A Martingale Proof of Dobrushin s Theorem for Non-Homogeneous Markov Chains 1

Size: px
Start display at page:

Download "A Martingale Proof of Dobrushin s Theorem for Non-Homogeneous Markov Chains 1"

Transcription

1 E e c t r o c J o u r a o f P r o b a b t y Vo ), Paper o. 36, pages Joura URL epecp/ A Martgae Proof of Dobrush s Theorem for No-Homogeeous Marov Chas 1 S. Sethurama ad S.R.S. Varadha Departmet of Mathematcs, Iowa State Uversty Ames, IA 50011, USA Ema: sethuram@astate.edu ad Courat Isttute, New Yor Uversty New Yor, NY 10012, USA Ema: varadha@cms.yu.edu Abstract. I 1956, Dobrush proved a mportat cetra mt theorem for ohomogeeous Marov chas. I ths ote, a shorter ad dfferet proof eucdatg more the assumptos s gve through martgae approxmato. Keywords ad phrases: o-homogeeous Marov, cotracto coeffcet, cetra mt theorem, martgae approxmato AMS Subect Cassfcato 2000): Prmary 60J10; secodary 60F05. Submtted to EJP o March 21, Fa verso accepted o September 6, Research supported part by NSF/DMS , NSA-H ad NSF/DMS

2 1 Itroducto ad Resuts Neary ffty years ago, R. Dobrush proved hs thess [2] a mportat cetra mt theorem CLT) for Marov chas dscrete tme that are ot ecessary homogeeous tme. Prevousy, Marov, Berste, Sapagov, ad L, amog others, had cosdered the cetra mt questo uder varous suffcet codtos. Roughy, the progresso of resuts reaxed the state space structure from 2 states to a arbtrary set of states, ad aso the eve of asymptotc degeeracy aowed for the trasto probabtes of the cha. After Dobrush s wor, some refemets ad extesos of hs CLT, some of whch uder more strget assumptos, were proved by Statuavcus [16] ad Sarymsaov [13]. See aso Hae [6] ths regard. A correspodg varace prcpe was aso proved by Gudas [4]. More geera refereces o o-homogeeous Marov processes ca be foud Isaacso ad Madse [7], Iosfescu [8], Iosfescu ad Theodorescu [9], ad Wer [18]. We ow defe what s meat by degeeracy. Athough there are may measures of degeeracy, the measure whch turs out to be most usefu to wor wth s that terms of the cotracto coeffcet. Ths coeffcet has appeared eary resuts cocerg Marov chas, however, hs thess, Dobrush popuarzed ts use, ad deveoped may of ts mportat propertes. [See Seeta [14] for some hstory.] Let X, BX)) be a Bore space, ad et π = πx, dy) be a Marov trasto probabty o X, BX)). Defe the cotracto coeffcet δπ) of π as δπ) = sup πx 1, ) πx 2, ) Var x 1,x 2 X = sup x 1,x 2 X πx 1, A) πx 2, A) A BX) = 1 sup 2 x 1,x 2 X fy)[πx 1, dy) πx 2, dy)]. f L 1 Aso, defe the reated coeffcet απ) = 1 δπ). Ceary, 0 δπ) 1, ad δπ) = 0 f ad oy f πx, dy) does ot deped o x. It maes sese to ca π o-degeerate f 0 δπ) < 1. We use the stadard coveto ad deote by µπ ad πu the trasformatos duced by π o coutaby addtve measures ad bouded measurabe fuctos respectvey, µπ)a) = µdx) πx, A) ad πu)x) = πx, dy) uy). Oe ca see that δπ) has the foowg propertes. δπ) = sup πu)x 1 ) πu)x 2 ) 1.1) x 1,x 2 X u U 1222

3 wth U = {u : sup y1,y 2 uy 1 ) uy 2 ) 1}. It s the operator orm of π wth respect to the Baach sem-) orm Oscu) = sup x1,x 2 ux 1 ) ux 2 ), amey the oscato of u. I partcuar, for ay trasto probabtes π 1, π 2 we have δπ 1 π 2 ) δπ 1 ) δπ 2 ) 1.2) where π 1 π 2 s the two-step trasto probabty π 1 π 2 x, ) = π 1 x, dy)π 2 y, ). By a o-homogeeous Marov cha of egth o state space X, BX)) correspodg to trasto operators {π,+1 = π,+1 x, dy) : 1 1} we mea the Marov process P o the product space X, BX )), P [X +1 A X = x] = π,+1 x, A), where {X : 1 } are the caoca proectos. I partcuar, uder the ta dstrbuto X 1 µ, the dstrbuto at tme 1 s µπ 1,2 π 2,3 π 1,. For < we w defe π, = π,+1 π +1,+2 π 1,. We deote by E[Z] ad V Z) the expectato ad varace of the radom varabe Z wth respect to P. Dobrush s theorem cocers the fuctuatos of a array of o-homogeeous Marov chas. For each 1, et {X ) Marov cha o X wth trasto matrces {π ),+1 = π),+1 ta dstrbuto µ ). Let aso I addto, et {f ) : 1 } be observatos of a o-homogeeous x, dy) : 1 1} ad α = m α π,+1) ). 1 1 : 1 } be rea vaued fuctos o X. Defe, for 1, the sum S = f ) X ) ). Theorem 1.1 Suppose that for some fte costats C, sup sup =1 1 x X f ) x) C. The, f [ m C2 α 3 V f ) X ) ) )] 1 = 0, 1.3) =1 we have the stadard Norma covergece S E[S ] V S ) N0, 1). 1.4) Aso, there s a exampe where the resut s ot true f codto 1.3) s ot met. 1223

4 I [2], Dobrush aso states the drect coroary whch smpfes some of the assumptos. Coroary 1.1 Whe the fuctos are uformy bouded,.e. sup C = C < ad the varaces are bouded beow,.e. V f ) X ) )) c > 0, for a 1 ad 1, the we have the covergece 1.4) provded m 1/3 α =. We remar that [2] e.g. Theorems 3, 8) there are aso resuts where the boudedess codto o f ) s repaced by tegrabty codtos. As these resuts foow from trucato methods ad Theorem 1.1 for bouded varabes, we oy cosder Dobrush s theorem the bouded case. Aso, for the ease of the reader, ad to be compete, we w dscuss the ext secto a exampe, gve [2] ad due to Berste ad Dobrush, of how the covergece 1.4) may fa whe the codto 1.3) s ot satsfed. We ow cosder Dobrush s methods. The techques used [2] to prove the above resuts fa uder the geera headg of the bocg method. The codto 1.3) esures that we-separated bocs of observatos may be approxmated by depedet versos wth sma error. Ideed, may remarabe steps, Dobrush expots the Marov property ad severa cotracto coeffcet propertes, whch he hmsef derves, to deduce error bouds suffcet to appy CLT s for depedet varabes. However, [2], t s dffcut to see, eve at the techca eve, why codto 1.3) s atura. The am of ths ote s to provde a dfferet, shorter proof of Theorem 1.1 whch expas more why codto 1.3) appears the resut. The methods are through martgae approxmatos ad martgae CLT s. These methods go bac at east to Gord [3] the cotext of homogeeous processes, ad have bee used by others mosty statoary stuatos e.g. Kfer [10], Kps ad Varadha [11], Psy [12], ad Wu ad Woodroofe [19]). The approxmato wth respect to the o-homogeeous settg of Theorem 1.1 maes use of three gredets: 1) eggbty estmates for dvdua compoets, 2) a aw of arge umbers LLN) for codtoa varaces, ad 3) ower bouds for the varace V S ). Neggbty bouds ad a LLN are we ow requremets for martgae CLT s cf. Ha- Heyde [5, ch. 3]), ad fact, as w be see, the suffcecy of codto 1.3) s trasparet the proofs of these two compoets Lemma 3.2, ad Lemmas 3.3 ad 3.4). The varace ower bouds whch we w use Proposto 3.2) were as we derved by Dobrush hs proof. However, usg some martgae ad spectra toos, we gve a more drect argumet for a better estmate. We ote aso, wth ths martgae approxmato, that a varace prcpe for the parta sums hods through stadard martgae propostos, Ha-Heyde [5], amog other resuts. I fact, from the martgae varace prcpe, t shoud be possbe to derve Gudyas s theorems [4] athough ths s ot doe here. We ow expa the structure of the artce. I secto 2, we gve the Berste-Dobrush exampe of a Marov cha wth aomaous behavor. I secto 3, we state a martgae 1224

5 CLT ad prove Theorem 1.1 assumg a ower boud o the varace V S ). Last, secto 4, we prove ths varace estmate. 2 Berste-Dobrush Exampe Here, we summarze the exampe Dobrush s thess, attrbuted to Berste, whch shows that codto 1.3) s sharp. Exampe 2.1 Let X = {1, 2}, ad cosder the 2 2 trasto matrces o X, ) 1 p p Qp) = p 1 p for 0 p 1. The cotracto coeffcet δqp)) of Qp) s 1 2p. Note that δqp)) = δq1 p)). The varat measures for a the Qp) are the same µ1) = µ2) = 1. We 2 w be oog at Qp) for p cose to 0 or 1 ad the speca case of p = 1. However, whe 2 p s sma, the homogeeous chas behave very dfferety uder Qp) ad Q1 p). More specfcay, whe p s sma there are very few swtches betwee the two states whereas whe 1 p s sma t swtches most of the tme. I fact, ths behavor ca be made more precse see Dobrush [1], or from drect computato). Let T = =1 1 {1}X ) cout the umber of vsts to state 1 the frst steps. Case A. Cosder the homogeeous cha uder Qp) wth p = 1 ad ta dstrbuto µ1) = µ2) = 1. The, 2 T G ad m 2 V T ) = V A 2.1) where 0 < V A < ad G s a o-degeerate dstrbuto supported o [0, 1]. Case B. Cosder the homogeeous cha ru uder Qp) wth p = 1 1 dstrbuto µ1) = µ2) = 1. The, 2 ad ta T 2 F ad m V T ) = V B 2.2) where 0 < V B < ad F s a o-degeerate dstrbuto. Let a sequece α 0 wth α 1 3 be gve. To costruct the aomaous Marov cha, t w be hepfu to spt the tme horzo [1, 2,..., ] to roughy α bocs of sze α 1. We terpose a Q 1 ) betwee ay two bocs that has the effect of mag the 2 bocs depedet of each other. More precsey et ) = [α 1 ] for 1 m where m = [/[α 1 ]]. Aso, defe ) 0 = 0, ad ) m +1 =. 1225

6 Defe ow, for 1, π ),+1 = Qα ) for = 1, 2,..., ) 1 1 Q 1 ) for = ) 2 1, ) 2,..., m ) Q1 α ) for a other. Cosder the o-homogeeous cha wth respect to {π ),+1 from equbrum µ ) 0) = µ ) 1) = 1 2 Q 1 2 : 1 1} startg. From the defto of the cha, oe observes, as ) does ot dstgush betwee states, that the process tme horzos {) + 1, ) +1 ) : 0 m } are mutuay depedet. For the frst tme segmet 1 to ) 1, the cha s regme A, whe for the other segmets, the cha s case B. Oce aga, et us cocetrate o the umber of vsts to state 1. Deote by T ) = =1 1 {1}X ) ) ad T ), ) = = 1 {1}X ) to respectvey. It foows from the dscusso of depedece above that T ) = m =0 T ) ) ) the couts the frst steps ad steps + 1, ) +1 ) s the sum of depedet sub-couts where, addtoay, the sub-couts for 1 m 1 are detcay dstrbuted, the ast sub-cout perhaps beg shorter. Aso, as the ta dstrbuto s varat, we have V 1 {1} X ) )) = 1/4 for a ad. The, the otato of Coroary 1.1, C = 1 ad c = 1/4. From 2.1), we have that V T ) 1, ) 1 )) α 2 V A as. Aso, from 2.2) ad depedece of m sub-couts, we have that V T ) ) 1 + 1, )) α V B as. From these cacuatos, we see f 1/3 α, the α 2 << α, ad so the maor cotrbuto to T ) s from T ) ) 1 + 1, ). However, sce ths ast cout s vrtuay) the sum of m..d. sub-couts, we have that T ), propery ormazed, coverges to N0, 1), as predcted by Dobrush s Theorem 1.1. O the other had, f α = 1/3, we have α 2 = α, ad cout T ) 1, ) 1 ), depedet of T ) ) 1, ), aso cotrbutes to the sum T ). After ceterg ad scag, the, T ) approaches the covouto of a o-trva o-orma dstrbuto ad a orma dstrbuto, ad therefore s ot Gaussa. 3 Proof of Theorem 1.1 The CLT for martgae dffereces s a stadard too. We quote the foowg form of the resut mped by Coroary 3.1 Ha ad Heyde [5]. 1226

7 Proposto 3.1 For each 1, et {W ) the ested famy G ) Suppose that The, G ) +1, G ) wth W ) 0 = 0. Let ξ ) max 1 ξ ) L 0 ad =1 E[ξ) ) 2 G ) 1 ] 1 L2. W ) N0, 1). ) : 0 } be a martgae reatve to = W ) W ) 1 be ther dffereces. The frst ad secod mt codtos are the so caed eggbty assumpto o the sequece, ad LLN for codtoa varaces metoed the troducto. Cosder ow the o-homogeeous settg of Theorem 1.1. To smpfy otato, we w assume throughout that the fuctos {f ) } are mea-zero, E[f ) X ) )] = 0 for 1 ad 1. Defe Z ) = E[f ) X ) ) X ) ] so that Z ) = { f ) f ) = X ) ) + ) =+1 E[f X ) ) X ) ) for =. X ) ] for ) Remar 3.1 Before gog further, we remar that the sequece {Z ) } ca be thought of as a type of Posso-resovet sequece ofte see martgae approxmatos Namey, whe the array {X ) } s formed from the sequece {X }, f ) = f for a ad, ad the cha s homogeeous, P = P for a, the deed Z ) reduces to Z ) = fx ) + =1 P f)x ) whch approxmates the Posso-resovet souto =0 P f)x ) = [I P ) 1 f]x ) usuay used to prove the CLT ths case cf. p Varadha [17]). Returg to the fu o-homogeeous settg of Theorem 1.1, by rearragg terms 3.1), we obta for 1 1 that whch for 2 1 further equas [Z ) The, we have the decomposto, f ) X ) ) = Z) E[Z ) +1 X) ] 3.2) E[Z ) X) 1 ]]+[E[Z) X) 1 ] E[Z) +1 X) ]]. S = = =1 =2 f ) X ) ) [Z ) E[Z ) X) 1 ]] + Z) 1 3.3) 1227

8 ad so partcuar V S ) = scaed dffereces ξ ) = =2 V Z) 1 [ ) Z V S ) E[Z ) X) 1 ]) + V Z) 1 ). Let us ow defe the E[Z ) X) 1 ]] 3.4) ad the martgae M ) = =2 ξ) wth respect to F ) = σ{x ) : 1 } for 2. The pa to obta Theorem 1.1 w ow be to approxmate S / V S ) by ad use Proposto 3.1. Codto 1.3) w be a suffcet codto for eggbty Lemma 3.2) ad LLN Lemmas 3.3 ad 3.4) wth regard to Proposto 3.1. M ) Lemma 3.1 We have, for 1 <, π, f ) L 2C 1 α ) ad Osc π, f ) ) 2) 2C1 2 α ) ad, for 1 < <, Osc π, f ) π, f ) ) ) 6C 2 1 α ) 1 α ). Proof. As f ) L C ts oscato Oscf ) ) 2C. From defto of δ ) cf. 1.1)) ad 1.2), Because E[π, f ) Oscπ, f ) ) Oscf ) ) δπ, ) 2C 1 α ). )X ) )] = E[f ) X ) )] = 0, the frst boud foows as π, f ) L Oscπ, f ) ) 2C 1 α ). The secod boud s aaogous. For the thrd boud, wrte Osc π, f ) π, f ) ) ) 1 α ) Osc f ) π, f ) ) [ 1 α ) Oscf ) ) π, f ) 6C 2 1 α ) 1 α ). L ] + f ) L Oscπ, f ) ) We ow state a ower boud for the varace proved the ext secto. For comparso, we remar that [2] the boud V S ) α /8) ) =1 V f X ) )) s gve see aso secto [9]). 1228

9 Proposto 3.2 For 1, V S ) α 4 =1 V f ) X ) ) ). 3.5) The ext estmate shows that the asymptotcs of S / V S ) deped oy o the martgae approxmat M ), ad that the dffereces ξ ) are eggbe. Lemma 3.2 Uder codto 1.3), we have that Proof. By Lemma 3.1, Z ) L = The, by Proposto 3.2, E[f ) m sup 1 Z ) L V S ) = 0. X ) ) X ) ] L 2C = 1 α ) 2C α 1. sup 1 Z ) L V S ) 4C α 3 =1 ) 1/2 V f ) X ) )) whch tur by 1.3) s o1). The ext two emmas hep prove the LLN part of Proposto 3.1 for array {M ) }. By the oscato of a radom varabe η we mea Oscη) = sup ω,ω ηω) ηω ). Lemma 3.3 Let {Y ) : 1 } ad {G ) : 1 }, for 1, be respectvey a array of o-egatve varabes ad σ-feds such that σ{y ) 1,..., Y ) } G ). Suppose that m E[ =1 Y ) ] = 1 ad sup 1 where m ɛ = 0. I addto, assume m sup Osc E [ 1 1 =+1 Y ) Y ) L ɛ G ) ] ) = 0. The, m =1 Y ) = 1 L

10 Proof. Wrte E [ =1 Y ) ) 2] = E [ Y ) ) 2] E [ Y ) =1 =1 =+1 Y ) ) ]. The frst sum o the rght-had sde s bouded as foows. From o-egatvty, =1 E [ Y ) ) 2] ɛ For the secod sum, wrte 1 E [ Y ) =1 =1 =+1 E [ Y ) ] = ɛ 1 + o1)) 0 as. Y ) )] 1 = E [ Y ) E [ =1 From the oscato assumpto, we have that Therefore, sup 1 1 sup ω E [ =+1 Y ) G ) ] [ ω) E =+1 =+1 Y ) G ) ]]. ] Y ) = o1). 1 2 E [ Y ) =1 =+1 Y ) )] 1 = 2 E [ Y ) ]E[ =1 = =1 = 1 + o1) E [ Y ) =+1 ]) 2 Y ) ] 1 + o1) E [ Y ) ] =1 =1 E [ Y ) ) 2] + o1) fshg the proof. F ) 1 To appy ater ths resut to v ) = E[ξ ) for 2 we w eed the foowg oscato estmate. ) 2 F ) 1 ] measureabe wth respect to G) = Lemma 3.4 Uder codto 1.3), we have sup Osc E [ 2 1 =+1 v ) ) F ) ] 1 ω) = o1). 1230

11 Proof. From the martgae property, E[ξ r ) ξ s ) F u ) ] = 0 for r > s > u, 3.4) ad 3.2), we have E [ =+1 v ) F ) 1 ] = E [ =+1 = E [ =+1 ξ ) ξ ) = V S ) 1 E [ ) 2 )] F 1 ) 2 X ) ] 1 =+1 = V S ) 1 E [ =+1 f ) f ) X ) ) E [ Z ) +1 X) X ) ) ) 2 )] X 1 ]) 2 )] X 1 V S ) 1 E [ E [ Z ) ] 2 X +1 X) ) 1]. 3.6) By Lemma 3.2, the ast term 3.6) s bouded sup 2 1 V S ) 1 Z ) +1 2 L = o1), ad so ts oscato s aso uformy o1). To estmate oscato of the frst term o rght-sde of 3.6), we wrte Osc V S ) 1 E [ =+1 V S ) 1 f ) X ) ) ) 2 ) X 1] ) 3.7) +1,m Osc E [ f ) X ) )f m ) X m ) ) X 1] ) ). But, for + 1 m, we have from Lemma 3.1 that Osc E [ f ) X ) )f m ) X m ) ) X 1] ) ) 6C 2 1 α ) +1 1 α ) m. The, 3.7) s bouded, uformy, o order V S ) 1 Cα 2 2 whch from Proposto 3.2 ad 1.3) s o1). Proof of Theorem 1.1. From Lemma 3.2, we eed oy show that M ) / V S ) N0, 1). Ths w foow from martgae covergece Proposto 3.1) as soo as we show 1) sup 2 ξ ) L 0 ad 2) =2 E[ξ) )2 F ) 1 ] 1. However, 1) foows from the eggbty estmate Lemma 3.2, ad 2) from LLN Lemmas 3.3 ad 3.4 sce eggbty 1) hods ad =2 E[ξ) )2 ] = 1+o1) from varace decomposto after 3.3) ad Lemma 3.2). 1231

12 4 Proof of Varace Lower Boud Let λ be a probabty measure o X X wth margas α ad β respectvey. Let πx 1, dx 2 ) ad πx 2, dx 1 ) be the correspodg trasto probabtes the two drectos so that απ = β ad β π = α. Lemma 4.1 Let fx 1 ) ad gx 2 ) be square tegrabe wth respect to α ad β respectvey. If fx 1 )αdx 1 ) = gx 2 )βdx 2 ) = 0 the, fx 1 )gx 2 )λdx 1, dx 2 ) δπ) f L2 α) g L2 β). Proof. Let us costruct a measure o X X X by startg wth λ o X X ad usg reversed πx 2, dx 3 ) to go from x 2 to x 3. The trasto probabty from x 1 to x 3 defed by Qx 1, A) = πx 1, dx 2 ) πx 2, A) satsfes δq) δπ)δ π) δπ). Moreover αq = α ad the operator Q s sef-adot ad bouded wth orm 1 o L 2 α). The, f f s a bouded fucto wth fx)αdx) = 0 ad so E α [Q f] = 0), we have for 1, Q f L2 α) Q f L δq)) Oscf). 4.1) Hece, as bouded fuctos are dese, o the subspace of fuctos, M = {f L 2 α) : fx)αdx) = 0}, the top of the spectrum of Q s ess tha δq) ad so Q L2 α,m) δq). Ideed, suppose the spectra radus of Q o M s arger tha δq) + ɛ for ɛ > 0, ad f M s a o-trva bouded fucto whose spectra decomposto s wth respect to spectra vaues arger tha δq) + ɛ. The, Q f L 2 α) f L 2 α)δq) + ɛ) whch cotradcts the boud 4.1) whe. [cf. Thm [15] for a proof dscrete space settgs.] The, πf 2 L 2 β) = π πf, f L2 α) = Qf, f L2 α) Q L2 α,m) f 2 L 2 α) δq) f 2 L 2 α). Fay, fx 1 )gx 2 )λdx 1, dx 2 ) = πf, g L2 β) δπ) f L2 α) g L2 β). 1232

13 Lemma 4.2 Let fx 1 ) ad gx 2 ) be square tegrabe wth respect to α ad β respectvey. The, E [ fx 1 ) gx 2 ) ) 2] 1 δπ)) V fx1 ) ) as we as E [ fx 1 ) gx 2 ) ) 2] 1 δπ)) V gx2 ) ). Proof. To get ower bouds, we ca assume wthout oss of geeraty that f ad g have mea 0 wth respect to α ad β respectvey. The by Lemma 4.1 E [ fx 1 ) gx 2 ) ) 2] = E [ [fx1 )] 2] + E [ [gx 2 )] 2] 2E [ fx 1 )gx 2 ) ] E [ [fx 1 )] 2] + E [ [gx 2 )] 2] 2 δπ) f L2 α) g L2 β) 1 δπ)) f 2 L 2 α). The proof of the secod haf s detca. Proof of Proposto 3.2. Appyg Lemma 4.2 to the Marov pars {X ), X) +1 ) : 1 1} wth fx ) ) = E[Z) +1 X) ] ad gx) +1 ) = Z) +1, we get E [ Z ) +1 E[Z) +1 X) O the other had from 3.2), for 1 1, we have V f ) X ) Summg over, ad otg f ) =1 V f ) X ) )) 4 =1 )) E[ f ) 2E [ Z ) 2E [ Z ) X ) ]) 2] α E [ Z ) +1) 2 ]. )) 2] ) 2 ] [ [ ) + 2E E Z +1 X) ) 2 ] + 2E [ Z ) +1) 2 ]. ]) 2 ] X ) ) = Z ) ad varace decomposto after 3.3), E [ Z ) ) 2 ] 4 [ 1 E [ Z ) +1 α E[Z) =1 +1 X) ] ]) 2] ) + E[Z 1 ) 2 ] = 4 V S ). α Acowedgemet. We woud e to tha the referees for ther commets. 1233

14 Refereces [1] Dobrush, R. 1953) Lmt theorems for Marov chas wth two states. Russa) Izv. Adad. Nau SSSR 17: [2] Dobrush, R. 1956) Cetra mt theorems for o-statoary Marov chas I,II. Theory of Probab. ad ts App , [3] Gord, M.I. 1969) The cetra mt theorem for statoary processes. Sovet Math. Do [4] Gudyas, P. 1977) A varace prcpe for homogeeous Marov chas. Lthuaa Math. J [5] Ha, P. ad Heyde, C.C. 1980) Martgae Lmt Theory ad Its Appcato. Academc Press, New Yor. [6] Hae, A. 1963) Théorèmes mtes pour ue sute de châes de Marov. A. Ist. H. Pocaré [7] Isaacso, D.L., ad Madse, R.W. 1976) Marov Chas. Theory ad Appcatos. Joh Wey ad Sos, New Yor. [8] Iosfescu, M. 1980) Fte Marov Processes ad Ther Appcatos. Joh Wey ad Sos, New Yor. [9] Iosfescu, M., ad Theodorescu, R. 1969) Radom Processes ad Learg. Sprger, Ber. [10] Kfer, Y. 1998) Lmt theorems for radom trasformatos ad processes radom evromets. Tras. Amer. Math. Soc [11] Kps, C., Varadha, S. R. S. 1986) Cetra mt theorem for addtve fuctoas of reversbe marov processes. Commu. Math. Phys [12] Psy, M. 1991) Lectures o Radom Evouto. Word Scetfc, Sgapore. [13] Sarymsaov, T.A. 1961) Ihomogeeous Marov chas. Theor. Probabty App [14] Seeta, E. 1973) O the hstorca deveopmet of the theory of fte homogeeous Marov chas. Proc. Cambrdge Phos. Soc [15] Seeta, E. 1981) No-egatve Matrces ad Marov Chas. Secod Edto, Sprger- Verag, New Yor. 1234

15 [16] Statuavcus, V. 1969) Lmt theorems for sums of radom varabes coected Marov chas.russa) Ltovs. Mat. Sb ; bd. 9, ; bd [17] Varadha, S.R.S. 2001) Probabty Theory. Courat Lecture Notes 7, Amerca Mathematca Socety, Provdece, R.I. [18] Wer, G. 1995) Image Aayss, Radom Feds ad Dyamc Mote Caro Methods. A Mathematca Itroducto. Appcatos of Mathematcs 27, Sprger-Verag, Ber. [19] Wu, We Bao, Woodroofe, M. 2004) Martgae approxmatos for sums of statoary processes. A. Probab

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments. Optma Costats the Rosetha Iequaty for Radom Varabes wth Zero Odd Momets. The Harvard commuty has made ths artce opey avaabe. Pease share how ths access beefts you. Your story matters Ctato Ibragmov, Rustam

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

A Martingale Proof of Dobrushin s Theorem for Non-Homogeneous Markov Chains

A Martingale Proof of Dobrushin s Theorem for Non-Homogeneous Markov Chains arxv:math/0404231v1 [math.pr] 12 Apr 2004 A Martngae Proof of Dobrushn s Theorem for Non-Homogeneous Marov Chans S. Sethuraman and S.R.S. Varadhan Iowa State Unversty and New Yor Unversty October 27, 2018

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Bounds for block sparse tensors

Bounds for block sparse tensors A Bouds for bock sparse tesors Oe of the ma bouds to cotro s the spectra orm of the sparse perturbato tesor S The success of the power teratos ad the mprovemet accuracy of recovery over teratve steps of

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

Rational Equiangular Polygons

Rational Equiangular Polygons Apped Mathematcs 03 4 460-465 http://dxdoorg/0436/am034097 Pubshed Oe October 03 (http://wwwscrporg/oura/am) Ratoa Equaguar Poygos Marus Muteau Laura Muteau Departmet of Mathematcs Computer Scece ad Statstcs

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences *

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences * Appe Matheatcs 0 5 598-608 Pubshe Oe Jue 0 ScRes http://wwwscrporg/joura/a http://xoorg/06/a0505 A Note o the Aost Sure Cetra Lt Theore the Jot Verso for the Maxa a Parta Sus of Certa Statoary Gaussa Sequeces

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE Statstca Sca 9(1999), 289-296 STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE J Mgzhog ad Che Xru GuZhou Natoal College ad Graduate School, Chese

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)-

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)- Mathematca Computato March 03, Voume, Issue, PP-5 Oe Geerator ( u) -Quas-Twsted Codes over F uf Ja Gao #, Qog Kog Cher Isttute of Mathematcs, Naka Uversty, Ta, 30007, Cha Schoo of Scece, Shadog Uversty

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Finsler Geometry & Cosmological constants

Finsler Geometry & Cosmological constants Avaabe oe at www.peaaresearchbrary.com Peaa esearch Lbrary Advaces Apped Scece esearch, 0, (6):44-48 Fser Geometry & Cosmooca costats. K. Mshra ad Aruesh Padey ISSN: 0976-860 CODEN (USA): AASFC Departmet

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS SPECIAL CONSIDERAIONS FOR VOLUMERIC Z-ES FOR PROPORIONS Oe s stctve reacto to the questo of whether two percetages are sgfcatly dfferet from each other s to treat them as f they were proportos whch the

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system Iteratoal Joural of Egeerg ad Advaced Research Techology (IJEART) ISSN: 2454-9290, Volume-2, Issue-1, Jauary 2016 Uform asymptotcal stablty of almost perodc soluto of a dscrete multspeces Lotka-Volterra

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Landé interval rule (assignment!) l examples

Landé interval rule (assignment!) l examples 36 - Read CTD, pp. 56-78 AT TIME: O H = ar s ζ(,, ) s adé terva rue (assgmet!) ζ(,, ) ζ exampes ζ (oe ζfor each - term) (oe ζfor etre cofgurato) evauate matrx eemets ater determata bass ad may-e M or M

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable.

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable. Secto Notes Elzabeth Stoe ad Charles Wag Jauar 5, 9 Jot, Margal, ad Codtoal Probablt Useful Rules/Propertes. P ( x) P P ( x; ) or R f (x; ) d. P ( xj ) P (x; ) P ( ) 3. P ( x; ) P ( xj ) P ( ) 4. Baes

More information

On the Exchange Property for the Mehler-Fock Transform

On the Exchange Property for the Mehler-Fock Transform Avaabe at http://pvamu.edu/aam App. App. Math. SS: 193-9466 Vo. 11, ssue (December 016), pp. 88-839 Appcatos ad Apped Mathematcs: A teratoa oura (AAM) O the Echage Property for the Meher-Foc Trasform Abhshe

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

0 () t and an equation

0 () t and an equation DECETRALIZED ODEL REFERECE ADAPTIVE PRECIZE COTROL OF COPLEX OBJECTS S.D. Zemyakov, V.Yu. Rutkovsky, V.. Gumov ad V.. Sukhaov Isttute of Cotro Scece by V.A. Trapezkov Russa Academy of Scece 65 Profsoyuzaya,

More information

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING)

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING) Samplg Theory ODULE X LECTURE - 35 TWO STAGE SAPLIG (SUB SAPLIG) DR SHALABH DEPARTET OF ATHEATICS AD STATISTICS IDIA ISTITUTE OF TECHOLOG KAPUR Two stage samplg wth uequal frst stage uts: Cosder two stage

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks Stochastc Gradet Descet Optmzes Over-parameterzed Deep ReLU Networks Dfa Zou ad Yua Cao ad Dogruo Zhou ad Quaqua Gu arxv:1811.08888v1 [cs.lg] 1 Nov 018 Abstract We study the probem of trag deep eura etworks

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information