science and Engineering M.I.T. Cambridge, MA (February

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 9 Jan 2004

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 9 Jan 2004 arxiv:cond-mat/446v [cond-mat.stat-mech] 9 Jan 24 Distributed-Order Fractional Kinetics I.M. Sokolov Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 5, D-2489 Berlin, Germany and A.V. Chechkin

More information

TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY

TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY M. EMELIANENKO, D. GOLOVATY, D. KINDERLEHRER, AND S. TA ASAN Abstract. Under standard processing conditions, many materials possess polycrystalline

More information

Fractional Quantum Mechanics and Lévy Path Integrals

Fractional Quantum Mechanics and Lévy Path Integrals arxiv:hep-ph/9910419v2 22 Oct 1999 Fractional Quantum Mechanics and Lévy Path Integrals Nikolai Laskin Isotrace Laboratory, University of Toronto 60 St. George Street, Toronto, ON M5S 1A7 Canada Abstract

More information

Distributed order fractional sub-diffusion

Distributed order fractional sub-diffusion Distributed order fractional sub-diffusion Mark Naber a) Department of Mathematics Monroe County Community College Monroe, Michigan, 486-9746 A distributed order fractional diffusion equation is considered.

More information

On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach

On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach Vivek Mishra a, Kumar Vishal b, Subir Das a, and Seng Huat Ong c a Department of Mathematical Sciences,

More information

arxiv: v1 [cond-mat.stat-mech] 23 Feb 2017

arxiv: v1 [cond-mat.stat-mech] 23 Feb 2017 First passage properties in a crowded environment Vincent Tejedor 1 1 Cour des comptes, 13, rue Cambon, 75 001 Paris, France February 27, 2017 arxiv:1702.07394v1 [cond-mat.stat-mech] 23 Feb 2017 Introduction

More information

arxiv: v1 [math-ph] 28 Apr 2010

arxiv: v1 [math-ph] 28 Apr 2010 arxiv:004.528v [math-ph] 28 Apr 200 Computational Efficiency of Fractional Diffusion Using Adaptive Time Step Memory Brian P. Sprouse Christopher L. MacDonald Gabriel A. Silva Department of Bioengineering,

More information

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY RUDOLF GORENFLO Free University of Berlin Germany Email:gorenflo@mi.fu.berlin.de

More information

ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets

ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets THERMAL SCIENCE, Year 6, Vol., Suppl. 3, pp. S755-S767 S755 ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets by Xiao-Jun YANG a, Zhi-Zhen ZHANG

More information

Introduction: the plague. The Scaling Laws Of Human Travel. Introduction: SARS (severe acute respiratory syndrom)

Introduction: the plague. The Scaling Laws Of Human Travel. Introduction: SARS (severe acute respiratory syndrom) The Scaling Laws Of Human Travel Verena Zuber Department of Statistics University of Munich 7. July 2006 Introduction: the plague highly infectious disease several pandemics have influenced the human history

More information

arxiv: v2 [cond-mat.stat-mech] 16 Aug 2018

arxiv: v2 [cond-mat.stat-mech] 16 Aug 2018 arxiv:1802.01263v2 [cond-mat.stat-mech] 16 Aug 2018 Models for characterizing the transition among anomalous diffusions with different diffusion exponents Trifce Sandev 1,2,3, Weihua Deng 4 and Pengbo

More information

THE TIME FRACTIONAL DIFFUSION EQUATION AND THE ADVECTION-DISPERSION EQUATION

THE TIME FRACTIONAL DIFFUSION EQUATION AND THE ADVECTION-DISPERSION EQUATION ANZIAM J. 46(25), 317 33 THE TIME FRACTIONAL DIFFUSION EQUATION AND THE ADVECTION-DISPERSION EQUATION F. HUANG 12 and F. LIU 13 (Received 3 October, 23; revised 21 June, 24) Abstract The time fractional

More information

arxiv: v3 [physics.class-ph] 23 Jul 2011

arxiv: v3 [physics.class-ph] 23 Jul 2011 Fractional Stability Vasily E. Tarasov arxiv:0711.2117v3 [physics.class-ph] 23 Jul 2011 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia E-mail: tarasov@theory.sinp.msu.ru

More information

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS L. Boyadjiev*, B. Al-Saqabi** Department of Mathematics, Faculty of Science, Kuwait University *E-mail: boyadjievl@yahoo.com **E-mail:

More information

arxiv: v1 [math.pr] 25 May 2018

arxiv: v1 [math.pr] 25 May 2018 Scaling limits for Lévy walks with rests arxiv:1805.10027v1 [math.pr] 25 May 2018 Abstract Marek Teuerle Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroc law University of Science and

More information

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S-S7 S A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION by Wei XU a, Wen CHEN a*, Ying-Jie LIANG a*, and Jose WEBERSZPIL b a State Key Laboratory

More information

arxiv: v1 [cond-mat.stat-mech] 5 Oct 2017

arxiv: v1 [cond-mat.stat-mech] 5 Oct 2017 Subdiffusive Transport in Heterogeneous Patchy Environments Sergei Fedotov and Helena Stage School of Mathematics, The University of Manchester, Manchester M13 9PL, UK arxiv:171.1982v1 [cond-mat.stat-mech]

More information

Fractional Fokker-Planck equation, solution, and application

Fractional Fokker-Planck equation, solution, and application PHYSICAL REVIEW E, VOLUME 63, 468 Fractional Fokker-Planck equation, solution, and application E. Barkai Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute

More information

On the applicability of Fick s law to diffusion in inhomogeneous systems

On the applicability of Fick s law to diffusion in inhomogeneous systems INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 6 (005) 93 95 EUROPEAN JOURNAL OF PHYSICS doi:0.088/043-0807/6/5/03 On the applicability of Fick s law to diffusion in inhomogeneous systems B Ph van Milligen,PDBons,BACarreras

More information

GENERALIZED MASTER EQUATIONS FOR RANDOM WALKS WITH TIME-DEPENDENT JUMP SIZES

GENERALIZED MASTER EQUATIONS FOR RANDOM WALKS WITH TIME-DEPENDENT JUMP SIZES GENEALIZED MASTE EQUATIONS FO ANDOM WALKS WITH TIME-DEPENDENT JUMP SIZES DIEGO TOEJON AND MAIA EMELIANENKO Abstract. In this work, we develop a unified generalized master equation (GME) framework that

More information

arxiv: v1 [physics.data-an] 6 Jul 2017

arxiv: v1 [physics.data-an] 6 Jul 2017 Non-Poisson Renewal Events and Memory Rohisha Tuladhar,, Mauro Bologna, 2 and Paolo Grigolini, Center for Nonlinear Science, University of North Texas, P.O. Box 3427, Denton, Texas 7623-427 2 Instituto

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics SMR/1856-10 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Dielectric relaxation and ac universality in materials with disordered structure. J. Juul Rasmussen Risø National Laboratory

More information

QMUL, 10 Jul 2009 A Short Introduction to the Theory of Lévy Flights

QMUL, 10 Jul 2009 A Short Introduction to the Theory of Lévy Flights QMUL, 10 Jul 2009 A Short Introduction to the Theory of Lévy Flights A. Chechkin School of Chemistry, Tel Aviv University, ISRAEL and Akhiezer Institute for Theoretical Physics, National Science Center

More information

Fractional generalization of gradient and Hamiltonian systems

Fractional generalization of gradient and Hamiltonian systems INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (25) 5929 5943 doi:1.188/35-447/38/26/7 Fractional generalization of gradient and Hamiltonian systems

More information

The Continuous Time Random Walk, still trendy: Fifty-year history, state of art, and outlook

The Continuous Time Random Walk, still trendy: Fifty-year history, state of art, and outlook EPJ manuscript No. (will be inserted by the editor) The Continuous Time Random Walk, still trendy: Fifty-year history, state of art, and outlook Ryszard Kutner 1, and Jaume Masoliver 2 The variety of observed

More information

FRACTIONAL FOKKER-PLANCK-KOLMOGOROV TYPE EQUATIONS AND THEIR ASSOCIATED STOCHASTIC DIFFERENTIAL EQUATIONS. Marjorie Hahn, Sabir Umarov.

FRACTIONAL FOKKER-PLANCK-KOLMOGOROV TYPE EQUATIONS AND THEIR ASSOCIATED STOCHASTIC DIFFERENTIAL EQUATIONS. Marjorie Hahn, Sabir Umarov. SURVEY PAPER FRACTIONAL FOKKER-PLANCK-KOLMOGOROV TYPE EQUATIONS AND THEIR ASSOCIATED STOCHASTIC DIFFERENTIAL EQUATIONS Marjorie Hahn, Sabir Umarov Abstract Dedicated to 8-th anniversary of Professor Rudolf

More information

NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD. Mridula Garg, Pratibha Manohar.

NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD. Mridula Garg, Pratibha Manohar. NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD Mridula Garg, Pratibha Manohar Abstract In the present paper we solve space-time fractional diffusion-wave

More information

Normal and Anomalous Diffusion: A Tutorial

Normal and Anomalous Diffusion: A Tutorial Normal and Anomalous Diffusion: A Tutorial Loukas Vlahos, Heinz Isliker Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece Yannis Kominis, and Kyriakos Hizanidis School of Electrical

More information

Nuclear import of DNA: genetic modification of plants

Nuclear import of DNA: genetic modification of plants Nuclear import of DNA: genetic modification of plants gene delivery by Agrobacterium tumefaciens T. Tzfira & V. Citovsky. 2001. Trends in Cell Biol. 12: 121-129 VirE2 binds ssdna in vitro forms helical

More information

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3 Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3 Metzler and Klafter. (22). From stretched exponential to inverse power-law: fractional dynamics, Cole Cole relaxation processes, and

More information

SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION

SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION Vol. 4 (29) ACTA PHYSICA POLONICA B No 5 SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION Joanna Janczura, Agnieszka Wyłomańska Institute of Mathematics and Computer Science Hugo Steinhaus

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Diffusion and Reactions in Fractals and Disordered Systems

Diffusion and Reactions in Fractals and Disordered Systems Diffusion and Reactions in Fractals and Disordered Systems Daniel ben-avraham Clarkson University and Shlomo Havlin Bar-llan University CAMBRIDGE UNIVERSITY PRESS Preface Part one: Basic concepts page

More information

Search for Food of Birds, Fish and Insects

Search for Food of Birds, Fish and Insects Search for Food of Birds, Fish and Insects Rainer Klages Max Planck Institute for the Physics of Complex Systems, Dresden Queen Mary University of London, School of Mathematical Sciences Diffusion Fundamentals

More information

Biological motors 18.S995 - L10

Biological motors 18.S995 - L10 Biological motors 18.S995 - L1 Reynolds numbers Re = UL µ = UL m the organism is mo E.coli (non-tumbling HCB 437) Drescher, Dunkel, Ganguly, Cisneros, Goldstein (211) PNAS Bacterial motors movie: V. Kantsler

More information

On the Finite Caputo and Finite Riesz Derivatives

On the Finite Caputo and Finite Riesz Derivatives EJTP 3, No. 1 (006) 81 95 Electronic Journal of Theoretical Physics On the Finite Caputo and Finite Riesz Derivatives A. M. A. El-Sayed 1 and M. Gaber 1 Faculty of Science University of Alexandria, Egypt

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

From discrete time random walks to numerical methods for fractional order differential equations

From discrete time random walks to numerical methods for fractional order differential equations From discrete time random walks to numerical methods for fractional order differential equations Click to edit Present s Name Dr. Christopher Angstmann SANUM 2016 Never Stand Still Faculty of Science School

More information

Deterministic chaos and diffusion in maps and billiards

Deterministic chaos and diffusion in maps and billiards Deterministic chaos and diffusion in maps and billiards Rainer Klages Queen Mary University of London, School of Mathematical Sciences Mathematics for the Fluid Earth Newton Institute, Cambridge, 14 November

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

FRACTIONAL-ORDER UNIAXIAL VISCO-ELASTO-PLASTIC MODELS FOR STRUCTURAL ANALYSIS

FRACTIONAL-ORDER UNIAXIAL VISCO-ELASTO-PLASTIC MODELS FOR STRUCTURAL ANALYSIS A fractional-order uniaxial visco-elasto-plastic model for structural analysis XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate, D.R.J. Owen,

More information

Anomalous wave transport in one-dimensional systems with. Lévy disorder

Anomalous wave transport in one-dimensional systems with. Lévy disorder Anomalous wave transport in one-dimensional systems with Lévy disorder Xujun Ma,2 and Azriel Z. Genack,2 Department of Physics, Queens College of the City University of New York, Flushing, NY, 367 USA

More information

Fractional Transport in Strongly Turbulent Plasmas

Fractional Transport in Strongly Turbulent Plasmas Fractional Transport in Strongly Turbulent Plasmas Heinz Isliker Aristotle University of Thessaloniki In collaboration with Loukas Vlahos and Dana Constantinescu EFTC 2017, Athens Introduction I Particle

More information

Full characterization of the fractional Poisson process

Full characterization of the fractional Poisson process epl draft Full characterization of the fractional Poisson process Mauro Politi,3, Taisei Kaizoji and Enrico Scalas 2,3 SSRI & Department of Economics and Business, International Christian University, 3--2

More information

School of Mathematical Sciences Queensland University of Technology. Qianqian Yang. Bachelor of Science (Mathematics), Xiamen University (XMU)

School of Mathematical Sciences Queensland University of Technology. Qianqian Yang. Bachelor of Science (Mathematics), Xiamen University (XMU) School of Mathematical Sciences Queensland University of Technology Novel analytical and numerical methods for solving fractional dynamical systems Qianqian Yang Bachelor of Science (Mathematics), Xiamen

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 19 Sep 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 19 Sep 2003 arxiv:cond-mat/39449v1 [cond-mat.stat-mech] 19 Sep 23 LETTER TO THE EDITOR First passage and arrival time densities for Lévy flights and the failure of the method of images Aleksei V Chechkin, Ralf Metzler,

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

The applications of Complexity Theory and Tsallis Non-extensive Statistics at Space Plasma Dynamics

The applications of Complexity Theory and Tsallis Non-extensive Statistics at Space Plasma Dynamics The applications of Complexity Theory and Tsallis Non-extensive Statistics at Space Plasma Dynamics Thessaloniki, Greece Thusday 30-6-2015 George P. Pavlos Democritus University of Thrace Department of

More information

Physica A. Extremal behavior of a coupled continuous time random walk

Physica A. Extremal behavior of a coupled continuous time random walk Physica A 39 (211) 55 511 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa Extremal behavior of a coupled continuous time random walk Rina Schumer a,,

More information

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA Cai, W., et al.: Three-Dimensional Hausdorff Derivative Diffusion Model... THERMAL SCIENCE: Year 08, Vol., Suppl., pp. S-S6 S THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC

More information

Noisy continuous time random walks

Noisy continuous time random walks Noisy continuous time random walks Jae-Hyung Jeon, Eli Barkai, and Ralf Metzler Citation: J. Chem. Phys. 139, 121916 (2013); doi: 10.1063/1.4816635 View online: http://dx.doi.org/10.1063/1.4816635 View

More information

arxiv: v2 [cond-mat.stat-mech] 23 Jan 2015

arxiv: v2 [cond-mat.stat-mech] 23 Jan 2015 Lévy walks V. Zaburdaev, 1, S. Denisov, 2, 3, 4, and J. Klafter 5, 1 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-1187 Dresden, Germany 2 Institute of Physics, University

More information

and , (8) K = thereby turning Eq. (6) into 1 ˆψ(u) 1 ˆψ(u) K, (6)

and , (8) K = thereby turning Eq. (6) into 1 ˆψ(u) 1 ˆψ(u) K, (6) to an initial condition with system of interest and bath uncorrelated one from the other, a non-stationary state. As we shall see, to create a master equation compatible with the Onsager principle, in

More information

GENERALIZATION OF A FRACTIONAL MODEL FOR THE TRANSPORT EQUATION INCLUDING EXTERNAL PERTURBATIONS

GENERALIZATION OF A FRACTIONAL MODEL FOR THE TRANSPORT EQUATION INCLUDING EXTERNAL PERTURBATIONS GENERALIZATION OF A FRACTIONAL MODEL FOR THE TRANSPORT EQUATION INCLUDING EXTERNAL PERTURBATIONS DANA CONSTANTINESCU 1, IULIAN PETRISOR 2 1 Association Euratom-MEdC, Romania University of Craiova, Department

More information

Random walks in a 1D Levy random environment

Random walks in a 1D Levy random environment Random Combinatorial Structures and Statistical Mechanics, University of Warwick, Venice, 6-10 May, 2013 Random walks in a 1D Levy random environment Alessandra Bianchi Mathematics Department, University

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

Life and Death of Stationary Linear Response in Anomalous Continuous Time Random Walk Dynamics

Life and Death of Stationary Linear Response in Anomalous Continuous Time Random Walk Dynamics Commun. Theor. Phys. 62 (2014) 497 504 Vol. 62, No. 4, October 1, 2014 Life and Death of Stationary Linear Response in Anomalous Continuous Time Random Walk Dynamics Igor Goychuk Institute for Physics

More information

Unusual eigenvalue spectrum and relaxation in the Lévy Ornstein-Uhlenbeck process. Abstract

Unusual eigenvalue spectrum and relaxation in the Lévy Ornstein-Uhlenbeck process. Abstract Unusual eigenvalue spectrum and relaxation in the Lévy Ornstein-Uhlenbeck process Deepika Janakiraman and K. L. Sebastian arxiv:1406.0478v2 [cond-mat.stat-mech] 18 Sep 2014 Department of Inorganic and

More information

Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit

Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit Proceedings of the National Workshop on Fractional Calculus and Statistical Distributions, 25-27 November 29, CMS Pala Campus, pp.1-22 Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time

More information

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1. 1 I. CONTINUOUS TIME RANDOM WALK The continuou time random walk (CTRW) wa introduced by Montroll and Wei 1. Unlike dicrete time random walk treated o far, in the CTRW the number of jump n made by the walker

More information

Fractional and fractal derivatives modeling of turbulence

Fractional and fractal derivatives modeling of turbulence Fractional and fractal derivatives modeling of turbulence W. Chen Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Division Box 6, Beiing 100088, China This study makes the first

More information

Research Article Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous Diffusion

Research Article Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous Diffusion International Stochastic Analysis Volume 22, Article ID 427383, 4 pages doi:.55/22/427383 Research Article Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous

More information

Chaotic diffusion in randomly perturbed dynamical systems

Chaotic diffusion in randomly perturbed dynamical systems Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30

More information

Anomalous diffusion equations

Anomalous diffusion equations Anomalous diffusion equations Ercília Sousa Universidade de Coimbra. p.1/34 Outline 1. What is diffusion? 2. Standard diffusion model 3. Finite difference schemes 4. Convergence of the finite difference

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY RUDOLF GORENFLO Free University of Berlin Germany Email:gorenflo@mi.fu.berlin.de

More information

Multiscaling fractional advection-dispersion equations and their solutions

Multiscaling fractional advection-dispersion equations and their solutions WATER RESOURCES RESEARCH, VOL. 39, NO., 022, doi:0.029/200wr00229, 2003 Multiscaling fractional advection-dispersion equations and their solutions Rina Schumer and David A. Benson Desert Research Institute,

More information

MAE 545: Lecture 2 (9/22) E. coli chemotaxis

MAE 545: Lecture 2 (9/22) E. coli chemotaxis MAE 545: Lecture 2 (9/22) E. coli chemotaxis Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle

More information