Chaos and Communications

Size: px
Start display at page:

Download "Chaos and Communications"

Transcription

1 Chapter 1 Chaos and Communications Traditionally, signals (encompassing desired signals as well as interfering signals) have been partitioned into two broadly defined classes, i.e., stochastic and deterministic. Stochastic signals are compositions of random waveforms with each component being defined by an underlying probability distribution, whereas deterministic signals are resulted from deterministic dynamical systems which can produce a number of different steady state behaviors including DC, periodic, and chaotic solutions. Deterministic signals may be described mathematically by differential or difference equations, depending on whether they evolve in continuous or discrete-time. DC is a nonoscillatory state. Periodic behavior is the simplest type of steady state oscillatory motion. Sinusoidal signals, which are universally used as carriers in analog and digital communication systems, are periodic solutions of continuous-time deterministic dynamical systems. Deterministic dynamical systems also admit a class of nonperiodic signals, which are characterized by a continuous "noiselike" broad power spectrum. This is called chaos. Historically, at least three achievements were fundamental to the acceptance of communication using chaos as a field worthy of attention and exploitation. The first was the implementation and characterization of several electronic circuits exhibiting chaotic behavior in early 1980's. This brought chaotic systems from mathematical abstraction into application in electronic engineering. The second historical event in the path leading to exploitation for chaosbased communication was the observation make by Pecora and Carroll in 1990 that two chaotic systems can synchronize under suitable coupling or driving conditions. This suggested that chaotic signals could be used for

2 1.1 Historical Account communication, where their noise like broadband nature could Improve disturbance rejection as well as security. A third, and fundamental, step was the awareness of the nonlinear (chaos) community that chaotic systems enjoy a mixed deterministic / stochastic nature [1-4]. This had been known to mathematicians since at least the early 1970's, and advanced methods from that theory have been recently incorporated in the tools of chaos-based communication engineering. These tools were also of paramount importance in developing the quantitative models needed to design chaotic systems that comply with the usual engineering specifications. The aim of this chapter is to give a brief review of the background theory for chaos-based communications. Based on several dynamical invariants, we will quantitatively describe the chaotic systems, and summarize the fundamental properties of chaos that make it useful in serving as a spreadspectrum carrier for communication applications. Furthermore, chaotic synchronization makes it possible for chaos-based communication using the conventional coherent approach. In the remaining part of this chapter, several fundamental chaotic synchronization schemes, and several chaosbased communication schemes will be reviewed. Finally, some open issues for chaos-based communications will be discussed. 1.1 Historical Account In 1831, Faraday studied shallow water waves III a container vibrating vertically with a given frequency OJ. In the experiment, he observed the sudden appearance of sub harmonic motion at half the vibrating frequency (OJ / 2) under certain conditions. This experiment was later repeated by Lord Rayleigh who discussed this experiment in the classic paper Theory of Sound, published in This experiment has been repeatedly studied since 1960's. The reason why researchers have returned to this experiment is that the sudden appearance of sub harmonic motion often prophesies the prelude to chaos. 2

3 Chapter 1 Chaos and Commnnications Poincare discovered what is today known as homo clinic trajectories in the state space. In 1892, this was published in his three-volume work on Celestial Mechanics. Only in 1962 did Smale prove that Poincare's homoclinic trajectories are chaotic limit sets [5]. In 1927, Van der Pol and Van der Mark studied the behavior of a neon bulb RC oscillator driven by a sinusoidal voltage source [6]. They discovered that by increasing the capacitance in the circuit, sudden jumps from the drive frequency, say w to w/2, then to w/3, etc., occurred in the response. These frequency jumps were observed, or more accurately heard, with a telephone receiver. They found that this process of frequency demultiplication (as they called it) eventually led to irregular noise. In fact, what they observed, in today's language, turned out to be caused by bifurcations and chaos. In 1944, Levinson conjectured that Birkhoffs remarkable curves might occur in the behavior of some third-order systems. This conjecture was answered affirmatively in 1949 by Levinson [7]. Birkhoff proved his famous Ergodic Theorem in 1931 [8]. He also discovered what he termed remarkable curves or thick curves, which were also studied by Charpentier in 1935 [9]. Later, these turned out to be a chaotic attractor of a discrete-time system. These curves have also been found to be fractal with dimension between 1 and 2. In 1936, Chaundy and Phillips [10] studied the convergence of sequences defined by quadratic recurrence formulae. Essentially, they investigated the logistic map. They introduced the terminology that a sequence oscillates irrationally. Today this is known as chaotic oscillation. Inspired by the discovery made by Van der Pol and Van der Mark, two mathematicians, Cartwright and Littlewood [11] embarked on a theoretical study of the system studied earlier by Van der Pol and Van der Mark. In 1945, they published a proof of the result that the driven Van der Pol system can exhibit nonperiodic solutions. Later, Levinson [7] referred to these solutions as singular behavior. Melnikov [12] introduced his perturbation method for chaotic systems in This method is mainly applied to driven dynamical systems. 3

4 1.1 Historical Accouut In 1963, Lorenz [13], a meteorologist, studied a simplified model for thermal convection numerically. The model (today called the Lorenz model) consisted of a completely deterministic system of three nonlinearly coupled ordinary differential equations. He discovered that this simple deterministic system exhibited irregular fluctuations in its response without any external element of randomness being introduced into the system. Cook and Roberts [14] discovered chaotic behavior exhibited by the Rikitake two-disc dynamo system in This is a model for the time evolution of the earth magnetic field. In 1971, Ruelle and Takens [15] introduced the term strange attractor for dissipative dynamical systems. They also proposed a new mechanism for the on-set of turbulence in the dynamics offluids. It was in 1975 that chaos was formally defined for one-dimensional transformations by Li and Yorke [16]. They went further and presented sufficient conditions for so-called Li -Yorke chaos to be exhibited by a certain class of one-dimensional mappings. In 1976, May called attention to the very complicated behavior which included period-doubling bifurcations and chaos exhibited by some very simple population models [17]. In 1978, Feigenbaum discovered scaling properties and universal constants (Feigenhaum's number) in one-dimensional mappings [18]. Thereafter, the idea of a renormalization group was introduced for studying chaotic systems. In 1980, Packard et al. [19] introduced the technique of state-space reconstruction using the so-called delay coordinates. This technique was later placed on a firm mathematical foundation by Takens. In 1983, Chua [20] discovered a simple electronic circuit for synthesizing the specific third-order piecewise-linear ordinary differential equations. This circuit became known as Chua's circuit (see the following chapter). What makes this circuit so remarkable is that its dynamical equations have been proven to exhibit chaos in a rigorous sense. Ott, Grebogi and Yorke, in 1990 [21], presented a method for controlling unstable trajectories embedded in a chaotic attractor. At the same time, there was another course of events leading to the field of chaos. This was the study of nonintegrable Hamiltonian systems in classical 4

5 Chapter 1 Chaos and Commnnications mechanics. Research in this field has led to the formulation and proof of the Kolmogorov-Amold-Moser (KAM) theorem in the early 1960's. Numerical studies have shown that when the conditions stated by the KAM theorem fails, then stochastic behavior is exhibited by nonintegrable Hamiltonian systems. Remarks: Today, chaos has been discovered in bio-systems, meteorology, cosmology, economics, population dynamics, chemistry, physics, mechanical and electrical engineering, and many other areas. The research direction has been transferring from fmding the evidence of chaos existence into applications and deep theoretical study. 1.2 Chaos There are many possible definitions of chaos for dynamical systems, among which Devaney's definition (for discrete-time systems) is a very popular one because it applies to a large number of important examples. Theorem 1.1 [22] Let Q be a set.f: Q---+ Q is said to be chaotic on Q if: (1) fhas sensitive dependence on initial conditions, i.e., there exists (» 0 such that, for any x EQ and any neighborhood U of x, there exists Y E U and n?oo such that IF(x)-F(Y)1 >0; (2) f is topological transitive, i.e., for any pair of open sets V, We Q there exists k> 0 such that fk (V) n w -:j:. 0; (3) periodic points are dense in Q. 1.3 Quantifying Chaotic Behavior Lyapunov exponents, entropy and dimensionality are usually used to quantify (characterize) a chaotic attractor's behavior. Lyapunov exponents indicate the average rates of convergence and divergence of a chaotic atiractor in the state space. Kolmogorov Entropy (KE) is used to reveal the rate of information 5

6 1.3 Quantifying Chaotic Behavior loss along the attractor. Dimensionality is used to quantify the geometric structure of a chaotic attractor Lyapunov Exponents for Continuous-Time Nonlinear Systems The determination of Lyapunov exponents is important in the analysis of a possibly chaotic system, since Lyapunov exponents not only show qualitatively the sensitive dependence on initial conditions but also give a quantitative measure of the average rate of separation or attraction of nearby trajectories on the attractor. Here, we only state the definitions of Lyapunov exponents for continuous-time and discrete-time (see next subsection) nonlinear systems. More detailed descriptions of various algorithms for calculating Lyapunov exponents can be found in references [23-33]. In the direction of stretching, two nearby trajectories diverge; while in the directions of squeezing, nearby trajectories converge. Ifwe approximate this divergence and convergence by exponential functions, the rates of stretching and squeezing would be quantified by the exponents. These are called the Lyapunov exponents. Since the exponents vary over the state space, one has to take the long time average exponential rates of divergence (or convergence) of nearby orbits. The total number of Lyapunov exponents is equal to the degree of freedom of the system. If the system trajectories have at least one positive Lyapunov exponent, then those trajectories are either unstable or chaotic. If the trajectories are bounded and have positive Lyapunov exponents, the system definitely includes chaotic behavior. The larger the positive exponent is, the shorter the predictable time scale of system. The estimation of the largest exponent therefore assumes a special importance. For a given continuous-time dynamical system in an m-dimensional phase space, we monitor the long-term evolution of an infinitesimal m-sphere of initial conditions. The sphere will evolve into an m-ellipsoid due to the locally 6

7 Chapter 1 Chaos and Communications deforming nature of the flow. The ith one-dimensional Lyapunov exponent can be defined in terms of the length of the ellipsoidal principal axis Ii (I): A; = lim!lni/ji) I, Hoo 1 1;(0) (1.1) whenever the limit exists [24,25]. Thus, the Lyapunov exponents are related to the expanding or the contracting nature of the principal axes in phase space. A positive Lyapunov exponent describes an exponentially increasing separation of nearby trajectories in a certain direction. This property, in tum, leads to the sensitive dependence of the dynamics on the initial conditions, which is a necessary condition for chaotic behavior. Since the orientation of the ellipsoid changes continuously as it evolves, the directions associated with a given exponent vary in a complicated way through the attractor. We cannot therefore speak of a well defined direction associated with a given exponent. For systems whose equations of motion are known explicitly, Benettin el al. [25] have proposed a straightforward technique for computing the complete Lyapunov spectrum. This method can be described in principle as follows. Let an m-dimensional compact manifold M be the state space of a dynamical system. The system on M is a nonlinear differentiable map ([J: M ---+M, which can be conveniently described by the following difference equation: x(n) = ([J(x(n -1» = ([In (x(o». (1.2) Let v(o) denote an initial perturbation of a generic point x(o), and & be a sufficiently small constant. Consider the separation of trajectories of the unperturbed and perturbed points after n iterations: II ([In (x(o» - ([In (x(o) + &v(o» II = II a D([Jn (x(o»v(o)& II 0(&2) = II( D([Jn (x(k» }(O)&II + 0(&2), (1.3) 7

8 1.3 Quautifying Chaotic Behavior where D<p(x(k)) is the Jacobian, i.e., the m x m matrix of partial derivatives of <P evaluated at the point x(k), 0(&2) is the higher order term, and 11'11 represents the Euclidean norm. Let the distinct eigenvalues D<P( x( k)) be k denoted by {d i : k = 0"", n -1; i = 1,' ", m}. Then the Lyapunov exponents of the dynamical system are defined by (1.4) Unfortunately, this method cannot be applied directly to experimental data, since we do not usually know the underlying dynamical equations. For experimental data, one has to resort to Eq. (1.1) Lyapunov Exponent for Discrete-Time Systems Consider any initial condition xo, and let {Xk };~o be the corresponding orbit of a p-dimensional, discrete-time map 1Jf. Let mi(k), m2(k),'", mik) be the eigenvalues of DlJfk(xo). The ith one-dimensional Lyapunov exponent of IJf with respect to Xo can be defined as (1.5) whenever the limit exists [29] Kolmogorov Entropy The Kolmogorov entropy (KE), also known as metric entropy or Kolmogorov Sinai entropy, is also an important measure by which a chaotic motion in an arbitrary dimensional phase space can be characterized (quantified) [34-36]. The Kolmogorov entropy of an attractor can be considered as a measure of the rate of information loss along the attractor or as a measure of the degree of predictability of points along the attractor, given an arbitrary initial point. 8

9 Chapter 1 Chaos and Communications Consider the trajectory of a dynamical system on a strange attractor and divide the phase space into L-dimensional hypercubes of volume SL. Let P;o,ij,.,i, be the probability that a trajectory is in hypercube io at t= 0, i 1 at t= T, i2 at t= 2T, and so on. Then the quantity Kn= - I, P;o,ij,.,i, In(P;o,ij,...,i) (1.6) io,i1..,i n is proportional to the information needed to locate the system on a special trajectory with precision s [37, 38]. Therefore, K N KN is the additional information needed to predict which cube the trajectory will be in at (n + 1 )T, given trajectories up to nt. This means that K N KN measures the loss of information about the system from time instant n to the next n + 1. The KE is then defined as the average rate of information loss in the following way: 1 N-l K=lim lim lim -I,(K n + 1 -KJ. T -->0 &-->0+ N -->00 NT n=o (1.7) The order in which the limits in the above expression are taken is immaterial. The limit s ----> 0 makes KE independent of the particular partition. The main properties ofke are as follows: (1) The entropy K (averaged) determines the rate of change in information entropy (i.e., Eq. (1.6)) as a result of a purely dynamical process of mixing of trajectories in phase space. (2) The entropy is a metric invariant of the system, i.e., its value being independent of the way that the phase space is divided into cells and coarsened. (3) Systems with identical values of entropy are in a certain sense isomorphic to each other [39, 40], i.e., these systems must have identical statistical laws of motion. (4) When applied to prediction, KE can be interpreted as the average rate at which the accuracy of a prediction decays as prediction time increases, i.e., the rate at which predictability will be lost [37]. 9

10 1.3 Quantifying Chaotic Behavior Attractor Dimension Long-term chaotic motion in dissipative dynamical systems is confined to a strange attractor whose geometric structure is invariant to the evolution of the dynamics. Typically, a strange attractor is a fractal object and, consequently, there are many possible notions of the dimension for strange attractor. Here, we discuss some well-known and widely accepted definitions of attractor dimension. We also discuss the simple relationships to Lyapunov exponents and entropy. Dissipative chaotic systems are typically ergodic. All initial conditions within the system's basin of attraction lead to a chaotic attractor in the state space, which can be associated with a time-invariant probability measure. Intuitively, the dimension of the chaotic attractor should reflect the amount of information required to specify a location on the attractor with a certain precision. This intuition is formalized by defining the information dimension, d" of the chaotic attractor as d -1 In p[bx (&)] [- 1m, <-->0 In& (1.8) where p[bx(&)] denotes the mass of the measure p contained in a ball of radius & centered at the point x in the state space [2, 41]. Information dimension is important from an experimental viewpoint because it is straightforward to estimate. The mass, p[b x (&)] ' can be estimated by (1.9) where U(-) is the Heaviside function, and M is the number of points in the phase space. In typical experiments, the state vector x is estimated from a delay embedding of an observed time-series [42]. The information dimension as defmed above, however, depends on the particular point x in the state space being considered. Grassberger and Procaccia's approach eliminates this dependence [43] by defming the quantity 10

11 Chapter 1 Chaos and Communications (1.10) and then defining the correlation dimension de as de = lim In C(l'). B--+O Inl' (1.11 ) In practice, one usually plots In C( ) as a function of In and then measures the slope of the curve to obtain an estimate of de [44-66]. It is often the case that d, and de are approximately equal. The box-counting dimension (capacity), do, of a set is defined as d -1 1n.ll/(c) &-->0 1n(l/ c) 0-1m, (1.12) where.11/(.0) is the minimum number of N-dimensional cube of side length needed to cover the set. There is a meaningful relationship between the Lyapunov dimension and Lyapunov exponents for chaotic systems [41, 67, 68]. If AI,..., AN are the Lyapunov exponents of a chaotic system, then the Lyapunov dimension, d L, is defined as (1.13) where k = max {i : ~ Ai > O}. It has been shown that do?cd" d,~dc [43, 69]. Equation (1.14) suggests that only the first k + 1 Lyapunov exponents are important for specifying the dimensionality of the chaotic attractor. Kaplan et al. [67, 68] conjectured that d, = d L in "almost" all cases. Clearly, if this is correct, then Eq. (1.13) provides a straightforward way to estimate the attractor dimension when the dynamical equations of motion are known. The relation between KE and Lyapunov exponents is also available. In one-dimensional maps, KE is just the Lyapunov exponent [70]. In higherdimensional systems, we lose information about the system because the cell in which it was previously located spreads over new cells in phase space at a 11

12 1.4 Properties of Chaos rate determined by the Lyapunov exponents. The rate K at which the information about the system is lost is equal to the (averaged) sum of the positive Lyapunov exponents [71], as shown by (1.14) where A's are the positive Lyapunov exponents of the dynamical system being considered. 1.4 Properties of Chaos It is now well-known that a deterministic dynamical system is one whose state evolves with time according to a deterministic evolution rule. The time evolution of the state is completely determined by the initial state of the system, the input, and the rule. For example, the state of a digital filter is determined by the initial state of the filter, the input, and a difference equation which describes the evolution of the state from one time instant to the next. In contrast to a stochastic dynamical system, which may follow any number of different trajectories from a given state according to some probabilistic rule, trajectories of a deterministic dynamical system are unique. From any given state, there is only one "next" state. Therefore, the same system started twice from the same initial state with the same input will follow precisely the same trajectory through the state space. Deterministic dynamical systems can produce a variety of steady-state behaviors, the most familiar of which are stationary, periodic, and quasi-periodic solutions. These solutions are "predictable" in the sense that a small piece of a trajectory enables one to predict the future behavior along that trajectory. Chaos refers to solutions of deterministic dynamical systems which, while predictable in the short-term, exhibit long-term unpredictability. Since the initial state, input, and rule uniquely determine the behavior of a deterministic dynamical system, it is not obvious that any "unpredictability" 12

13 Chapter 1 Chaos and Communications is possible. Long-term unpredictability arises because the dynamics of a chaotic system persistently amplifies errors in specifying the state. Thus, two trajectories starting from nearby initial conditions quickly become uncorrelated. This is because in a chaotic system, the precision with which the initial conditions must be specified in order to predict the behavior over some specified time interval grows exponentially with the length of the prediction interval. As a result, long-term prediction becomes impossible. This long-term unpredictability manifests itself in the frequency domain as a continuous power spectrum, and in the time domain as random "noiselike" signal. To get a better idea of what chaos is, here is a list of its main characteristics (properties): (1) Chaos results from a deterministic nonlinear process. (2) The motion looks disorganized and erratic, although sustained. In fact, it can usually pass all statistical tests for randorrmess (thereby we cannot distinguish chaotic data from random data easily), and has an invariant probability distribution. The Fourier spectrum (power spectrum) is "broad" (noiselike) but with some periodicities sticking up here and there [72, 73]. (3) Details of the chaotic behavior are hypersensitive to changes in initial conditions (minor changes in the starting values of the variables). Equivalently, chaotic signals rapidly decorrelate with themselves. The autocorrelation function of a chaotic signal has a large peak at zero and decays rapidly. (4) It can result from relatively simple systems. In nonautonomous system, chaos can take place even when the system has only one state variable. In autonomous systems, it can happen with as few as three state variables. (5) For given conditions or control parameters, chaos is entirely selfgenerated. In other words, changes in other (i.e., external) variables or parameters are not necessary. (6) It is not the result of data inaccuracies, such as sampling error or measurement error. Any specific initial conditions (right or wrong), as long as the control parameter is within an appropriate range, can lead to chaos. (7) In spite of its disjointed appearance, chaos includes one or more types 13

14 1.5 Chaos-Based Commuuicatious of order or structure. The phase space trajectory may have fractal property (self-similarity). (8) The ranges of the variables have finite bounds, which restrict the attractor to a certain finite region in the phase space. (9) Forecasts of long-term behavior are meaningless. The reasons are sensitivity to initial conditions and the impossibility of measuring a variable to absolute accuracy. Short-term predictions, however, can be relatively accurate. (10) As a control parameter changes systematically, an initially nonchaotic system follows one of a few typical scenarios, called routes to chaos. 1.5 Chaos-Based Communications Conventional Spread Spectrum In recent years, there has been explosive growth in personal communications, the aim of which is to guarantee the availability of voice and/or data services between mobile communication terminals. In order to provide these services, radio links are required for a large number of compact terminals in densely populated areas. As a result, there is a need to provide highfrequency, low-power, low-voltage circuitry. The huge demand for communications results in a large number of users; therefore, today's communication systems are limited primarily by interference from other users. In some applications, the efficient use of available bandwidth is extremely important, but in other applications, where the exploitation of communication channels is relatively low, a wideband communication technique having limited bandwidth effciency can also be used. Often, many users must be provided with simultaneous access to the same or neighboring frequency bands. The optimum strategy in this situation, where every user appears as interference to every other user, is for each communicator's signal to look like white noise which is as wideband as possible. 14

15 Chapter 1 Chaos and Communications There are two ways in which a communicator's signal can be made to appear like wideband noise: (1) spreading each symbol using a pseudo-random sequence to increase the bandwidth of the transmitted signal; (2) representing each symbol by a piece of "noiselike" waveform [74]. The conventional solution to this problem is the first approach: to use a synchronizable pseudo-random sequence to distribute the energy of the information signal over a much larger bandwidth to transmit the baseband information. The transmitted signal appears similar to noise and is therefore diffcult to detect by eavesdroppers. In addition, the signal is difficult to jam because its power spectral density is low. By using orthogonal spreading sequences, multiple users may communicate simultaneously on the same channel, which is termed Direct Sequence Code Division Multiple Access (DS/CDMA). Therefore, the conventional solution can: (1) combat the effects of interference due to jamming, other users, and multipath effects; (2) hide a signal "in the noise" by transmitting it at low power; and (3) have some message privacy in the presence of eavesdroppers. With rapidly increasing requirements for some new communication services, such as wideband data and video, which are much more spectrumintensive than voice service, communication networks are already reaching their available resource limitation. Some intrinsic shortcomings of the convenient DS/CDMA have been known. For example, the periodic nature of the spreading sequences, the limited number of available orthogonal sequences, and the periodic nature of the carrier, are imposed to DS/CDMA systems in order to achieve and maintain carrier and symbol synchronization. One further problem is that the orthogonality of the spreading sequences requires the synchronization of all spreading sequences used in the same frequency band, i.e., the whole system must be synchronized. Due to different propagation times for different users, perfect synchronization can never be achieved in real systems [75]. In addition, DS/CDMA systems using binary spreading sequences do not provide much protection against 15

16 1.5 Chaos-Based Communications two particular interception methods: the carrier regeneration and the code clock regeneration detectors [76]. This is due to the binary nature of the spreading sequences used in binary waveforms. The intrinsic properties of chaotic signals stated previously provide an alternative approach to making a transmission "noiselike". Specifically, the transmitted symbols are not represented as weighted sums of periodic basis functions but as inherently nonperiodic chaotic signals, which will be described in the following subsections Spread Spectrum with Chaos The properties of chaotic signals resemble in many ways those of the stochastic ones. Chaotic signals also possess a deterministic nature, which makes it possible to generate "noiselike" chaotic signals in a theoretically reproducible manner. Therefore, a pseudo-random sequence generator is a "practical" case of a chaotic system, the principal difference being that the chaotic system has an infinite number of (analog) states, while pseudo-random generator has a finite number (of digital states). A pseudo-random sequence is produced by visiting each state of the system once in a deterministic manner. With only a finite number of states to visit, the output sequence is necessarily periodic. By contrast, an analog chaos generator can visit an infinite number of states in a deterministic manner and therefore produces an output sequence, which never repeats itself. With appropriate modulation and demodulation techniques, the "random" nature and "noiselike" spectral properties of chaotic electronic circuits can be used to provide simultaneous spreading and modulation of a transmission Chaotic Synchronization How then would one use a chaotic signal in communication? A first approach would be to hide a message in a chaotic carrier and then extract it 16

17 Chapter 1 Chaos and Communications by some nonlinear, dynamical means at the receiver. If we do this in realtime, we immediately lead to the requirement that somehow the receiver must have a duplicate of the transmitter's chaotic signal or, better yet, synchronize with the transmitter. In fact, synchronization is a requirement of many types of communication, not only chaotic possibilities. Early work on synchronous coupled chaotic systems was done by Yamada and Fujisaka [77, 78]. In that work, some sense of how the dynamics might change was brought out by a study of the Lyapunov exponents of synchronized coupled systems. Later, Afraimovich et al. [79] exposed many of the concepts necessary for analyzing synchronous chaos. A crucial progress was made by Pecora and Carroll [80-84], who have shown theoretically and experimentally that two chaotic systems can be synchronized. This discovery bridges between chaos theories and communications, and opens up a new research area in communications using chaos. The driving response synchronization configuration proposed by Pecora and Carroll is shown in Fig. 1.1, in which the Lorenz system is used in the transmitter and the receiver, where Xi or X; (i = 1,2,3, r standing for the response system) is the state variable of the Lorenz system [13], Ii is the ith state equation, and 11 (t) is additive channel noise. The drive-response synchronization method indicates that if a chaotic system can be decomposed into subsystems, a drive system Xl and a conditionally stable response system (X2' X3) in this example [82], then the identical chaotic system at the receiver can be synchronized when driven with a common signal. The output signals x; and x; will follow the signals X2 and X3. For more discussions on chaotic synchronization, see [83]. ~i:l(t)~ll(xl(t), X2(t), x3(t)) ~icit)~lixl(t), x 2 (t), x 3 (t)) xj(i)~13(x 1 (I), xit), x 3 (t)) x 1 (t) y(l) xf (t)~ll (Y (f). x~(t), x3(t)) x2(t)~12( Y (I), x2(t), x{(i)) xj (t)~13( Y (I), x~(t), xl(tll 11(1) Drive system Response system Figure 1.1 Drive-response synchronization schematic diagram, in which Xi or x; (i = 1,2,3, r stands for the response system) is the state variable of the Lorenz system [13], Ii is the ith state equation, and 17 (t) is additive channel noise x;(t) 17

18 1.5 Chaos-Based Communications Based on the self-synchronization properties of chaotic systems, some chaotic communication systems using chaotic carriers have been proposed. Since the performance of such communication systems will strongly depend on the synchronization capability of chaotic systems, the robustness of se1fsynchronization in the presence of white noise needs to be explored [85]. Inspired by Pecora and Carroll's work, many other synchronization schemes have been proposed, including error feedback synchronization [87], inverse system synchronization [88], adaptive synchronization [89], generalized synchronization [90], etc. The error feedback synchronization is borrowed from the field of automatic control. An error signal is derived from the difference between the output of the receiver system and that received from the transmitter. The error signal is then used to modify the state of the receiver such that it can be synchronized with the transmitter. The operating theory of the inverse system synchronization scheme is as follows. If a system L with state x(t) and input set) produces an output yet), then its inverse L- 1 produces an output Yr(t) = s(t) and its state xr(t) has synchronized with x(t). Adaptive synchronization scheme makes use of the procedure of adaptive control and introduces the time dependent changes in a set of available system parameters. This scheme is realized by perturbing the system parameters whose increments depend on the deviations of the system variables from the desired values and also on the deviations of the parameters from their correct values corresponding to the desired state. Generalized synchronization of the uni-directionally coupled systems x = F(x) (x E ffi.", drive) (1.15) y = H(y, x) (y E ffi.", response) (1.16) occurs for the attractor Ax c lr of the drive system if an attracting synchronization set 18

19 Chapter 1 Chaos and Commnnications M = {(X,y) E A/]Rm : y = H(x)} (1.17) exists and is given by some function H:Ar~Ayc]Rm. Also, M possesses an open basin 13 ::J M such that: lim II y(t) - H(x(t)) 11= 0, \t(x(o), y(o)) E '>00 (1.18) It was reported in [91] that for a linear bandpass communication channel with additive white Gaussian noise (A WGN), drive-response synchronization is not robust (signal-to-noise ratio, > 30 db is required) and the continuoustime analog inverse system exhibits extreme noise sensitivity (SNR > 40 db is required to maintain synchronization). Further, recent studies of chaotic synchronization, where significant noise and filtering have been introduced to the channel, indicate that the performance of chaotic synchronization schemes is worse, at low SNR, than that of the best synchronization schemes for sinusoids [92]. 1.6 Communications Using Chaos as Carriers The use of modulating an aperiodic or nonperiodic chaotic waveform, instead of a periodic sinusoidal signal, for carrying information messages has been proposed since chaotic synchronization phenomenon was discovered. In particular, chaotic masking [85,93], dynamical feedback modulation [94], inverse system modulation [95], chaotic modulation [88, ], chaoticshift-keying (CSK) [ ], and differential chaos shift keying (DCSK) [113], have been proposed. In the following, we will provide a brief summary of these schemes Chaotic Masking Modulation The basic idea of a chaotic masking modulation scheme is based on chaotic signal masking and recovery. As shown in Fig. 1.2, in which the Lorenz 19

20 1.6 Communications Using Chaos as Carriers system is also used as the chaotic generator, we add a noiselike chaotic signal Xl (t) to the information signal met) at the transmitter, and at the receiver the masking signal is removed [85, 86,93]. The received signaly(t), consisting of masking, information and noise signals, is used to regenerate the masking signal at the receiver. The masking signal is then subtracted from the received signal to retrieve the information signal denoted by m (t). The regeneration of the masking signal can be done by synchronizing the receiver chaotic system with the transmitter chaotic system. This communication system could be used for analog and digital information data. Cuomo et al. [85] built a Lorenz system circuit and demonstrated the performance of chaotic masking modulation system with a segment of speech from a sentence. The performance of the communication system greatly relies on the synchronization ability of chaotic systems. The masking scheme works only when the amplitudes of the information signals are much smaller than the masking chaotic signals..i:[(i)=i[(x[(t), x2(1), "3(1» xil)=iz{x[(i), x 2 (1), x3(1» i:3(t)=ll~[(i), x2(1), x3(1» Drive system l1(t).i:[ (1)=/[ (JJ (I), x~(t), xj(l)).i:2(t)=iz( Y (f), x;[(t), x3 (1)),iej(t)=i 3 ( Y (f), x2(t), x3(1» Response system Figure 1.2 Block diagram of a chaotic masking modulation communication system, in which Xi or X; (i = 1,2, 3, r stands for the response system) is the state variable of the Lorenz system [13], Ii is the ith state equation, 77 (t) is additive channel noise, met) and m (t) are the injected message signal and the recovered message signal in (I) Dynamical Feedback Modulation To avoid the restriction of the small amplitude of the information signal, another modulation scheme, called dynamical feedback modulation, has been proposed in [94]. As shown in Fig. 1.3, in which the Lorenz system is used again as the chaotic generator, the basic idea is to feedback the information signal into the chaotic transmitter in order to have identical 20

21 Chapter 1 Chaos and Communications input signals for both the chaotic transmitter and the receiver. Specifically, the transmitted signal, consisting of the information signal met) and the chaotic signal Xl (t), is communicated to the receiver which is identical to the chaotic transmitter. Since the reconstructed signal x; (t) will be identical to x(t) in the absence of noise '7(t), the information signal met) can be decoded from the received signal. ~i:/t)~ll(xl(t)+m(t), xit), X3(t» x2(t)~lixl(t)+m(t), xit), x3(t)) x3(t)~lixl(t)+m(t), x 2 (t), x3(t» Drive system m(t) xl(t)~ll (y(t), -'2(t), x](t)) xm~liy(t), xw), xj(t)) xw)~13( y(t), x2(t), xj(t) Response system met) Figure 1.3 Block diagram of a dynamical feedback modulation communication system, in which Xi or X; (i = 1, 2, 3, r stands for the response system) is the state variable of the Lorenz system [13], (is the ith state equation, 1] (t) is additive channel noise, met) and m (t) are the injected message signal and the recovered message signal This analog communication technique can be applied to binary data communication by setting met) = C if the binary information data is one, and met) = - C if the binary data is zero. Since the feedback information will affect the chaotic property, the information level C should be scaled carefully to make the transmitter chaotic to maintain the desired communication security Inverse System Modulation In the inverse system approach [95], the transmitter consists of a chaotic system which is excited by the information signal set). The output yet) of the transmitter is chaotic. The receiver is simply the inverse system, i.e., a system which produces ret) = set) as output when excited by yet) and started from the same initial condition. If the system is properly designed, the output ret) will approach set), regardless of the initial conditions. 21

22 1.6 Communications Using Chaos as Carriers Chaotic Modulation In chaotic modulation [88,96-101], the message signal is injected into a chaotic system as a bifurcation "parameter,,(j), with the range of the bifurcation parameter chosen to guarantee motion in a chaotic region (for more details, see Sec. 7.2). The main advantage of the chaotic modulation scheme is that it does not require any code synchronization, which is necessary in traditional spread spectrum communication systems using coherent demodulation techniques. The crucial design factor is, however, the retrieval of the bifurcation "parameter" variation from the receiving spread spectrum signal, which may be distorted by nonideal channel and contaminated by noise (one of the goals of this book is to investigate signal reconstruction techniques at the receiving end such that the bifurcation parameter and hence the injected message can be recovered) Chaos Shift Keying In binary CKS [ ] as shown in Fig. 1.4 (a), an information signal is encoded by transmitting one chaotic signal Zj (t) for a "1" and another chaotic signal zo(t) to represent the binary symbol "0". The two chaotic signals come from two different systems (or the same system with different parameters); these signals are chosen to have similar statistical properties. Two demodulation schemes are possible: coherent and non-coherent. The coherent receiver contains copies of the systems corresponding to "0" and "1". Depending on the transmitted signal, one of these copies will synchronize with the incoming signal and the other will desynchronize at the receiver. Thus, one may determine which bit is being transmitted. A coherent demodulator is shown in Fig. 1.4 (b), in which Zt(t) and zo(t) are the regenerated chaotic signals at the receiver. (j) Bifurcation parameters determine the dynamical behavior of a dynamical system. For some selected range of the parameter values, the system can demonstrate chaotic behavior [22]. 22

23 Chapter 1 Chaos and Communications Transmitter x(t) "0" t Digital infomlation to be transmitted I I : Receiver I I Channel ---- ~L (al Correlator yet) --, Synchronization circuit Symbol duration Synchronization circuit Correlator Digital infomlation received (b) Threshold detector Figure 1.4 Chaos shift keying digital communication system. Block diagrams of (a) the system, and (b) a coherent CSK demodulator One type of non-coherent receivers requires the transmitted chaotic signals having different bit energies for "1" and "0". By comparing the bit energy with a decision threshold, one can retrieve the transmitted source information signal. Moreover, other non-coherent schemes exploit the distinguishable property of the chaotic attractors for demodulation, such as in Tse et al. [114]. In particular, if the two chaotic signals come from the same system 23

24 1.6 Communications Using Chaos as Carriers with different bifurcation parameters, demodulation can be performed by estimating the bifurcation parameter of the "reconstructed" chaotic signals Differential Chaos Shift Keying Modulation When the channel condition is so poor that it is impossible to achieve chaotic synchronization, a differential chaotic modulation technique for digital communication, called DCSK, has been introduced [113]. This modulation scheme is similar to that of the differential phase shift keying (DPSK) in the conventional digital communication except that the transmitted signal is chaotic. That is, in DCSK, every symbol to be transmitted is represented by two sample functions. For bit" 1", the same chaotic signal are transmitted twice in succession while bit "0" is sent by transmitting the reference chaotic signal followed by an inverted copy of the same signal. At the receiver the two received signals are correlated and the decision is made by a zero-threshold comparator. The DCSK technique offers additional advantages over the CSK: (l) The noise performance of a DSCK communication system in terms of bit error rate (BER) versus EblNo (Eb is the energy per bit and No is the power spectral density of the noise introduced in the channel) outperforms the BER of a standard non-coherent CSK system. For sufficiently large bit duration, the noise performance of DCSK is comparable to that of a conventional sinusoid-based modulation scheme. In particular, EblNo = 13.5 db is required for BER= 10-3 [115]. (2) Because synchronization is not required, a DCSK receiver can be implemented using very simple circuitry. (3) DCSK is not as sensitive to channel distortion as coherent methods since both the reference and the information-bearing signal pass through the same channel. The main disadvantage of DCSK results from differential coding: Eb is doubled and the symbol rate is halved. 24

25 Chapter 1 Chaos and Communications 1.7 Remarks on Chaos-Based Communications Security Issues Recent studies [ ] have shown that communication schemes using chaotic or hyperchaotic sources have limited security. Therefore, most of the chaos-based communication schemes are based on the viewpoint that security is an added feature in a communication system, which may be implemented by adding encryption/decryption hardware at each end of the system Engineering Challenges The field of "communications with chaos" presents many challenging research and development problems at the basic, strategic, and applied levels. The building blocks with which to construct a practical chaos-based spread spectrum communication system already exist: chaos generators, modulation schemes, and demodulators. Nevertheless, further research and development are required in all of these subsystems in order to improve robustness to a level that can be comparable to existing conventional system. Synchronization schemes for chaotic spreading signals are not yet sufficiently robust to be competitive with pseudo-random spreading sequences. Nevertheless, they do offer theoretical advantages in terms of basic security level. Furthermore, an analog implementation of chaotic spreading may permit the use of simple low power, high-frequency circuitry. Although an improved scheme, called frequency modulation DCSK (FMDCSK) [115], shows a better performance under multipath environment, channel characteristics are not fully taken into account yet, which limits its realizability in practical environments. Finally, there are still many practical problems that need to be solved, for example, the extension of multiple access design is a practical challenging 25

26 1.7 Remarks on Chaos-Based Communications issue involving both system level and basic research. The effects of bandwidth limitation also presents different problems to the practical imple-mentation of such systems. In summary, chaos provides a promising approach for communications. It should be emphasized here that the field of chaos communications is very young: much fundamental work as well as practical problems need to be addressed before high-performance robust chaos-based communication systems can be generally available. 26

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit John Parker*, 1 Majid Sodagar, 1 Patrick Chang, 1 and Edward Coyle 1 School of Physics, Georgia Institute of Technology, Atlanta,

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

What is Chaos? Implications of Chaos 4/12/2010

What is Chaos? Implications of Chaos 4/12/2010 Joseph Engler Adaptive Systems Rockwell Collins, Inc & Intelligent Systems Laboratory The University of Iowa When we see irregularity we cling to randomness and disorder for explanations. Why should this

More information

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System Banlue Srisuchinwong and Buncha Munmuangsaen Sirindhorn International Institute of Technology, Thammasat University

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 What is Phase-Locked Loop? The phase-locked loop (PLL) is an electronic system which has numerous important applications. It consists of three elements forming a feedback loop:

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino

Deborah Lacitignola Department of Health and Motory Sciences University of Cassino DOTTORATO IN Sistemi Tecnologie e Dispositivi per il Movimento e la Salute Cassino, 2011 NONLINEAR DYNAMICAL SYSTEMS AND CHAOS: PHENOMENOLOGICAL AND COMPUTATIONAL ASPECTS Deborah Lacitignola Department

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

THE CONTROL OF CHAOS: THEORY AND APPLICATIONS

THE CONTROL OF CHAOS: THEORY AND APPLICATIONS S. Boccaletti et al. / Physics Reports 329 (2000) 103}197 103 THE CONTROL OF CHAOS: THEORY AND APPLICATIONS S. BOCCALETTI, C. GREBOGI, Y.-C. LAI, H. MANCINI, D. MAZA Department of Physics and Applied Mathematics,

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Chaos and Liapunov exponents

Chaos and Liapunov exponents PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

More information

Synchronization of two chaotic oscillators via a negative feedback mechanism

Synchronization of two chaotic oscillators via a negative feedback mechanism International Journal of Solids and Structures 40 (2003) 5175 5185 www.elsevier.com/locate/ijsolstr Synchronization of two chaotic oscillators via a negative feedback mechanism Andrzej Stefanski *, Tomasz

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering

Chaos & Recursive. Ehsan Tahami. (Properties, Dynamics, and Applications ) PHD student of biomedical engineering Chaos & Recursive Equations (Properties, Dynamics, and Applications ) Ehsan Tahami PHD student of biomedical engineering Tahami@mshdiau.a.ir Index What is Chaos theory? History of Chaos Introduction of

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Chaotic Signal for Signal Masking in Digital Communications

Chaotic Signal for Signal Masking in Digital Communications IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 02 (February. 2014), V5 PP 29-33 www.iosrjen.org Chaotic Signal for Signal Masking in Digital Communications

More information

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad

Chaos. Dr. Dylan McNamara people.uncw.edu/mcnamarad Chaos Dr. Dylan McNamara people.uncw.edu/mcnamarad Discovery of chaos Discovered in early 1960 s by Edward N. Lorenz (in a 3-D continuous-time model) Popularized in 1976 by Sir Robert M. May as an example

More information

Implementation of Digital Chaotic Signal Generator Based on Reconfigurable LFSRs for Multiple Access Communications

Implementation of Digital Chaotic Signal Generator Based on Reconfigurable LFSRs for Multiple Access Communications Australian Journal of Basic and Applied Sciences, 4(7): 1691-1698, 2010 ISSN 1991-8178 Implementation of Digital Chaotic Signal Generator Based on Reconfigurable LFSRs for Multiple Access Communications

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Deterministic Chaos Lab

Deterministic Chaos Lab Deterministic Chaos Lab John Widloski, Robert Hovden, Philip Mathew School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 I. DETERMINISTIC CHAOS LAB This laboratory consists of three major

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos Introduction Knot Theory Nonlinear Dynamics Open Questions Summary A tangled tale about knot, link, template, and strange attractor Centre for Chaos & Complex Networks City University of Hong Kong Email:

More information

Delay Coordinate Embedding

Delay Coordinate Embedding Chapter 7 Delay Coordinate Embedding Up to this point, we have known our state space explicitly. But what if we do not know it? How can we then study the dynamics is phase space? A typical case is when

More information

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA Experimental Characterization of Chua s Circuit Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated:

More information

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 19 Multi-User CDMA Uplink and Asynchronous CDMA

More information

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN Journal of Circuits, Systems, and Computers, Vol. 11, No. 1 (22) 1 16 c World Scientific Publishing Company A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN GIUSEPPE GRASSI Dipartimento

More information

Synchronization and control in small networks of chaotic electronic circuits

Synchronization and control in small networks of chaotic electronic circuits Synchronization and control in small networks of chaotic electronic circuits A. Iglesias Dept. of Applied Mathematics and Computational Sciences, Universi~ of Cantabria, Spain Abstract In this paper, a

More information

Handout 2: Invariant Sets and Stability

Handout 2: Invariant Sets and Stability Engineering Tripos Part IIB Nonlinear Systems and Control Module 4F2 1 Invariant Sets Handout 2: Invariant Sets and Stability Consider again the autonomous dynamical system ẋ = f(x), x() = x (1) with state

More information

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Gwo-Ruey Yu Department of Electrical Engineering I-Shou University aohsiung County 840, Taiwan gwoyu@isu.edu.tw

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication 976 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 10, OCTOBER 1997 Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and

More information

Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

More information

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach Contents 1 Dynamical Systems... 1 1.1 Introduction... 1 1.2 DynamicalSystems andmathematical Models... 1 1.3 Kinematic Interpretation of a System of Differential Equations... 3 1.4 Definition of a Dynamical

More information

Numerical Simulations in Jerk Circuit and It s Application in a Secure Communication System

Numerical Simulations in Jerk Circuit and It s Application in a Secure Communication System Numerical Simulations in Jerk Circuit and It s Application in a Secure Communication System A. SAMBAS, M. SANJAYA WS, M. MAMAT, N. V. KARADIMAS, O. TACHA Bolabot Techno Robotic School, Sanjaya Star Group

More information

The phenomenon: complex motion, unusual geometry

The phenomenon: complex motion, unusual geometry Part I The phenomenon: complex motion, unusual geometry Chapter 1 Chaotic motion 1.1 What is chaos? Certain long-lasting, sustained motion repeats itself exactly, periodically. Examples from everyday life

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

I NONLINEAR EWORKBOOK

I NONLINEAR EWORKBOOK I NONLINEAR EWORKBOOK Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Wavelets, Fuzzy Logic with C++, Java and SymbolicC++ Programs Willi-Hans Steeb

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

Nonlinear Dynamics of Chaotic Attractor of Chua Circuit and Its Application for Secure Communication

Nonlinear Dynamics of Chaotic Attractor of Chua Circuit and Its Application for Secure Communication Nonlinear Dynamics of Chaotic Attractor of Chua Circuit and Its Application for Secure Communication 1,M. Sanjaya WS, 1 D.S Maulana, M. Mamat & Z. Salleh 1Computation and Instrumentation Division, Department

More information

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator Indian Journal of Pure & Applied Physics Vol. 47, November 2009, pp. 823-827 Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator V Balachandran, * & G Kandiban

More information

Introduction to Classical Chaos

Introduction to Classical Chaos Introduction to Classical Chaos WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This note is a contribution to Kadanoff Center for Theoretical

More information

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo Workshop on Heterogeneous Computing, 16-20, July 2012 No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo K. P. N. Murthy School of Physics, University of Hyderabad July 19, 2012 K P N Murthy

More information

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Characterizing chaotic time series

Characterizing chaotic time series Characterizing chaotic time series Jianbo Gao PMB InTelliGence, LLC, West Lafayette, IN 47906 Mechanical and Materials Engineering, Wright State University jbgao.pmb@gmail.com http://www.gao.ece.ufl.edu/

More information

Report E-Project Henriette Laabsch Toni Luhdo Steffen Mitzscherling Jens Paasche Thomas Pache

Report E-Project Henriette Laabsch Toni Luhdo Steffen Mitzscherling Jens Paasche Thomas Pache Potsdam, August 006 Report E-Project Henriette Laabsch 7685 Toni Luhdo 7589 Steffen Mitzscherling 7540 Jens Paasche 7575 Thomas Pache 754 Introduction From 7 th February till 3 rd March, we had our laboratory

More information

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory Hua-Wen Wu Fu-Zhang Wang Institute of Computing Technology, China Academy of Railway Sciences Beijing 00044, China, P.R.

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Brief Review of Signals and Systems My subject for today s discussion

More information

Noise-induced unstable dimension variability and transition to chaos in random dynamical systems

Noise-induced unstable dimension variability and transition to chaos in random dynamical systems Noise-induced unstable dimension variability and transition to chaos in random dynamical systems Ying-Cheng Lai, 1,2 Zonghua Liu, 1 Lora Billings, 3 and Ira B. Schwartz 4 1 Department of Mathematics, Center

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

16 Period doubling route to chaos

16 Period doubling route to chaos 16 Period doubling route to chaos We now study the routes or scenarios towards chaos. We ask: How does the transition from periodic to strange attractor occur? The question is analogous to the study of

More information

Synchronization-based parameter estimation from time series

Synchronization-based parameter estimation from time series PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996 Synchronization-based parameter estimation from time series U. Parlitz and L. Junge Drittes Physikalisches Institut, Universität Göttingen, Bürgerstra

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems

Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems 1 Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems A. B. Orue, G. Alvarez, M. Romera, G. Pastor, F. Montoya and Shujun Li arxiv:nlin/669v

More information

SNR i = 2E b 6N 3. Where

SNR i = 2E b 6N 3. Where Correlation Properties Of Binary Sequences Generated By The Logistic Map-Application To DS-CDMA *ZOUHAIR BEN JEMAA, **SAFYA BELGHITH *EPFL DSC LANOS ELE 5, 05 LAUSANNE **LABORATOIRE SYSCOM ENIT, 002 TUNIS

More information

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors EJTP 5, No. 17 (2008) 111 124 Electronic Journal of Theoretical Physics A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors Zeraoulia Elhadj a, J. C. Sprott b a Department of Mathematics,

More information

Chaos in GDP. Abstract

Chaos in GDP. Abstract Chaos in GDP R. Kříž Abstract This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete dynamic macroeconomic model that would characterize GDP.

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

OBSERVER BASED CHAOTIC MESSAGE TRANSMISSION

OBSERVER BASED CHAOTIC MESSAGE TRANSMISSION International Journal of Bifurcation and Chaos, Vol. 3, No. 4 (23) 3 7 c World Scientific Publishing Company OBSERVER BASED CHAOTIC MESSAGE TRANSMISSION ÖMER MORGÜL, ERCAN SOLAK and MURAT AKGÜL Department

More information

Persistent Chaos in High-Dimensional Neural Networks

Persistent Chaos in High-Dimensional Neural Networks Persistent Chaos in High-Dimensional Neural Networks D. J. Albers with J. C. Sprott and James P. Crutchfield February 20, 2005 1 Outline: Introduction and motivation Mathematical versus computational dynamics

More information

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Stochastic Model for Adaptation Using Basin Hopping Dynamics Stochastic Model for Adaptation Using Basin Hopping Dynamics Peter Davis NTT Communication Science Laboratories 2-4 Hikaridai, Keihanna Science City, Kyoto, Japan 619-0237 davis@cslab.kecl.ntt.co.jp Abstract

More information

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers Chaotic Vibrations An Introduction for Applied Scientists and Engineers FRANCIS C. MOON Theoretical and Applied Mechanics Cornell University Ithaca, New York A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY

More information

DETC EXPERIMENT OF OIL-FILM WHIRL IN ROTOR SYSTEM AND WAVELET FRACTAL ANALYSES

DETC EXPERIMENT OF OIL-FILM WHIRL IN ROTOR SYSTEM AND WAVELET FRACTAL ANALYSES Proceedings of IDETC/CIE 2005 ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference September 24-28, 2005, Long Beach, California, USA DETC2005-85218

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

Experimental Characterization of Chua s Circuit. Patrick Chang, 1 Edward Coyle, 1 John Parker, 1 and Majid Sodagar 2 USA. Atlanta, Georgia 30332, USA

Experimental Characterization of Chua s Circuit. Patrick Chang, 1 Edward Coyle, 1 John Parker, 1 and Majid Sodagar 2 USA. Atlanta, Georgia 30332, USA Experimental Characterization of Chua s Circuit Patrick Chang, 1 Edward Coyle, 1 John Parker, 1 and Majid Sodagar 2 1) School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA 2)

More information

Periodic Sinks and Observable Chaos

Periodic Sinks and Observable Chaos Periodic Sinks and Observable Chaos Systems of Study: Let M = S 1 R. T a,b,l : M M is a three-parameter family of maps defined by where θ S 1, r R. θ 1 = a+θ +Lsin2πθ +r r 1 = br +blsin2πθ Outline of Contents:

More information

Dynamics and Chaos. Copyright by Melanie Mitchell

Dynamics and Chaos. Copyright by Melanie Mitchell Dynamics and Chaos Copyright by Melanie Mitchell Conference on Complex Systems, September, 2015 Dynamics: The general study of how systems change over time Copyright by Melanie Mitchell Conference on Complex

More information

New communication schemes based on adaptive synchronization

New communication schemes based on adaptive synchronization CHAOS 17, 0114 2007 New communication schemes based on adaptive synchronization Wenwu Yu a Department of Mathematics, Southeast University, Nanjing 210096, China, Department of Electrical Engineering,

More information

Information Theory - Entropy. Figure 3

Information Theory - Entropy. Figure 3 Concept of Information Information Theory - Entropy Figure 3 A typical binary coded digital communication system is shown in Figure 3. What is involved in the transmission of information? - The system

More information

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY giuseppe.grassi}@unile.it

More information

Irregular Attractors

Irregular Attractors Discrete Dynamics in Nature and Society, Vol. 2, pp. 53-72 Reprints available directly from the publisher Photocopying permitted by license only (C) 1998 OPA (Overseas Publishers Association) N.V. Published

More information

Control of a Noisy Mechanical Rotor

Control of a Noisy Mechanical Rotor Control of a Noisy Mechanical Rotor SABINO GADALETA and GERHARD DANGELMAYR Department of Mathematics Colorado State University Engineering E, Ft. Collins, CO 85 USA {sabino, gerhard}@math.colostate.edu

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

1. SIGNALS AND INFORMATION AND CLASSIFICATION OF SIGNALS

1. SIGNALS AND INFORMATION AND CLASSIFICATION OF SIGNALS 1. SIGNALS AND INFORMATION AND CLASSIFICATION OF SIGNALS 1.0 TERMINOLOGY Some preliminary definitions are required in order to be able to tackle the theory that is related to signals. Signal and Information

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps Chapter 4 Transition towards chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different

More information