A Peccati-Tudor type theorem for Rademacher chaoses

Size: px
Start display at page:

Download "A Peccati-Tudor type theorem for Rademacher chaoses"

Transcription

1 A Peccat-Tudo type theoem fo Rademache chaoses Guangqu Zheng 6 Avenue de la fonte, Mason du Nombe, Unvesté du Luxemboug, Esch-su-Alzette, L4364, Luxemboug Abstact In ths atcle, we pove that n the Rademache settng, a andom vecto wth chaotc components s close n dstbuton to a cented Gaussan vecto, f both the maxmal nfluence of the assocated kenel and the fouth cumulant of each component s small. In patcula, we ecove the unvaate case ecently establshed n Döble and Kokowsk 7). Ou man stategy conssts n a novel adapton of the exchangeable pas couplngs ntated n Noudn and Zheng 7), as well as ts combnaton wth estmates va chaos decomposton. Intoducton. Motvaton Nualat and Peccat s fouth moment theoem states that a nomalsed sequence of fxed-ode multple Wene-Itô ntegals assocated to a Bownan moton conveges n law to the standad Gaussan f and only f the coespondng fouth moment conveges to 3. It was poved n [] usng the Dambs-Dubns- Schwatz andom-tme change technque. Soon afte the appeaance of [], seveal extensons have been made, among whch the pape [3] by Peccat and Tudo povded a sgnfcant multvaate extenson usng the same techque. Roughly speakng, a sequence of chaotc andom vectos on the Wene space conveges n dstbuton to a cented Gaussan vecto wth matched covaance matx f and only f the asymptotc nomalty holds tue fo each component. Note that the necessay condton bols down to the convegence of the fouth moments due to the fouth moment theoem of Nualat and Peccat. In 9, Noudn and Peccat [5] combned the Mallavn calculus and Sten s method of nomal appoxmaton so as to lteally ceate a new feld of eseach, known as the Mallavn-Sten appoach. One of ts many hghlghts s the obtenton of the quanttatve) fouth moment theoem n the total-vaaton dstance. Hee s the bound quoted fom the monogaph [6]: gven a nomalsed q-th Wene-Itô ntegal F assocated to a Bownan moton, one has d TV F, Z) := sup P F A ) P Z A ) q E[F 3 q 4 ] 3 ), A BR) whee Z s a standad Gaussan andom vaable and BR) denotes the Boel σ-algeba on R. As an mmedate consequence, the fouth moment theoem of Nualat and Peccat follows. The success of the Mallavn-Sten appoach stems fom the ntegaton by pats on both sdes, namely, the Sten s lemma wthn the Sten s method and the dualty elaton between Mallavn devatve and Mathematcs Subject Classfcaton. Pmay: 6F5, 6B; Seconday: 47N3. Key wods and phases. Fouth moment theoem; Rademache chaos; Sten s method; exchangeable pas; spectal decomposton; maxmal nfluence. Emal: guangqu.zheng@un.lu

2 G. Zheng Skoohod dvegence on a Gaussan space, see the monogaph [6] fo a compehensve teatment. The only ngedents equed fom the Sten s method ae the Sten s lemma, Sten s equaton and the egulaty popetes of the Sten s soluton, whle exchangeable pas, anothe fundamental tool and notable conestone of Sten s method, had not been touched untl the ecent nvestgaton [] made by Noudn and Zheng. They constucted nfntely many exchangeable pas of Bownan motons and combned them wth E. Meckes abstact esults [, 3] on exchangeable pas to ecove the quanttatve fouth moment theoem on a Gaussan space n any dmenson. Such an elementay stategy was soon adapted by Döble, Vdotto and Zheng n [7] fo the nvestgaton on the Posson space, and they wee able to obtan the quanttatve fouth moment theoem n any dmenson. In fact, the unvaate fouth moment theoem on the Posson space was establshed eale n [6] unde some ntegablty assumptons nvolvng the dffeence opeato, whch ae patally due to the nheent dsceteness of the Posson space. Remakably, the authos of [7] wee able to obtan the exact fouth moment theoem unde the weakest possble assumpton of fnte fouth moment. Ths llustates the powe of the elementay exchangeable pas appoach. In ths wok, unde sutable assumptons, we establsh a Peccat-Tudo type theoem n the Rademache settng usng the elementay exchangeable pas appoach.. Man esult We fst fx a ch pobablty space Ω, F, P ), on whch ou andom objects ae defned. Let E be the assocated expectaton opeato. We wte N := {,,...} and denote by X a sequence of ndependent Rademache andom vaables X k, k N) such that P X k = ) = p k = q k = P X k = ), ). We call t the symmetc case, wheneve p k = / fo each k N; othewse, we call t the geneal case. We wte Y = Y k, k N ) fo the nomalsed veson of X, that s,.) Y k = X k p k + q k p k q k, k N. We wte H = l N), equpped wth usual l -nom and fo p N, H p means the p-th tenso poduct of H and H p ts symmetc subspace. We denote H p := { f H p : f c p = } wth p = {,..., p ) N p : k j fo dffeent k, j }. Clealy, H = H = R and H = H. Let f H d wth d N and Ξ = ξ k, k N) be a genec sequence of ndependent nomalsed andom vaables. We defne the followng homogeneous sum wth ode d, based on the kenel f, by settng,.) Q d f ; Ξ) := f,..., d )ξ ξ d,..., d N and n patcula, Q d f ; Y) s called the dscete) multple ntegal of f. We wte C d = { Q d f ; Y) : f } and call t the d-th Rademache chaos, and as a conventon, we put C = R. In case of no ambguty, H d we wll smple wte Q d f ) fo Q d f ; Y). Let us ntoduce an mpotant noton befoe we state ou man esult: fo a gven kenel f H d, we denote by M f ) the maxmal nfluence of f, namely.3) M f ) := sup k N,..., d N f,..., d, k) fo d and M f ) := sup f k) fo d =. k N Ths noton s adapted fom the boolean analyss see e.g. []), n whch the class of low-nfluence functons s often what s nteestng o necessay n pactce. It s also closely elated to the nvaance

3 Peccat-Tudo theoem fo Rademache chaoses 3 pncple establshed n [4] and the unvesalty phenomenon of Gaussan Wene chaos [8]. See also Secton 4 fo moe detals. In ths wok, we ae manly concened wth andom vaables n a Rademache chaos and andom vectos wth components n Rademache chaoses. Moe pecsely, we establsh the followng esult. Theoem.. Fx nteges d and q... q d, and consde the sequence of andom vectos F n) = F n),..., Fn) )T := Q q f,n ),..., Q qd f d,n ) ) T d wth kenels f j,n n H q j fo each n N, j {,..., d}. Assume that the covaance matx Σ n of F n) conveges n Hlbet-Schmdt nom to a nonnegatve defnte symmetc matx Σ = Σ, j,, j d ), as n +. Suppose that the followng condton holds: lm n + d M f j,n ) =. j= If fo each j {,..., d}, E [ F n)) 4 ] j conveges to 3Σ j, j, as n +, then F n) conveges n dstbuton to Z N, Σ), as n +. The above theoem s analogous to the Peccat-Tudo theoem on a Gaussan space [3], so we call t a Peccat-Tudo type theoem, whch explans ou ttle. One of the man tools we need fo the poof s the followng ngedent fom Sten s method of exchangeable pas. As one wll see easly, we can obtan a quanttatve veson of Theoem., whch wll be an analogue to [7, Theoem.7] and left fo nteested eades. Recall fst that two andom vaables W and W, defned on a common pobablty space, ae sad to fom an exchangeable pa, f W, W ) has the same dstbuton as W, W). Poposton. Poposton 3.5 n [7]). Fo each t >, let F, F t ) be an exchangeable pa of cented d-dmensonal andom vectos defned on a common pobablty space. Let G be a σ-algeba that contans σ{f}. Assume that Λ R d d s an nvetble detemnstc matx and Σ s a symmetc, non-negatve defnte detemnstc matx such that a) lm t t E[ F t F G ] = ΛF n L Ω), b) lm t E[ F t F)F t F) T G ] = ΛΣ + S n L Ω, H.S. ) fo some matx S = S F), and wth H.S. the Hlbet-Schmdt nom, t c) fo each {,..., d}, thee exsts some eal numbe ρ F) such that lm t E[ F,t F ) 4] = ρ F), whee F,t esp. F ) stands fo the -th coodnate of F t esp. F). Then, fo g C 3 R d ) such that gf), gz) L P), we have, wth Z N, Σ), E[gF)] E[gZ)] Λ op d M g) d E S 4, j + dm3 g) Λ d d op Λ, Σ, + E[S, ] ρ F), 8 whee M k g) := sup x R d, j= D k gx) op wth op the opeato nom. = t =

4 4 G. Zheng The est of ths pape s ogansed as follows: Secton.3 s devoted to a bef ovevew of elated esults and we sketch ou stategy of povng Theoem. n Secton.4; n Secton, we povde pelmnay knowledge on Rademache chaos and a cucal exchangeable pas couplng. The poof of ou man esult wll be gven n Secton 3 and some dscusson about unvesalty aound Rademache chaos wll be pesented n Secton 4..3 A bef ovevew of lteatue Soon afte the appeaance of [5], Noudn, Peccat and Renet combned Sten s method and a dscete veson of Mallavn calculus to study the Gaussan appoxmaton of Rademache functonals n the symmetc case. Ths analyss s known as the dscete Mallavn-Sten appoach. It has been genealsed by the authos of [9, ] not only n the multvaate settng but also n the geneal case whee functonals nvolvng non-symmetc, non-homogeneous Rademache andom vaables wee nvestgated. Recently, Döble and Kokowsk [5] gave the followng fouth-moment-nfluence bound and ponted out that t s optmal n the sense that thee ae examples, n whch the fouth moment condton alone would not guaantee the asymptotc nomalty. Theoem. Theoem. n [5]). Fx p N and f H p satsfyng p! f =. Let Z be a standad H p Gaussan and F = Q p f ; Y) L 4 P), then we have the followng bound n Wassesten dstance: ) d W F, Z := sup E [ hf) hz) ] E[F C 4 ] 3 + C M f ), h whee C, C ae two numecal constants. Ths esult echoes the emakable de Jong s cental lmt theoem [4]. Besdes the afoementoned efeences, Kokowsk [8] deved a multplcaton fomula that genealses the one n [7], and applyng as well the Chen-Sten s method, he studed the Posson appoxmaton of Rademache functonals. Independently, Pvault and Tos [6] also deved a multplcaton fomula and moeove, they obtaned a genealsaton of the appoxmate chan ule fom [7], and appled them to study Gaussan and Posson appoxmaton of Rademache functonals n the geneal case. Concenng the nomal appoxmaton n [7] o [6], the authos wee only able to obtan the bounds n some smooth-veson dstance, due to egulaty nvolvng n the chan ules and Sten s soluton. In a follow-up wok, Zheng [8] obtaned a neate chan ule that eques mnmal egulaty see [8, Remak.3]), fom whch he obtaned the bound n Wassesten dstance as well as an almost sue cental lmt theoem fo Rademache chaos. It s wothy pontng out that wthout usng any chan ule, the authos of [9, ] used caefully a epesentaton of the dscete Mallavn gadent and the fundamental theoem of calculus to deduce the Bey-Esseen bound fo nomal appoxmaton. Usng smla deas, Döble and Kokowsk [5] also povded the Bey-Esseen bound fo the fouth-moment-nfluence theoem, whch s of the same ode as the above Wassesten bound..4 Stategy of povng Theoem. Sten s method of exchangeable pas was fst systematcally pesented n Chales Sten s 986 monogaph [7], whch was subsequently developed and amfed by many authos. Concenng ou wok, we menton n patcula E. Meckes dssetaton [], n whch she developed an nfntesmal veson of ths method to obtan total-vaaton bound n nomal appoxmaton. Ths nfntesmal veson of Sten s method of exchangeable pas was late genealsed n [3, 3] fo the multvaate nomal appoxmaton. As announced, Poposton. s one of ou man tools, and t can be seen as a genealsaton of [3]. To use t, we need to constuct a sutable famly of andom vectos F t, t such that F t, F)

5 Peccat-Tudo theoem fo Rademache chaoses 5 s exchangeable fo each t and satsfes seveal asymptotc egesson condtons. In fact, we wll fst constuct a famly of Rademache sequences X t such that X t, X ) s an exchangeable pa of {±} N -valued andom vaables fo each t. Moe pecsely, let X be an ndependent copy of X and Θ = θ k, k N) be a sequence of..d. standad exponental andom vaables such that X, X and Θ ae ndependent. Fo each t [, + ), we defne X t k := X k θk t) + X k θ k <t). It has been ponted out n [] that X t has the same dstbuton as X, see also Remak 3.4 n [7] fo the symmetc case. Howeve, both of these two atcles dd not explctly state the exchangeablty of X t and X, whch wll be poved n Lemma.. Assumng ths and wtng F = fx) fo some epesentatve f : {±} N R d, we can set F t = fx t ). It s easy to see that the exchangeablty can be passed to F, F t ) now. If F = Q p f ; Y),..., Q pd f d ; Y) ), then we can wte F t = Q p f ; Y t ),..., Q pd f d ; Y t ) ) wth Y t the nomalsed veson of X t n the sense of.). Moeove, ths exchangeable pas couplng fts well wth the Mehle s fomula, whch gves a nce epesentaton of the dscete Onsten-Uhlenbeck semgoup P t, t ) : gven F L Ω, σ{x}, P ), we can fst wte F = fx) fo some f : {±} N R, then the Mehle fomula [, Poposton 3.]) states that.4) P t F = E [ f X t) σ{x} ]. Fo ξ C p, as we wll see n Secton, P t ξ = e pt ξ, then the asymptotc lnea egesson a) n Poposton. follows easly, and wth slghtly moe effot, the hghe ode egessons can also be obtaned, see Poposton.. Anothe mpotant ngedent n ou poof s Ledoux spectal pont-of-vew fo fouth moment theoem [], whch was late efned e.g. n [, ]. Such a spectal vewpont helps one get d of some computatonal deadlock that s usually caused by the complcated multplcaton fomula. In patcula, ou poof s motvated by some aguments n []. As a bypoduct of ou stategy, we wll povde a shot poof of Theoem. n the begnnng of Secton 3. Some estmate fom ths poof wll also be helpful fo ou multvaate case. Acknowledgement. Pat of ths wok was done dung a vst at Natonal Unvesty of Sngapoe. I thank vey much Pofesso Lous H. Y. Chen at NUS fo hs vey geneous suppot and knd hosptalty. The gattude also goes to Pofesso Govann Peccat fo shang hs altenatve poof of Lemma.4 n [6], whch motved ou poof of Lemma.. Pelmnaes Denote by σ{x} the σ-algeba geneated by the sequence X, and note that σ{x} = σ{y}. The Wene- Itô-Wash chaos decomposton assets that any andom vaable F L Ω, σ{x}, P ) admts a unque epesentaton.) F = E[F] + Q p f p ) p wth f p H p fo each p N, whee the above sees conveges n L P). We denote by J k ) the pojecton onto the k-th Rademache chaos C k : fo F gven n.), J p F) = Q p f p ) fo each p N, and J F) = E[F]. It s not dffcult to check that fo f H p and g H q, t holds that E [ Q p f )Q q g) ] = {p=q} p! f, g H p.

6 6 G. Zheng Ths s known as the othogonalty popety of the multple ntegals. One can efe to N. Pvault s suvey [5] fo moe detals and elevant dscete Mallavn calculus. The authos of [7] establshed a multplcaton fomula fo dscete multple ntegal n the symmetc case: gven f H p and g H q, one has.) p q p Q p f )Q q g) =! = ) q ) Q p+q f g p+q ), whee the -contacton f g of f and g s defned by f g) ),..., p, j,..., j q := f ) ),..., p, k,..., k g j,..., j q, k,..., k k,...,k N and f g s the canoncal symmetsaton of f g,.e. fo any h H p, h s gven by h,..., p ) = h ) σ),..., σp), p! σ S p wth S p the pemutaton goup ove {,..., p}. We follow the conventon that c = c fo each c R. Note t s easy to deduce fom the Cauchy-Schwaz nequalty that h H p h H p fo each h H p, then applyng the above othogonalty popety and mathematcal nducton gves us a weak fom of the hypecontactvty popety n the symmetc case, namely, E [ F ] < + fo any F C p, p, N. Howeve, n the geneal case, one can not even guaantee the exstence of fnte fouth moment of a genec multple ntegal. Such a phenomenon, due to the asymmety, s also evealed n the coespondng multplcaton fomulae, see Poposton. n [8] and Poposton 5. n [6]. As aleady ponted out n [5], gven F C p L 4 P), one can not dectly deduce fom these multplcaton fomulae that F admts a fnte chaotc decomposton. Adaptng the nducton aguments fom the poof of [6, Lemma.4], Döble and Kokowsk gave the followng postve esult. Lemma. Lemma.3 n [5]). Let F = Q p f ) L 4 P) and G = Q q g) L 4 P) fo some f H p and g H q. Then FG L P) admts a fnte chaos decomposton of the fom FG = E[FG] + p+q In patcula, f Q h) belongs to L 4 P) fo some h H, then k= J k FG) + Q p+q f g p+q ). Q h) = h H + Q w) + Q h h ) wth wk) = hk) q k p k ) pk q k, k N. As ths lemma s cucal fo ou wok and fo the sake of completeness, we povde n Secton 3.3 anothe and dect poof suggested by Govann Peccat.). Onsten-Uhlenbeck Stuctue and caé du champs opeato Denote by doml) the set of those F n.) vefyng p E [ Q p f p ) ] = p= p p! f p H < +. p p=

7 Peccat-Tudo theoem fo Rademache chaoses 7 Fo such a F doml), we defne LF = p pq p f p ). In patcula, f F C p, LF = pf. In othe wods, L has pue spectum N {} and each egenvalue p {} N coesponds to the egenspace C p. And we call L the Onsten-Uhlenbeck opeato, equpped wth ts doman doml). Fo F, G doml) such that FG doml), we defne the caé du champs opeato ΓF, G) by settng ΓF, G) := LFG) FLG GLF ). In patcula, fo F, G as n Lemma., one has FG doml) and.3) ΓF, G) = [ ] p+q p + q) + L J k FG) = p + q p+q E[FG] + and as a consequence of the othogonalty popety, one deduces that k= k= p + q k J k FG),.4) Va ΓF, G) ) = p+q k= p + q k) 4 Va J k FG) ) p+q max{p, q } Va J k FG) ), k= whch s all we need about the caé du champs. Fo each t [, + ) and F as n.), we defne P t F := E[F] + e pt Q p f p ). p= P t, t ) s called the Onsten-Uhlenbeck semgoup, whch can be epesented altenatvely by the Mehle fomula.4). To vefy.4), one can fst consde F = Q p f p ) n a Rademache chaos wth f p H p havng fnte suppot and then use the standad appoxmaton agument. Note that fo F doml), t s not dffcult to check t P t F F) conveges n L P) to LF, as t.. Exchangeable pas of Rademache sequences Lemma.. Let X t and X be gven as befoe, then X, X t) has the same dstbuton as X t, X ). In patcula, fo any f j H p j wth p j N, j =,..., d, Qp f ; Y),..., Q pd f d ; Y) ) and Q p f ; Y t ),..., Q pd f d ; Y t ) ) fom an exchangeable pa, whee Y t stands fo the nomalsed veson of X t n the sense of.). Poof. Note fst that X t s a sequence of ndependent Rademache andom vaables fo each t [, + ). Fo each k N, t s easy to check that P X t k =, X k = ) = P X t k =, X k = ) = e t )p k q k. Ths gves us the exchangeablty of X k, Xk t ) fo each k N. Let a = a, N), b = b, N) {±} N, then usng the ndependence wthn those two sequences X, X t, we obtan P X = a, X t = b ) = P X k = a k, Xk t = b ) k = P X k = b k, Xk t = a ) k by exchangeablty of X k, Xk t k N k N = P X = b, X t = a ).

8 8 G. Zheng Ths poves the exchangeablty of X, X t. The est follows fom a standad appoxmaton agument: t s clea that afte tuncaton, wth [N] := {,..., N}) Qp f [N] p ; Y),..., Q pd f d [N] p d ; Y) ) and Q p f [N] p ; Y t ),..., Q pd f d [N] p d ; Y t ) ) fom an exchangeable pa; lettng N + and keepng n mnd that the exchangeablty s peseved n lmt, we get the desed esult. The followng esult bngs moe connectons between ou exchangeable pas and Onsten-Uhlenbeck opeato. Poposton.. Let F = Q p f ; Y) L 4 P) fo some f H p and defne F t = Q p f ; Y t ). Then, F, F t ) s an exchangeable pa fo each t R +. Moeove, a) lm t t E[ F t F σ{x} ] = LF = pf n L 4 P). b) If G = Q q g; Y) L 4 P) and G t = Q q g; Y t ) fo some g H q, then we have lm t t E[ F t F)G t G) σ{x} ] = ΓF, G), wth the convegence n L P). c) lm t t E[ F t F) 4] = 4p E[F 4 ] + E [ F ΓF, F) ]. Poof. By the Mehle fomula.4), we have t E[ F t F σ{x} ] = P tf) F t = e pt F, t conveges n L 4 P) to pf = LF, as t. As a consequence of Lemma., FG has a fnte chaos expanson of the fom FG = E[FG] + p+q k= Q k hk ; Y ) fo some h k H k. Theefoe, F tg t = E[FG] + p+q k= Q k hk ; Y t), mplyng t E[ F t G t FG σ{x} ] p+q = t E[ Q k hk ; Y t) Q k hk ; Y ) σ{x} ] k= conveges n L P) to p+q k= k J kfg) = LFG), as t. Hence, we nfe that n L P) and as t, t E[ F t F)G t G) σ{x} ] = t E[ F t G t FG σ{x} ] F E[G t G σ{x}] G E[F t F σ{x}] t t LFG) FLG GLF = ΓF, G). Snce the pa F, F t ) s exchangeable, we can wte E [ F t F) 4] = E [ Ft 4 + F 4 4Ft 3 F 4F 3 F t + 6Ft F ] = E[F 4 ] 8E [ F 3 ] [ F t + 6E F Ft ] by exchangeablty of F, Ft ) ) = 4E [ F 3 F t F) ] + 6E [ F F t F) ] afte eaangement) = 4E [ F 3 E[F t F σ{x}] ] + 6E [ F E[F t F) σ{x}] ]. so c) follows mmedately fom a),b) and the fact that F L 4 P).

9 Peccat-Tudo theoem fo Rademache chaoses 9 3 Poofs We begn wth the followng lemma, whose poof s postponed to Secton 3.3. Lemma 3.. Gven F = Q p f ) wth f H p and G = Q q g) wth g H q, we assume that F, G L4 P). Then we have the followng estmates: 3.) p+q k= Va J k FG) ) E [ F G ] E[FG] VaF)VaG) + p + q)! f g c p+q H p+q, and n patcula, 3.) max p k= Va J k F ) ) p, p! = ) p f f H p E[ F 4] 3E[F ] + p)! f f c p, H p wth 3.3) p q f g c p p+q! H p+q = ) q ) mn { f H p Mg), g H q M f ) }. As a conventon, we put =.) = Befoe we pove ou multvaate lmt theoem, we wll gve a shot poof of the unvaate case n Wassesten dstance, usng ou exchangeable pas couplng. 3. Altenatve poof of Theoem. We need the followng esult, whch s the unvaate analogue of Poposton.. Poposton 3.. Let F and a famly of eal andom vaables F t ) t be defned on a common pobablty law space Ω, F, P) such that F t = F fo evey t. Assume that F L 4 Ω, G, P) fo some σ-algeba G F and that n L P), a) lm t t E[ F t F G ] = λ F fo some λ >, b) lm t t E[ Y t Y) G ] = λ + S )VaF) fo some andom vaable S ; c) and lm t t E[ F t F) 4] = ρf)vaf) fo some ρf). Then, wth Z N, VaF) ), we have d W F, Z) VaF) λ π E[ S ] + λ + E[S ])VaF) ρf). 3λ Fo the poof, one can efe to [7, Poposton 3.3]. One may also want to efe to Theoem 3.5 of [7] fo a dffeent couplng bound.

10 G. Zheng Now gven F = Q p f ; Y ) L 4 P) wth E [ F ] = ), we can get by usng.4) and 3.) that 3.4) Va p ΓF, F) ) p k= Va J k F ) ) E[F 4 ] 3E[F ] + p)! f f c p H p E[F 4 ] 3E[F ] + γ p E[F ]M f ) wth γ p := p)! p! p ) p!. = Also usng the chaos expanson of F and ΓF, F) as well as the othogonalty popety, we have 3E [ F ΓF, F) ] pe[f 4 ] = 3E [ F ΓF, F) p ) ] p E[F 4 ] 3 ) p p = 3E J k F p k ) J k F ) p E[F 4 ] 3 ) p 3p Va J k F ) ) p E[F 4 ] 3 ). k= It follows fom 3.4) that k= k= 3.5) 3E [ F ΓF, F) ] pe[f 4 ] p E[F 4 ] 3 ) + 3pγ p M f ). Now defne F t = Q p f ; Y t ) fo each t [, + ), then by Poposton., F t, F) s an exchangeable pa satsfyng the condtons n Poposton 3. wth G = σ{x}, λ = p, S = ΓF, F) p and ρf) = 4p E[F 4 ] + E [ F ΓF, F) ]. Theefoe, d W F, N) p π E[ ΓF, F) p ] + π Va p ΓF, F) ) + p 3p p 3p /π E[F 4 ] 3 + γ p M f ) + 3 4p E[F 4 ] + E [ F ΓF, F) ] 4p E[F 4 ] + E [ F ΓF, F) ] snce E[ΓF, F)] = p) E[F 4 ] 3 ) + 3γ p M f ) 4) /π + E[F 3 4 ] 3 + 6) /π + γp M f ) 3 Ths poves Theoem. wth C = /π and C = /π + 6) p)! 3 p! p ) p!. Remak 3.. ) Fo F n the fst Rademache chaos, one can dectly pove Theoem. wthout usng the exchangeable pas. Indeed, f F = Q h) L 4 P) fo some h H wth h H = and Z N, ), then by [8, Theoem 3.], = d W F, Z) k= p k q k hk) 4. By Lemma., F ) = + Q w) + Q h h wth wk) = hk) q k p k ) pk q k, k N. Ths mples E [ F 4] = + k= hk) 4 q k p k ) p k q k + h h H h h c H

11 Peccat-Tudo theoem fo Rademache chaoses = 3 + k= hk) 4 q k p k ) p k q k hk) 4 = 3 + k= k= hk) 4 q k + p k p k q k 4 Notcng p k + q k / fo each k N, we have hk) 4 4 hk) 4 + E [ F 4] 3 4Mh) + E [ F 4] 3. p k q k k= k= hk) 4. Hence, d W F, Z) E[F 4 ] 3 + Mh). Moeove, usng the so-called second-ode Poncaé nequalty n [, Theoem 4.], we can have the Bey-Esseen bound d Kol F, Z ) := sup z R P F z ) P Z z ) k= k= hk) p k q 4 E[F 4 ] Mh). k ) Contnung the dscusson n pevous pont and assumng p k = p = q = q k fo each k, we have E [ F 4] 3 = p + q 4 4pq 3.6) hk) 4. pq If p, ) \ { ± }, then we have the exact fouth moment bounds: 3 d W F, Z) pq hk) 4 E[F 4 ] 3 p + q 4pq k= see also Coollay.4 n [5]. 3. Poof of Theoem. k= ) / and d KolF, Z) E[F 4 ) / ] 3 p + q, 4pq Wthout losng any genealty, we assume that Σ n = Σ and each component of F n) belongs to L 4 P). Recall that F n) = F n),..., Fn) d )T := Q q f,n ; Y ),..., Q qd fd,n ; Y ) ) T and we defne F n) t = F n),t,..., Fn) d,t )T wth F n),t := Q q f,n ; Y t) so that by Lemma. and Poposton., ) F, F t := F n), F n) ) t fom an exchangeable pa satsfyng the condtons n Poposton. wth G = σ{x}, Λ = dagq,..., q d ) and S = Γ F n), F n) ) ) j q j Σ, j ρ F n) ) = 4q E [ F n) ) 4] + E [ F n) ) ΓF n), F n) ) ]., j d, Indeed, the condton c) n Poposton. follows fom the elaton c) n Poposton., and fo each, j {,..., d}, we have and It follows that lm t t E[ F n),t F n) ) F n) lm t t E[ F n),t F n) σ{x} ] = q F n) n L 4 P), j,t F n) ) ] j σ{x} = q j Σ, j + [ Γ F n), F n) ) ] j q j Σ, j t E[ F n) t F n) σ{x} ] + ΛF n) d = R d = t E[ F n),t F n) σ{x} ] ) + q F n) n L P).

12 G. Zheng conveges to zeo n L P), as t ; and = t E[ F n) d, j= t t E[ F n),t F n)) F n) t F n) ) F n) F n))t σ{x} ] ΛΣ S H.S. j,t F n) ) ] j σ{x} Γ F n), F n) ) ) j conveges to zeo n L P), as t. Hence we can apply Poposton. and consequently, t suffces to show E [ d ] S H.S. + ρ F n) ) d =, j= Va Γ F n), F n) )) j / d + ρ F n) ), = as n +. In vew of 3.4) and 3.5), t educes to pove lm n + Va Γ F n), F n) )) j = fo < j. We splt ths pat nto two steps. Step. Suppose F, G ae two eal andom vaables gven as n Lemma. wth p q, then we have E [ F G ] = E[FG] + and by.4) and Lemma 3., we get q Va ΓF, G) ) p+q k= p+q k= Va J k FG) ) Cov F, G ) E[FG] + q)! Thus, we can futhe educe ou poblem to show Va J k FG) ) + p + q)! f g p+q H p+q p p! = ) q ) mn { f H p Mg), g H q M f ) }. 3.7) lm n + Cov F n) ), F n) j ) ) E[F n) F n) j ] ) = fo any < j d, whch wll be caed out n the next step. Step. Let F, G be gven as n pevous step, we have E [ F G ] q = E F E[G ] + J k G ) + J q G ) k= = VaF)VaG) + E J k G ) + p=q)e [ J q F )J q G ) ]. F q k= If p < q, then E[FG] = and Cov F, G ) E [ q F 4] Va J k G ) ) k= E [ F 4] E [ G 4] 3E[G ] + γ p E[G ]Mg),

13 Peccat-Tudo theoem fo Rademache chaoses 3 whee the second nequalty follows fom 3.4) and the constant γ p s gven theen. If p = q, then E [ J q F )J q G ) ] = q)! f f, g g = q)! q f f, g g q)! f f, g g H q H q c q H q q q = q! f, g H + q! ) f q g, g f H q q)! f f, g g c, q H q = whee the last equalty follows fom Lemma. n [9]. Consequently, Cov F, G ) E[FG] s equal to q q q E F J k G ) + q! ) 3.8) f g, g f H q q)! f f, g g c. q H q k= = q The fst tem n 3.8) can be ewtten as E J k F )J k G ), whch can be bounded by q k= Va J k F ) ) q k= k= Va J k F ) ) E [ F 4] 3E[F ] + γ q E[F ]M f ) E [ G 4] 3E[G ] + γ q E[G ]Mg) ; and the second tem n 3.8) can be bounded by q ) q q! f g q q = q! 3.9) H f q f, g ) q q g H 3.) 3.) = q = q q! ) f q f H g q g H = q q = q! ) f f H q g g H q = q ) q q! f f q H q = = E [ F 4] 3E[F ] + γ q M f )E[F ] q! q ) g g H q E [ G 4] 3E[G ] + γ q Mg)E[G ], whee 3.9) follows fom the easy fact that f g = f H q q f, g q g H, and we used Cauchy- Schwaz nequalty n 3.), whle 3.) can be deduced fom Lemma 3. and 3.4); fnally, the thd tem n 3.8) can be bounded by f q)! H g g H q c q q f q)!γ H q q E[G ]Mg). To conclude ths case, we obtan Cov F, G ) E[FG] E [ F 4 ] 3E[F ] + γ q M f )E[F ] ) E [ G 4] 3E[G ] + γ q Mg)E[G ] ) + f H q q)!γ q E[G ]Mg). Combnng the above two cases, we get mmedately the elaton 3.7), and hence we fnsh the poof of Theoem..

14 4 G. Zheng 3.3 Poofs of techncal lemmas Poof of Lemma. Let us fst ntoduce some notaton: f F = f X), we wte F k = f X,..., X k, +, X k+,... ) and F k = f X,..., X k,, X k+,... ), we defne the dscete gadent D k F = p k q k F k F k), n patcula, D k Y k =. We can defne the teated gadents D m) k,...,k m = D k D m ) k,...,k m wth D ) ) k = D k. Fo example, D k Q d f ) = dq d f k, ) and D ) k,l Q ) d f ) = dd )Q d f k, l, ) fo d and f H d, see [] fo moe detals. Poof. It s clea that FG L P) has the chaotc expanson FG = E[FG] + Q m h m ), whee fo each m N, the kenel h m H m s gven by h m k,..., k m ) := m! E[ D m) k,...,k m FG) ], due to the Stoock s fomula Poposton. n []). So t suffces to show that 3.) m D p+q) k,...,k p+q FG) = p + q)! f g)k,..., k p+q ) p+q k,..., k p+q ) and D s) k,...,k s FG) = fo any s > p + q. Note that the second pat follows mmedately fom the fst one. Recall the poduct fomula see e.g. [,.4)]) fo the dscete gadent D k : fo F, G L P), D k FG) = D k F)G + FD k G) X k pk q k D k F)D k G) =: D L k FG) + DR k FG) + DM k FG), that s, we decompose D k nto thee opeatons Dk L, DR k and DM k. Theefoe, we can wte fo k <... < k p+q, D p+q) k,...,k p+q FG) = D A p+q k p+q FG) = D A p+q k p+q FG), A,...,A p+q {L,M,R} D A k A,...,A p+q {L,R} whee the last equalty follows fom the fact that fo k l, D l X k F) = X k D l F. Moeove, D A k D A p+q k p+q FG) = unless L appeas exactly p tmes and R appeas exactly q tmes n the wods A,..., A p+q, so that one can futhe ewte D p+q) σ S p+q : σ)<...<σp) σp+)<...<σp+q) k,...,k p+q FG) as p) D k σ),...,k σp) F ) D q) k σp+),...,k σp+q) G ) = D A k σ S p+q f k σ),..., k σp) ) g kσp+),..., k σp+q) ), whee the last equalty follows fom the symmety of f and g, and t gves us D p+q) k,...,k p+q FG) = p + q)! f g)k,..., k p+q ). Ths poves 3.), whle the patcula case follows fom agan the Stoock s fomula. Moe pecsely, one can fst deduce fom the pevous dscusson that Q h) = h H + Q w) + ) [ Q h h fo some w H gven by wk) := E Dk Q h) )]. By the defnton of dscete gadent, one has D k Q h) ) = p k q k h j)y j + hk) p k + q k p j k k q k h j)y j + hk) p k + q k p j k k q k = hk) q k p k + hk) h j)y j, pk q k whch concludes ou poof of Lemma.. j k

15 Peccat-Tudo theoem fo Rademache chaoses 5 Poof of Lemma 3.: It follows fom Lemma. that FG = E[FG] + theefoe by othogonalty popety, one has E [ F G ] = E[FG] + = E[FG] + p+q k= p+q k= Recall fom [9, Lemma.] that 3.3) p + q)! f g H p+q = p!q! Va J k FG) ) + p + q)! f g p+q H p+q p+q k= J k FG) + Q p+q f g p+q ), Va J k FG) ) + p + q)! f g H p+q p + q)! f g c p+q H p+q. p q = p ) q ) f g H p+q p!q! f H p g H q + p=q) p! f, g H p, thus 3.) follows by notcng that E[FG] = p=q) p! f, g H p and VaF)VaG) = p!q! f H p g H q. Usng 3.3) agan, we have 3.4) p+q k= Va J k F ) ) = E [ F 4] p 3E[F ] p! = ) p f f + p)! H f f p c p, H p whch mples 3.). It emans to pove 3.3) and we ll use the same aguments as n the poof of [5, Lemma 3.3]: f g c p+q H f g p+q c p+q = f H p+q,..., p ) g j,..., j q ) 3.5) p q ) ) p q =! =,..., p, j,..., j q ) c p+q,..., p ) p j,..., j q ) q cad{,..., p } { j,..., j q })= f,..., p ) g j,..., j q ), whee cada) means the cadnalty of the set A, and the combnatoal constant! p q ) ) s the numbe of ways one can buld pas of dentcal ndces out of,..., p ) p and j,..., j q ) q. Theefoe, t s enough to notce that fo each {,..., p q}, the nne sum n 3.5) s bounded by f,..., p, k,..., k ) g j,..., j q, k,..., k ),..., p,k,...,k ) p j,..., j q,k,...,k ) q,..., p,k) p j,..., j q,k) q The poof of Lemma 3. s complete. f,..., p, k) g j,..., j q, k) mn { f H p Mg), g H q M f ) }. 4 Unvesalty of Homogeneous sums Fx d and a dvegent sequence N n, n ) of natual numbes. Consde the kenels f n : {,..., N n } d R symmetc and vanshng on dagonals and d! f n =, then accodng to.), H d Q d f n ; Ξ) = f n,..., d )ξ ξ d.,..., d N n

16 6 G. Zheng The followng cental lmt theoem due to de Jong [4] gave suffcent condtons fo asymptotc nomalty of Q d f n ; Ξ). Theoem 4.. Unde the above settng, let Ξ = ξ, ) be a sequence of ndependent cented andom vaables wth unt vaance and fnte fouth moments. If E [ Q d f n ; Ξ) 4] 3 and the maxmal nfluence M f n ) as n +, then Q d f n ; Ξ) conveges n law to a standad Gaussan. The above esult exhbts the unvesalty phenomenon as well as the mpotance of the noton maxmal nfluence. Anothe stkng esult wth smla natue s the nvaance pncple establshed n [4], n whch the authos wee able to contol dstbutonal dstance between homogeneous sums ove dffeent sequences of ndependent andom vaables n tems of maxmal nfluence, see e.g. Theoem. theen. Let us estct ouselves to the Gaussan settng fo a whle: when G s a sequence of..d. standad Gaussans, Q d f n ; G) belongs to the d-th Gaussan Wene chaos, and the fouth moment theoem [] mples that f Q d f n ; G) conveges n law to a standad Gaussan o equvalently E [ Q d f n ; G) 4] 3), then f n d f n H. Whle M f n ) f n d f n H due to [7, Lemma.4], so that M f n ). Ths hnts the unvesalty of the Gaussan Wene chaos, see [8] fo moe detals. The followng esult s slghtly) adapted fom Theoem 7.5 n [8]. Theoem 4.. Fx nteges d and q d... q. Fo each j {,..., d}, let N j,n, n ) be a sequence of natual numbes dvegng to nfnty, and let f j,n : {,..., N j,n } q j R be symmetc and vanshng on dagonals.e. f j,n H q j wth suppot contaned n {,..., N j,n } q j ) such that lm q n + k =q l )q k! f k,n,..., qk ) f l,n,..., qk ) = Σ k,l,,..., qk N k,n whee Σ = Σ, j,, j d) s a symmetc nonnegatve defnte d by d matx. Then the followng statements ae equvalent: A ) Gven a sequence G of..d. standad Gaussans, Q q f,n ; G),..., Q qd f d,n ; G) )T conveges n dstbuton to N, Σ), as n +. A ) Fo evey sequence Ξ = ξ, N ) of ndependent cented andom vaables wth unt vaance and sup N E [ ξ 3] < +, the sequence of d-dmensonal andom vectos Q q f,n ; Ξ),..., Q qd f d,n ; Ξ) ) T conveges n dstbuton to N, Σ), as n +. Smla unvesalty esult fo Posson chaos was fst establshed n [4] and efned ecently n [7]. It was ponted out n [4] and [8] that homogeneous sums nsde the Rademache chaos ae not unvesal wth espect to nomal appoxmaton and a counteexample s avalable e.g. n [4, Poposton.7]: A Counteexample: Let Y be a sequence of..d. andom vaables wth PY = ) = PY = ) = / that s, n the symmetc settng). Fx q and fo each N q, we set f N,..., q ) = q! N q +, f {,..., q } = {,,..., q, s} fo q s N;, othewse. Then n the symmetc case, Q q f N ; Y) = Y Y Y q N =q Y N q +

17 Peccat-Tudo theoem fo Rademache chaoses 7 conveges n law to the standad Gaussan, whle f G s a sequence of..d. standad Gaussans, then fo evey N, Q q f N ; G) law = G G G q fals to be Gaussan. It s easy to check that the maxmal nfluence M f N ) of the kenel f N s equal to /qq!) fo evey N, whch s consstent wth de Jong s theoem. In the end of ths secton, we povde a patally) unvesal esult fo Rademache chaos that complements [7, 8, 4]. Poposton 4.. Let the assumptons n Theoem 4. peval. Then, the followng statement s equvalent to A ) and A ) n Theoem 4.: A 3 ) n the symmetc case, as n +, Q q f,n ; Y),..., Q qd f d,n ; Y) )T conveges n dstbuton to N, Σ), and M f j,n ) fo each j {,..., d}. Poof. Suppose A ) holds tue, then Q q f,n ; Y),..., Q qd f d,n ; Y) )T conveges n dstbuton to N, Σ) by A ) A ) ; and by the fouth moment theoem on a Gaussan space [], A ) mples that f j,n q j f j,n H, as n +. Recall fom [7, Lemma.4] that M f ) f d f H fo each f H d, theefoe M f j,n) fo each j {,..., d}. Ths poves the mplcaton A ) A 3 ). It emans to show A 3 ) A ). Now we assume that A 3 ) s tue, then by a weak fom of the hypecontactvty popety see Secton ), we have lm n + E [ Q q j f n, j ; Y) 4] = 3Σ j, j fo each j =,..., d. It follows fom Lemma 3. that f j,n f H j,n q j fo each =,..., q j, and any j =,..., d. Hence, A ) follows mmedately fom the Peccat-Tudo theoem [3]. Ths concludes ou poof. Refeences [] E. Azmoodeh, S. Campese and G. Poly. Fouth moment theoems fo Makov dffuson geneatos. J. Funct. Anal. 66 4), [] S. Campese, I. Noudn, G. Peccat and G. Poly. Multvaate Gaussan appoxmatons on Makov chaoses. Electon. Commun. Pobab. Volume 6), no. 48, -9. [3] S. Chattejee and E. Meckes. Multvaate nomal appoxmaton usng exchangeable pas. ALEA 4, 57-83, 8. [4] P. de Jong. A cental lmt theoem fo genealzed multlnea foms. J. Multvaate Anal [5] C. Döble and K. Kokowsk. On the fouth moment condton fo Rademache chaos. axv pepnt, 7) [6] C. Döble and G. Peccat. The fouth moment theoem on the Posson space. Ann. Pobab. to appea 7+) [7] C. Döble, A. Vdotto and G. Zheng. Fouth moment theoems on the Posson space n any dmenson. axv pepnt, 7) [8] K. Kokowsk. Posson appoxmaton of Rademache functonals by the Chen-Sten method and Mallavn calculus. Commun. Stoch. Anal. 7), no., 95- [9] K. Kokowsk, A. Rechenbachs and Ch. Thäle. Bey-Esseen bounds and multvaate lmt theoems fo functonals of Rademache sequences. Ann. Inst. Hen Poncaé Pobab. Stat. 5 6), no.,

18 8 G. Zheng [] K. Kokowsk, A. Rechenbachs and Ch. Thäle. Dscete Mallavn-Sten method: Bey-Esseen bounds fo andom gaphs and pecolaton. Ann. Pobab. 45 7), no., 7-9 [] M. Ledoux. Chaos of a Makov opeato and the fouth moment condton. Ann. Pobab. Volume 4, Numbe 6 ), [] E. Meckes. An Infntesmal Veson of Sten s Method of Exchangeable Pas. Ph.D dssetaton, Stanfod Unvesty 6) [3] E. Meckes. On Sten s method fo multvaate nomal appoxmaton. IMS collectons, Hgh dmensonal Pobablty V: The Lumny Volume, Vol. 5 9) [4] E. Mossel, R. O Donnell and K. Oleszkewcz. Nose stablty of functons wth low nfluences: Invaance and optmalty. Ann. of Math. ) ) [5] I. Noudn and G. Peccat. Sten s method on Wene chaos, Pobab. Theoy Relat. Felds 9), Vol. 45, Issue, p [6] I. Noudn and G. Peccat. Nomal appoxmatons wth Mallavn calculus: fom Sten s method to unvesalty, Cambdge tacts n Mathematcs, Vol. 9,, Cambdge Unvesty Pess. [7] I. Noudn, G. Peccat and G. Renet. Sten s Method and Stochastc Analyss of Rademache Functonals. Electon. J. Pobab. Volume 5 ), no. 55, [8] I. Noudn, G. Peccat and G. Renet. Invaance pncples fo homogeneous sums: Unvesalty of Gaussan Wene chaos. Ann. Pobab. Volume 38, Numbe 5 ), [9] I. Noudn and J. Rosńsk. Asymptotc ndependence of multple Wene-Itô ntegals and the esultng lmt laws. Ann. Pobab. 4, no. 4), [] I. Noudn and G. Zheng. Exchangeable pas on Wene chaos. axv pepnt, 7) [] D. Nualat and G. Peccat. Cental lmt theoems fo sequences of multple stochastc ntegals. Ann. Pobab. 33 ), ). [] R. O Donnell. Analyss of Boolean functons. Cambdge Unvesty Pess, 4 [3] G. Peccat and C.A. Tudo. Gaussan lmts fo vecto-valued multple stochastc ntegals, Sémnae de Pobabltés XXXVIII, 5 [4] G. Peccat and C. Zheng. Unvesal Gaussan fluctuatons on the dscete Posson chaos. Benoull, ):697-75, 4 [5] N. Pvault. Stochastc analyss of Benoull pocesses, Pobab. Suv. 5 8) [6] N. Pvault and G. L. Tos. The Sten and Chen-Sten methods fo functonals of non-symmetc Benoull pocesses. ALEA 5) [7] Ch. Sten. Appoxmate computaton of expectatons. In Insttute of Mathematcal Statstcs Lectue Notes - Monogaph Sees, volume 7. Insttute of Mathematcal Statstcs, 986. [8] G. Zheng. Nomal appoxmaton and almost sue cental lmt theoem fo non-symmetc Rademache functonals. Stochastc Pocess. Appl., Volume 7, Issue 5, 7, page6 636.

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS #A39 INTEGERS 9 (009), 497-513 GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS Mohaad Faokh D. G. Depatent of Matheatcs, Fedows Unvesty of Mashhad, Mashhad,

More information

Khintchine-Type Inequalities and Their Applications in Optimization

Khintchine-Type Inequalities and Their Applications in Optimization Khntchne-Type Inequaltes and The Applcatons n Optmzaton Anthony Man-Cho So Depatment of Systems Engneeng & Engneeng Management The Chnese Unvesty of Hong Kong ISDS-Kolloquum Unvestaet Wen 29 June 2009

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

Dilations and Commutant Lifting for Jointly Isometric OperatorsA Geometric Approach

Dilations and Commutant Lifting for Jointly Isometric OperatorsA Geometric Approach jounal of functonal analyss 140, 300311 (1996) atcle no. 0109 Dlatons and Commutant Lftng fo Jontly Isometc OpeatosA Geometc Appoach K. R. M. Attele and A. R. Lubn Depatment of Mathematcs, Illnos Insttute

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory

Hamiltonian multivector fields and Poisson forms in multisymplectic field theory JOURNAL OF MATHEMATICAL PHYSICS 46, 12005 Hamltonan multvecto felds and Posson foms n multsymplectc feld theoy Mchael Foge a Depatamento de Matemátca Aplcada, Insttuto de Matemátca e Estatístca, Unvesdade

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Ranks of quotients, remainders and p-adic digits of matrices

Ranks of quotients, remainders and p-adic digits of matrices axv:1401.6667v2 [math.nt] 31 Jan 2014 Ranks of quotents, emandes and p-adc dgts of matces Mustafa Elshekh Andy Novocn Mak Gesbecht Abstact Fo a pme p and a matx A Z n n, wte A as A = p(a quo p)+ (A em

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

On the Distribution of the Product and Ratio of Independent Central and Doubly Non-central Generalized Gamma Ratio random variables

On the Distribution of the Product and Ratio of Independent Central and Doubly Non-central Generalized Gamma Ratio random variables On the Dstbuton of the Poduct Rato of Independent Cental Doubly Non-cental Genealzed Gamma Rato om vaables Calos A. Coelho João T. Mexa Abstact Usng a decomposton of the chaactestc functon of the logathm

More information

Machine Learning 4771

Machine Learning 4771 Machne Leanng 4771 Instucto: Tony Jebaa Topc 6 Revew: Suppot Vecto Machnes Pmal & Dual Soluton Non-sepaable SVMs Kenels SVM Demo Revew: SVM Suppot vecto machnes ae (n the smplest case) lnea classfes that

More information

New problems in universal algebraic geometry illustrated by boolean equations

New problems in universal algebraic geometry illustrated by boolean equations New poblems in univesal algebaic geomety illustated by boolean equations axiv:1611.00152v2 [math.ra] 25 Nov 2016 Atem N. Shevlyakov Novembe 28, 2016 Abstact We discuss new poblems in univesal algebaic

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation By Rudy A. Gdeon The Unvesty of Montana The Geatest Devaton Coelaton Coeffcent and ts Geometcal Intepetaton The Geatest Devaton Coelaton Coeffcent (GDCC) was ntoduced by Gdeon and Hollste (987). The GDCC

More information

THE ISOMORPHISM PROBLEM FOR CAYLEY GRAPHS ON THE GENERALIZED DICYCLIC GROUP

THE ISOMORPHISM PROBLEM FOR CAYLEY GRAPHS ON THE GENERALIZED DICYCLIC GROUP IJAMM 4:1 (016) 19-30 Mach 016 ISSN: 394-58 Avalale at http://scentfcadvances.co.n DOI: http://dx.do.og/10.1864/amml_710011617 THE ISOMORPHISM PROBEM FOR CAYEY RAPHS ON THE ENERAIZED DICYCIC ROUP Pedo

More information

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES italian jounal of pue and applied mathematics n. 35 015 (433 44) 433 SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF OPERATOR MATRICES Watheq Bani-Domi Depatment of Mathematics

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Correspondence Analysis & Related Methods

Correspondence Analysis & Related Methods Coespondence Analyss & Related Methods Ineta contbutons n weghted PCA PCA s a method of data vsualzaton whch epesents the tue postons of ponts n a map whch comes closest to all the ponts, closest n sense

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis Optmzaton Meods: Lnea Pogammng- Revsed Smple Meod Module Lectue Notes Revsed Smple Meod, Dualty and Senstvty analyss Intoducton In e pevous class, e smple meod was dscussed whee e smple tableau at each

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

N = N t ; t 0. N is the number of claims paid by the

N = N t ; t 0. N is the number of claims paid by the Iulan MICEA, Ph Mhaela COVIG, Ph Canddate epatment of Mathematcs The Buchaest Academy of Economc Studes an CECHIN-CISTA Uncedt Tac Bank, Lugoj SOME APPOXIMATIONS USE IN THE ISK POCESS OF INSUANCE COMPANY

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

K-QUASICONVEXITY REDUCES TO QUASICONVEXITY

K-QUASICONVEXITY REDUCES TO QUASICONVEXITY K-UASICONVEXITY REDUCES TO UASICONVEXITY F. CAGNETTI Abstact. The elaton between quasconvexty and -quasconvexty,, s nvestgated. It s shown that evey smooth stctly -quasconvex ntegand wth p-gowth at nfnty,

More information

The intrinsic sense of stochastic differential equations

The intrinsic sense of stochastic differential equations The ntnsc sense of stochastc dffeental equatons Detch Ryte RyteDM@gawnet.ch Mdatweg 3 CH-4500 Solothun Swtzeland Phone +413 61 13 07 A change of the vaables (establshng a nomal fom of the fowad and bacwad

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Links in edge-colored graphs

Links in edge-colored graphs Lnks n edge-coloed gaphs J.M. Becu, M. Dah, Y. Manoussaks, G. Mendy LRI, Bât. 490, Unvesté Pas-Sud 11, 91405 Osay Cedex, Fance Astact A gaph s k-lnked (k-edge-lnked), k 1, f fo each k pas of vetces x 1,

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork Joned Physcs Analyss Cente Summe Wokshop on the Reacton Theoy Execse sheet 8 Vncent Matheu Contact: http://www.ndana.edu/~sst/ndex.html June June To be dscussed on Tuesday of Week-II. Classwok. Deve all

More information

A. Proofs for learning guarantees

A. Proofs for learning guarantees Leanng Theoy and Algoths fo Revenue Optzaton n Second-Pce Auctons wth Reseve A. Poofs fo leanng guaantees A.. Revenue foula The sple expesson of the expected evenue (2) can be obtaned as follows: E b Revenue(,

More information

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r MULTIPOLE FIELDS Mutpoes poes. Monopoes dpoes quadupoes octupoes... 4 8 6 Eectc Dpoe +q O θ e R R P(θφ) -q e The potenta at the fed pont P(θφ) s ( θϕ )= q R R Bo E. Seneus : Now R = ( e) = + cosθ R = (

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c nd Intenatonal Confeence on Electcal Compute Engneeng and Electoncs (ICECEE 15) Dstnct 8-QAM+ Pefect Aays Fanxn Zeng 1 a Zhenyu Zhang 1 b Lnje Qan 1 c 1 Chongqng Key Laboatoy of Emegency Communcaton Chongqng

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter.

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter. The Unque Soluton of Stochastc Dffeental Equatons Wth Independent Coeffcents Detch Ryte RyteDM@gawnet.ch Mdatweg 3 CH-4500 Solothun Swtzeland Phone +4132 621 13 07 SDE s must be solved n the ant-itô sense

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions A Bef Gude to Recognzng and Copng Wth Falues of the Classcal Regesson Assumptons Model: Y 1 k X 1 X fxed n epeated samples IID 0, I. Specfcaton Poblems A. Unnecessay explanatoy vaables 1. OLS s no longe

More information

Lecture 28: Convergence of Random Variables and Related Theorems

Lecture 28: Convergence of Random Variables and Related Theorems EE50: Pobability Foundations fo Electical Enginees July-Novembe 205 Lectue 28: Convegence of Random Vaiables and Related Theoems Lectue:. Kishna Jagannathan Scibe: Gopal, Sudhasan, Ajay, Swamy, Kolla An

More information

Learning the structure of Bayesian belief networks

Learning the structure of Bayesian belief networks Lectue 17 Leanng the stuctue of Bayesan belef netwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Sennott Squae Leanng of BBN Leanng. Leanng of paametes of condtonal pobabltes Leanng of the netwok stuctue Vaables:

More information

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS Fixed Point Theoy, Volume 5, No. 1, 2004, 71-80 http://www.math.ubbcluj.o/ nodeacj/sfptcj.htm SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS G. ISAC 1 AND C. AVRAMESCU 2 1 Depatment of Mathematics Royal

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

q-bernstein polynomials and Bézier curves

q-bernstein polynomials and Bézier curves Jounal of Computatonal and Appled Mathematcs 151 (2003) 1-12 q-bensten polynomals and Béze cuves Hall Ouç a, and Geoge M. Phllps b a Depatment of Mathematcs, Dokuz Eylül Unvesty Fen Edebyat Fakültes, Tınaztepe

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Universal proof theory: semi-analytic rules and uniform interpolation

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Universal proof theory: semi-analytic rules and uniform interpolation INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Unvesal poof theoy: sem-analytc ules and unfom ntepolaton Amhossen Akba Tabataba Raheleh Jalal Pepnt No. 46-2018 PRAHA 2018 Unvesal Poof Theoy: Sem-analytc

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

SDE SOLUTIONS IN THE SPACE OF SMOOTH RANDOM VARIABLES. 1. Introduction

SDE SOLUTIONS IN THE SPACE OF SMOOTH RANDOM VARIABLES. 1. Introduction Dept. of Math./CMA Unv. of Oslo Pue Mathematcs No 11 ISSN 0806 2439 Apl 2009 SDE SOLUTIONS IN THE SPACE OF SMOOTH RANDOM VARIABLES YELIZ YOLCU OKUR, FRANK PROSKE, AND HASSILAH BINTI SALLEH Abstact. In

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Bayesian Assessment of Availabilities and Unavailabilities of Multistate Monotone Systems

Bayesian Assessment of Availabilities and Unavailabilities of Multistate Monotone Systems Dept. of Math. Unvesty of Oslo Statstcal Reseach Repot No 3 ISSN 0806 3842 June 2010 Bayesan Assessment of Avalabltes and Unavalabltes of Multstate Monotone Systems Bent Natvg Jøund Gåsemy Tond Retan June

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis Bief summay of functional analysis APPM 5440 Fall 014 Applied Analysis Stephen Becke, stephen.becke@coloado.edu Standad theoems. When necessay, I used Royden s and Keyzsig s books as a efeence. Vesion

More information

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage:

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage: Physca A 392 (2013) 1318 1335 Contents lsts avalable at ScVese ScenceDect Physca A jounal homepage: www.elseve.com/locate/physa Themodynamcs n the lmt of evesble eactons A.N. Goban a,, E.M. Mkes b, G.S.

More information

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y INRODUCION hs dssetaton s the eadng of efeences [1], [] and [3]. Faas lemma s one of the theoems of the altenatve. hese theoems chaacteze the optmalt condtons of seveal mnmzaton poblems. It s nown that

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Vanishing lines in generalized Adams spectral sequences are generic

Vanishing lines in generalized Adams spectral sequences are generic ISSN 364-0380 (on line) 465-3060 (pinted) 55 Geomety & Topology Volume 3 (999) 55 65 Published: 2 July 999 G G G G T T T G T T T G T G T GG TT G G G G GG T T T TT Vanishing lines in genealized Adams spectal

More information

Exact Simplification of Support Vector Solutions

Exact Simplification of Support Vector Solutions Jounal of Machne Leanng Reseach 2 (200) 293-297 Submtted 3/0; Publshed 2/0 Exact Smplfcaton of Suppot Vecto Solutons Tom Downs TD@ITEE.UQ.EDU.AU School of Infomaton Technology and Electcal Engneeng Unvesty

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

Slide 1. Quantum Mechanics: the Practice

Slide 1. Quantum Mechanics: the Practice Slde Quantum Mecancs: te Pactce Slde Remnde: Electons As Waves Wavelengt momentum = Planck? λ p = = 6.6 x 0-34 J s Te wave s an exctaton a vbaton: We need to know te ampltude of te exctaton at evey pont

More information

A NOTE ON ELASTICITY ESTIMATION OF CENSORED DEMAND

A NOTE ON ELASTICITY ESTIMATION OF CENSORED DEMAND Octobe 003 B 003-09 A NOT ON ASTICITY STIATION OF CNSOD DAND Dansheng Dong an Hay. Kase Conell nvesty Depatment of Apple conomcs an anagement College of Agcultue an fe Scences Conell nvesty Ithaca New

More information

Experimental study on parameter choices in norm-r support vector regression machines with noisy input

Experimental study on parameter choices in norm-r support vector regression machines with noisy input Soft Comput 006) 0: 9 3 DOI 0.007/s00500-005-0474-z ORIGINAL PAPER S. Wang J. Zhu F. L. Chung Hu Dewen Expemental study on paamete choces n nom- suppot vecto egesson machnes wth nosy nput Publshed onlne:

More information

Efficiency of the principal component Liu-type estimator in logistic

Efficiency of the principal component Liu-type estimator in logistic Effcency of the pncpal component Lu-type estmato n logstc egesson model Jbo Wu and Yasn Asa 2 School of Mathematcs and Fnance, Chongqng Unvesty of Ats and Scences, Chongqng, Chna 2 Depatment of Mathematcs-Compute

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

arxiv: v1 [math.co] 1 Apr 2011

arxiv: v1 [math.co] 1 Apr 2011 Weight enumeation of codes fom finite spaces Relinde Juius Octobe 23, 2018 axiv:1104.0172v1 [math.co] 1 Ap 2011 Abstact We study the genealized and extended weight enumeato of the - ay Simplex code and

More information

Asymptotic Waves for a Non Linear System

Asymptotic Waves for a Non Linear System Int Jounal of Math Analyss, Vol 3, 9, no 8, 359-367 Asymptotc Waves fo a Non Lnea System Hamlaou Abdelhamd Dépatement de Mathématques, Faculté des Scences Unvesté Bad Mokhta BP,Annaba, Algea hamdhamlaou@yahoof

More information

Contact, information, consultations

Contact, information, consultations ontact, nfomaton, consultatons hemsty A Bldg; oom 07 phone: 058-347-769 cellula: 664 66 97 E-mal: wojtek_c@pg.gda.pl Offce hous: Fday, 9-0 a.m. A quote of the week (o camel of the week): hee s no expedence

More information

The Unifying Feature of Projection in Model Order Reduction

The Unifying Feature of Projection in Model Order Reduction he Unfyng Featue of Pojecton n Model Ode Reducton Key Wods: Balanced tuncaton; pope othogonal decomposton; Kylov subspace pojecton; pojecton opeato; eachable and unobsevable subspaces Abstact hs pape consdes

More information

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics Jounal of Appled Mathematcs and Physcs 6 4 687-697 Publshed Onlne August 6 n ScRes http://wwwscpog/jounal/jamp http://dxdoog/436/jamp64877 Asymptotc Solutons of the Knetc Boltzmann Equaton and Multcomponent

More information

4 Recursive Linear Predictor

4 Recursive Linear Predictor 4 Recusve Lnea Pedcto The man objectve of ths chapte s to desgn a lnea pedcto wthout havng a po knowledge about the coelaton popetes of the nput sgnal. In the conventonal lnea pedcto the known coelaton

More information