Adding a new finite element to FreeFem++:

Size: px
Start display at page:

Download "Adding a new finite element to FreeFem++:"

Transcription

1 Adding a new finite element to FreeFem++: the example of edge elements Marcella Bonazzoli 1 2, Victorita Dolean 1,3, Frédéric Hecht 2, Francesca Rapetti 1, Pierre-Henri Tournier 2 1 LJAD, University of Nice Sophia Antipolis, Nice, France 2 LJLL, Pierre and Marie Curie University, Paris, France - Inria Alpines 3 University of Strathclyde, Glasgow, UK December 15, 2017 Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

2 Definition of a finite element A finite element (FE) is a triple (K, P, Σ): K - geometrical element of the mesh T h over Ω ex: triangle in 2d, tetrahedron in 3d, P - finite-dimensional space of functions on K, Σ - set of linear functionals ξ i acting on P (degrees of freedom). Example of P 1 Lagrange finite element (in 2d): K - triangle, P - space of polynomials of degree 1 on a triangle basis functions: barycentric coordinates λ n1,λ n2,λ n3 (hat functions) Σ - functionals giving the values at mesh nodes: ξ ni : w w(x ni ) Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

3 Definition of a finite element P 1 Lagrange finite element: basis functions: barycentric coordinates λ n1,λ n2,λ n3 (hat functions) degrees of freedom: values at mesh nodes ξ ni : w w(x ni ) Property (duality) ξ ni (λ nj ) = λ nj (x ni ) = δ ij = { 1 if i = j 0 if i j Consequence: the coefficients of the interpolation operator Π h are the values at mesh nodes Π h : H 1 (T ) V h (T ), u u h = m c j λ nj, with c j = ξ nj (u) = u(x nj ) j=1 Indeed if ξ ni (λ nj ) = δ ij, then ξ ni (u h ) = m j=1 c j ξ ni (λ nj ) = c i Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

4 Adding a new finite element to FreeFem++ To add a new finite element to FreeFem++, write a C++ plugin that defines a C++ class. Main ingredients the basis functions and their derivatives (class function FB): defined locally in a triangle/tetrahedron K, the interpolation operator (class constructor): define the computation of the degrees of freedom (quadrature formulas for more complicated FE) It requires degrees of freedom ξ i in duality with the basis functions! Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

5 Edge finite elements Edge finite elements are well suited for the approximation of the electric field in Maxwell s equations: conformal discretization of H(curl, Ω) = {v L 2 (Ω) 3, v L 2 (Ω) 3 } In FreeFem++ edge finite elements of degree 1 in 3d: keyword Edge03d, we added the edge elements of degree 2, 3 in 3d to use them: load "Element_Mixte3d"; keywords Edge13d, Edge23d. [Bonazzoli, Dolean, Hecht, Rapetti, An example of explicit implementation strategy and preconditioning for the high order edge finite elements applied to the time-harmonic Maxwell s equations. Accepted for publication in CAMWA. Preprint HAL <hal >] Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

6 Edge finite elements Tetrahedral mesh T h of Ω, V h H(curl, Ω) Low order edge finite elements (degree r = 1, Nédélec) Given a tetrahedron T T h, the local basis functions are associated with the oriented edges e = {n i, n j } of T : w e = λ ni λ nj λ nj λ ni, (the λ nl are the barycentric coordinates). oriented edges, 4 they are vector functions, they ensure the continuity of the tangential component across inter-element interfaces, degrees of freedom: ξ e : w 1 e e w t e, 2 e 5 e 1 e 3 e 6 e 2 1 e 4 3 duality: ξ e (w e ) = δ ee Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

7 Edge finite elements Visualization of basis functions in 2d: ξ e : w 1 { 1 if e = e w t e, ξ e (w e ) = δ ee = e e 0 if e e Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

8 High order edge finite elements The basis functions Generators of degree r = k + 1 Given T T h, for all oriented edges e of T and for all multi-indices k = (k 1, k 2, k 3, k 4 ) of weight k = k 1 + k 2 + k 3 + k 4, define: w {k,e} = λ k w e, where λ k = (λ n1 ) k1 (λ n2 ) k2 (λ n3 ) k3 (λ n4 ) k4. Only barycentric coordinates! Still V h H(curl, Ω) 4 E.g. degree r = 2 k = 1 λ 1 w e1, λ 2 w e1, λ 3 w e1, λ 4 w e1, λ 1 w e2, λ 2 w e2, λ 3 w e2, λ 4 w e2, e 5 e 3 e 6 λ 1 w e3, λ 2 w e3, λ 3 w e3, λ 4 w e3, λ 1 w e4, λ 2 w e4, λ 3 w e4, λ 4 w e4, e 1 1 e 2 3 λ 1 w e5, λ 2 w e5, λ 3 w e5, λ 4 w e5, λ 1 w e6, λ 2 w e6, λ 3 w e6, λ 4 w e6. 2 e 4 Select linearly independent basis functions! (dim = 20) [Rapetti, Bossavit, Whitney forms of higher degree, SIAM J. Num. Anal., 47(3), 2009] Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

9 High order edge finite elements The basis functions 4 e 5 e 3 e 6 e 1 = {1, 2}, e 2 = {1, 3}, e 3 = {1, 4}, e 4 = {2, 3}, e 5 = {2, 4}, e 6 = {3, 4}, f 1 = {2, 3, 4}, f 2 = {1, 3, 4}, f 3 = {1, 2, 4}, f 4 = {1, 2, 3}. e 1 1 e 2 3 degree r = 2 : 2 e 4 Edge-type basis functions: w 1 = λ 1 w e1, w 2 = λ 2 w e1, w 3 = λ 1 w e2, w 4 = λ 3 w e2, w 5 = λ 1 w e3, w 6 = λ 4 w e3, w 7 = λ 2 w e4, w 8 = λ 3 w e4, w 9 = λ 2 w e5, w 10 = λ 4 w e5, w 11 = λ 3 w e6, w 12 = λ 4 w e6, Face-type basis functions: w 13 = λ 4 w e4, w 14 = λ 3 w e5, w 15 = λ 4 w e2, w 16 = λ 3 w e3, w 17 = λ 4 w e1, w 18 = λ 2 w e3, w 19 = λ 3 w e1, w 20 = λ 2 w e2. Choice using the global numbers of the vertices! Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

10 High order edge finite elements The degrees of freedom (dofs) Revisitation of classical dofs Define the dofs on T T h for degree r 1 as the functionals: ξ e : w 1 (w t e ) q, q P r 1 (e), e E(T ), e e ξ f : w 1 (w t f,i ) q, q P r 2 (f ), f F(T ), f f t f,i two sides of f, i = 1, 2, ξ T : w 1 (w t T,i ) q, q P r 3 (T ), T T t T,i three sides of T, i = 1, 2, 3. As polynomials q, use products of barycentric coordinates [Bonazzoli, Rapetti, High order finite elements in numerical electromagnetism: dofs and generators in duality, NUMA 2017] Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

11 High order edge finite elements The degrees of freedom (dofs) 4 e 3 e 6 e 1 = {1, 2}, e 2 = {1, 3}, e 3 = {1, 4}, e 4 = {2, 3}, e 5 = {2, 4}, e 6 = {3, 4}, f 1 = {2, 3, 4}, f 2 = {1, 3, 4}, f 3 = {1, 2, 4}, f 4 = {1, 2, 3}. e 5 2 e 1 1 e 4 e 2 3 degree r = 2: for e = {n i, n j }, P 1 (e) = span(λ ni, λ nj ); P 0 (f ) = span(1); no volume dofs Edge-type dofs: ξ 1 : w 1 e 1 e 1 (w t e1 ) λ 1, ξ 2 : w 1 e 1 ξ 11 : w 1 e 6 e 6 (w t e6 ) λ 3, ξ 12 : w 1 e 6 e 1 (w t e1 ) λ 2,... e 6 (w t e6 ) λ 4, Face-type dofs: ξ 13 : w 1 f 1 f 1 (w t e4 ), ξ 14 : w 1 f 1 f 1 (w t e5 ),... ξ 19 : w 1 f 4 f 4 (w t e1 ), ξ 20 : w 1 f 4 f 4 (w t e2 ). Same choice as for generators Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

12 High order edge finite elements Restoring duality (for r > 1) To restore duality between basis functions ~w j and dofs ξ i : Ṽ ij = ξ i (~w j ) = δ ij take linear combinations of the old basis functions w j with coefficients given by the entries of V 1. Properties of the matrix V ij = ξ i (w j ): V does not depend on the metrics of the tetrahedron T (but pay attention to orientation!), V is blockwise lower triangular, V 1 entries are integer numbers. [Bonazzoli, Dolean, Hecht, Rapetti, An example of explicit implementation strategy and preconditioning for the high order edge finite elements applied to the time-harmonic Maxwell s equations. Accepted for publication in CAMWA. Preprint HAL <hal >] Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

13 High order edge finite elements Restoring duality degree r = 2, basis functions and dofs listed as before (ordering and choice!): V 1 = Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

14 Numerical results h as various optoelectronic rchitectural and automotive TIR. Modeling a brain imaging system (ANR project MEDIMAX) Microwave brain imaging system prototype (EMTensor, Austria): Waveguid cylindrical chamber with 5 rings of 32 antennas (rectangular waveguides) hs of Figures uce the results and graphs of e-index slab given by Eqs. (8.6.1) of the slab given in (8.6.8). the perfect lens property to the d to the presence of losses by 4. You will need to implement e results and graphs of Figures produce the results and graphs Waveguides are used to transfer electromagnetic power efficiently from one poin space to another. Some common guiding structures are shown in the figure be These include the typical coaxial cable, the two-wire and mictrostrip transmission l hollow conducting waveguides, and optical fibers. In practice, the choice of structure is dictated by: (a) the desired operating frequ band, (b) the amount of power to be transferred, and (c) the amount of transmis losses that can be tolerated. over, derive the Brewster angle f possible Brewster angles and produce the results and graphs Γ i Γ w Fig Typical waveguiding structures. Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

15 Numerical results Variational formulation in FreeFem++ Ω = [ ] ( E) ( v) γ 2 E v i=1 Γ i iβ(e n) (v n) Γ j g j v, v V h V, V = {v H(curl, Ω), v n = 0 on Γ w }. load "Element_Mixte3d" fespace Vh(Th,Edge13d); // Edge03d, Edge13d, Edge23d Vh<complex> [Ex,Ey,Ez], [vx,vy,vz]; macro Curl(ux,uy,uz) [dy(uz)-dz(uy),dz(ux)-dx(uz),dx(uy)-dy(ux)] // EOM macro Nvec(ux,uy,uz) [uy*n.z-uz*n.y,uz*n.x-ux*n.z,ux*n.y-uy*n.x] // EOM varf medimax([ex,ey,ez], [vx,vy,vz]) = int3d(th)(curl(ex,ey,ez) *Curl(vx,vy,vz) - gamma^2*[ex,ey,ez] *[vx,vy,vz]) + int2d(th,ports)(1i*beta*nvec(ex,ey,ez) *Nvec(vx,vy,vz)) + on(guide,ex=0,ey=0,ez=0); varf medimaxrhs([ex,ey,ez], [vx,vy,vz]) = int2d(th,portj)([vx,vy,vz] *[Gjx,Gjy,Gjz]) + on(guide,ex=0,ey=0,ez=0); Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

16 Numerical results (FreeFem++ with HPDDM) Plastic-filled cylinder (non dissipative!) immersed in the matching solution inside the imaging chamber. One transmitting antenna in the second ring from the top. Norm of the real part of the solution field: [Bonazzoli, Dolean, Rapetti, Tournier. Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging. 2017] Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

17 Numerical results (FreeFem++ with HPDDM) Solve 32 linear systems (same matrix, different right-hand sides) Pseudo-block GMRES with a Domain Decomposition preconditioner 1024 cores on Curie supercomputer Reference solution with 114 million (complex-valued) unknowns. Edge finite elements of degree 1, 2 for different mesh sizes: relative error M 2.4M 5.2M 8.5M 13M 21M 27M time to solution (s) 43M 46M Degree 1 Degree 2 74M Relative error Err = j,i S ij S ref ij 2 j,i Sref ij 2 (the S ij are the measurable quantities, calculated from the solution E) For Err 0.1 degree 1: 21 M unks, 130 s degree 2: 5 M unks, 62 s Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

18 Conclusion The user can add new finite elements to FreeFem++: define basis functions and interpolation operator (need duality!). FreeFem++ is based on a natural transcription of the variational formulation of the considered boundary value problem. The high order finite elements make it possible to attain a given accuracy with much fewer unknowns and much less computing time than the degree 1 approximation. The parallel implementation in HPDDM of the domain decomposition preconditioner is essential to be able to solve the considered large scale linear systems. Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

19 Conclusion Thank you for your attention! Marcella Bonazzoli (LJLL, Inria) Adding a new finite element 15/12/ / 19

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

arxiv: v2 [physics.comp-ph] 3 Jun 2016

arxiv: v2 [physics.comp-ph] 3 Jun 2016 INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS Int. J. Numer. Model. 2016; 00:1 10 Published online in Wiley InterScience (www.interscience.wiley.com). Parallel preconditioners

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

A two-level domain-decomposition preconditioner for the time-harmonic Maxwell s equations

A two-level domain-decomposition preconditioner for the time-harmonic Maxwell s equations A two-level domain-decomposition preconditioner for the time-harmonic Maxwell s equations Marcella Bonazzoli, Victorita Dolean, Ivan Graham, Euan Spence, Pierre-Henri Tournier To cite this version: Marcella

More information

High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality

High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality Marcella Bonazzoli, Francesca Rapetti To cite this version: Marcella Bonazzoli, Francesca Rapetti.

More information

arxiv: v1 [cs.ce] 9 Jul 2016

arxiv: v1 [cs.ce] 9 Jul 2016 Microwave Tomographic Imaging of Cerebrovascular Accidents by Using High-Performance Computing arxiv:1607.02573v1 [cs.ce] 9 Jul 2016 P.-H. Tournier a,b, I. Aliferis c, M. Bonazzoli d, M. de Buhan e, M.

More information

Numerical Modeling and High Speed Parallel Computing: New Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring

Numerical Modeling and High Speed Parallel Computing: New Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring umerical Modeling and High Speed Parallel Computing: ew Perspectives for Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring Pierre-Henri Tournier, Marcella Bonazzoli, Victorita Dolean,

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

Efficient high order and domain decomposition methods for the time-harmonic Maxwell s equations

Efficient high order and domain decomposition methods for the time-harmonic Maxwell s equations Efficient high order and domain decomposition methods for the time-harmonic Maxwell s equations Marcella Bonazzoli To cite this version: Marcella Bonazzoli. Efficient high order and domain decomposition

More information

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Victorita Dolean (Univ. Nice

More information

Waveguide Propagation Modes and Quadratic Eigenvalue Problems

Waveguide Propagation Modes and Quadratic Eigenvalue Problems Waveguide Propagation Modes and Quadratic Eigenvalue Problems Prof. André Nicolet, Institut Fresnel, UMR CNRS 6133, Université Paul Cézanne, Marseille, France. Prof. Christophe Geuzaine, Mathematics Department,

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Some examples in domain decomposition

Some examples in domain decomposition Some examples in domain decomposition Frédéric Nataf nataf@ann.jussieu.fr, www.ann.jussieu.fr/ nataf Laboratoire J.L. Lions, CNRS UMR7598. Université Pierre et Marie Curie, France Joint work with V. Dolean

More information

Nedelec elements for computational electromagnetics

Nedelec elements for computational electromagnetics Nedelec elements for computational electromagnetics Per Jacobsson, June 5, 2007 Maxwell s equations E = jωµh () H = jωεe + J (2) (εe) = ρ (3) (µh) = 0 (4) J = jωρ (5) Only three of the equations are needed,

More information

Divergence-free or curl-free finite elements for solving the curl-div system

Divergence-free or curl-free finite elements for solving the curl-div system Divergence-free or curl-free finite elements for solving the curl-div system Alberto Valli Dipartimento di Matematica, Università di Trento, Italy Joint papers with: Ana Alonso Rodríguez Dipartimento di

More information

field using second order edge elements in 3D

field using second order edge elements in 3D The current issue and full text archive of this journal is available at http://www.emerald-library.com using second order edge elements in 3D Z. Ren Laboratoire de GeÂnie Electrique de Paris, UniversiteÂs

More information

Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems

Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems M. Afonso, Joao Vasconcelos, Renato Mesquita, Christian Vollaire, Laurent Nicolas To cite this version:

More information

arxiv:physics/ v2 [physics.comp-ph] 14 Nov 2005

arxiv:physics/ v2 [physics.comp-ph] 14 Nov 2005 Geometric Finite Element Discretization of Maxwell Equations in Primal and Dual Spaces arxiv:physics/0503013v2 [physics.comp-ph] 14 Nov 2005 Bo He and F. L. Teixeira ElectroScience Laboratory and Department

More information

Recent advances in HPC with FreeFem++

Recent advances in HPC with FreeFem++ Recent advances in HPC with FreeFem++ Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann Fourth workshop on FreeFem++ December 6, 2012 With F. Hecht, F. Nataf, C. Prud homme. Outline

More information

High Order Differential Form-Based Elements for the Computation of Electromagnetic Field

High Order Differential Form-Based Elements for the Computation of Electromagnetic Field 1472 IEEE TRANSACTIONS ON MAGNETICS, VOL 36, NO 4, JULY 2000 High Order Differential Form-Based Elements for the Computation of Electromagnetic Field Z Ren, Senior Member, IEEE, and N Ida, Senior Member,

More information

Applied'&'Computa/onal'Electromagne/cs (ACE) Part/III Introduc8on/to/the/Finite/Element/Technique/for/ Electromagne8c/Modelling

Applied'&'Computa/onal'Electromagne/cs (ACE) Part/III Introduc8on/to/the/Finite/Element/Technique/for/ Electromagne8c/Modelling Applied'&'omputa/onal'Electromagne/cs (AE) Part/III Introduc8on/to/the/Finite/Element/Technique/for/ Electromagne8c/Modelling 68 lassical and weak formulations Partial differential problem lassical formulation

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

Solving the curl-div system using divergence-free or curl-free finite elements

Solving the curl-div system using divergence-free or curl-free finite elements Solving the curl-div system using divergence-free or curl-free finite elements Alberto Valli Dipartimento di Matematica, Università di Trento, Italy or: Why I say to my students that divergence-free finite

More information

3. Numerical integration

3. Numerical integration 3. Numerical integration... 3. One-dimensional quadratures... 3. Two- and three-dimensional quadratures... 3.3 Exact Integrals for Straight Sided Triangles... 5 3.4 Reduced and Selected Integration...

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Geometric finite element discretization of Maxwell equations in primal and dual spaces

Geometric finite element discretization of Maxwell equations in primal and dual spaces Physics Letters A 349 (2006) 1 14 www.elsevier.com/locate/pla Geometric finite element discretization of Maxwell equations in primal and dual spaces Bo He,F.L.Teixeira Electroscience Laboratory and Department

More information

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris.

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. Lise-Marie Imbert-Gérard, Bruno Després. Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. July 27th 2011 1 Physical and mathematical motivations 2 approximation of the solutions 3 4 Plan

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine P. Jolivet and Frédéric Nataf Laboratory J.L. Lions, Univ. Paris VI, Equipe Alpines INRIA-LJLL et CNRS joint

More information

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Ricardo G. Durán and Ariel L. Lombardi Abstract. The classical error analysis for the Raviart-Thomas interpolation

More information

FEM: Domain Decomposition and Homogenization for Maxwell s Equations of Large Scale Problems

FEM: Domain Decomposition and Homogenization for Maxwell s Equations of Large Scale Problems FEM: and Homogenization for Maxwell s Equations of Large Scale Problems Karl Hollaus Vienna University of Technology, Austria Institute for Analysis and Scientific Computing February 13, 2012 Outline 1

More information

Higher order hierarchical H(curl) Legendre basis functions applied in the finite element method: emphasis on microwave circuits

Higher order hierarchical H(curl) Legendre basis functions applied in the finite element method: emphasis on microwave circuits Higher order hierarchical H(curl) Legendre basis functions applied in the finite element method: emphasis on microwave circuits Johannesson, Peter 20 Link to publication Citation for published version

More information

Nitsche-type Mortaring for Maxwell s Equations

Nitsche-type Mortaring for Maxwell s Equations Nitsche-type Mortaring for Maxwell s Equations Joachim Schöberl Karl Hollaus, Daniel Feldengut Computational Mathematics in Engineering at the Institute for Analysis and Scientific Computing Vienna University

More information

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping M. El Bouajaji 1, V. Dolean 2, M. J. Gander 3 and S. Lanteri 1 1 Introduction Transmission conditions

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Equivalent electrostatic capacitance Computation using FreeFEM++

Equivalent electrostatic capacitance Computation using FreeFEM++ Equivalent electrostatic capacitance Computation using FreeFEM++ P. Ventura*, F. Hecht** *PV R&D Consulting, Nice, France **Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, France

More information

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients Victorita Dolean, Martin Gander, Erwin Veneros To cite this version: Victorita Dolean, Martin Gander, Erwin Veneros. Optimized

More information

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014 Lecture on: Numerical sparse linear algebra and interpolation spaces June 3, 2014 Finite dimensional Hilbert spaces and IR N 2 / 38 (, ) : H H IR scalar product and u H = (u, u) u H norm. Finite dimensional

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

DG discretization of optimized Schwarz methods for Maxwell s equations

DG discretization of optimized Schwarz methods for Maxwell s equations DG discretization of optimized Schwarz methods for Maxwell s equations Mohamed El Bouajaji, Victorita Dolean,3, Martin J. Gander 3, Stéphane Lanteri, and Ronan Perrussel 4 Introduction In the last decades,

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Basics and some applications of the mortar element method

Basics and some applications of the mortar element method GAMM-Mitt. 28, No. 2, 97 123 (2005) Basics and some applications of the mortar element method Christine Bernardi 1, Yvon Maday 1, and Francesca Rapetti 2 1 Laboratoire Jacques-Louis Lions, C.N.R.S. & université

More information

On Surface Meshes Induced by Level Set Functions

On Surface Meshes Induced by Level Set Functions On Surface Meshes Induced by Level Set Functions Maxim A. Olshanskii, Arnold Reusken, and Xianmin Xu Bericht Nr. 347 Oktober 01 Key words: surface finite elements, level set function, surface triangulation,

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

arxiv: v1 [math.na] 13 Aug 2014

arxiv: v1 [math.na] 13 Aug 2014 THE NITSCHE XFEM-DG SPACE-TIME METHOD AND ITS IMPLEMENTATION IN THREE SPACE DIMENSIONS CHRISTOPH LEHRENFELD arxiv:1408.2941v1 [math.na] 13 Aug 2014 Abstract. In the recent paper [C. Lehrenfeld, A. Reusken,

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Tropical decomposition of symmetric tensors

Tropical decomposition of symmetric tensors Tropical decomposition of symmetric tensors Melody Chan University of California, Berkeley mtchan@math.berkeley.edu December 11, 008 1 Introduction In [], Comon et al. give an algorithm for decomposing

More information

Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations

Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations 1st workshop of the joint INRIA-UIUC laboratory for Petascale Computing Victorita Dolean 1, Mohamed El

More information

Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES

Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES Figure 5.29 (a) Uniform beam moving in frictionless slots and attached to ground via springs at A and B. The vertical force

More information

Cubature points based triangular spectral elements: An accuracy study

Cubature points based triangular spectral elements: An accuracy study Cubature points based triangular spectral elements: An accuracy study Richard Pasquetti, Francesca Rapetti To cite this version: Richard Pasquetti, Francesca Rapetti. Cubature points based triangular spectral

More information

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 425 Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite

More information

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps

JOHANNES KEPLER UNIVERSITY LINZ. Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps Nicole Spillane Frédérik Nataf Laboratoire

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

CIMPA Summer School on Current Research in Finite Element Methods

CIMPA Summer School on Current Research in Finite Element Methods CIMPA Summer School on Current Research in Finite Element Methods Local zooming techniques for the finite element method Alexei Lozinski Laboratoire de mathématiques de Besançon Université de Franche-Comté,

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model P. Ventura*, F. Hecht**, Pierre Dufilié*** *PV R&D Consulting, Nice, France Laboratoire LEM3, Université

More information

Finite Element Modeling of Electromagnetic Systems

Finite Element Modeling of Electromagnetic Systems Finite Element Modeling of Electromagnetic Systems Mathematical and numerical tools Unit of Applied and Computational Electromagnetics (ACE) Dept. of Electrical Engineering - University of Liège - Belgium

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl)

1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl) DDM Preprint Editors: editor1, editor2, editor3, editor4 c DDM.org 1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl) Bernhard Hientzsch 1 1. Introduction.

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Title: An overlapping mortar element approach to coupled magneto-mechanical problems. Mathematics and Computers in Simulation

Title: An overlapping mortar element approach to coupled magneto-mechanical problems. Mathematics and Computers in Simulation Title: An overlapping mortar element approach to coupled magneto-mechanical problems Author: Francesca Rapetti PII: S0378-4754(09)00046-9 DOI: doi:10.1016/j.matcom.2009.02.008 Reference: MATCOM 3185 To

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

Interpolation via Barycentric Coordinates

Interpolation via Barycentric Coordinates Interpolation via Barycentric Coordinates Pierre Alliez Inria Some material from D. Anisimov Outline Barycenter Convexity Barycentric coordinates For Simplices For point sets Inverse distance (Shepard)

More information

Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities

Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities Mauro Bonafini 1,2, Marcella Bonazzoli 3, Elena Gaburro 1,2, Chiara Venturini 1,3, instructor: Carlo de Falco 4 1 Department

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

Module 6 : Wave Guides. Lecture 40 : Introduction of Parallel Waveguide. Objectives. In this course you will learn the following

Module 6 : Wave Guides. Lecture 40 : Introduction of Parallel Waveguide. Objectives. In this course you will learn the following Objectives In this course you will learn the following Introduction of Parallel Plane Waveguide. Introduction of Parallel Plane Waveguide Wave Guide is a structure which can guide Electro Magnetic Energy.

More information

TWO-SCALE SIMULATION OF MAXWELL S EQUATIONS

TWO-SCALE SIMULATION OF MAXWELL S EQUATIONS ESAIM: PROCEEDINGS, February 27, Vol.6, 2-223 Eric Cancès & Jean-Frédéric Gerbeau, Editors DOI:.5/proc:27 TWO-SCALE SIMULATION OF MAWELL S EQUATIONS Hyam Abboud,Sébastien Jund 2,Stéphanie Salmon 2, Eric

More information

Local flux mimetic finite difference methods

Local flux mimetic finite difference methods Local flux mimetic finite difference methods Konstantin Lipnikov Mikhail Shashkov Ivan Yotov November 4, 2005 Abstract We develop a local flux mimetic finite difference method for second order elliptic

More information

A simplicial gauge theory on spacetime

A simplicial gauge theory on spacetime A simplicial gauge theory on spacetime Tore G. Halvorsen, NTNU, Trondheim Norway. Joint work with Snorre H. Christiansen, UiO. 1 Abstract In this talk I will introduce the variational form of the SU(N)

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Continuum mechanics of beam-like structures using one-dimensional finite element based on Serendipity Lagrange cross-sectional discretisation, Mayank Patni, Prof. Paul Weaver, Dr Alberto Pirrera Bristol

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Chapter 2 Definition of Different Types of Finite Elements

Chapter 2 Definition of Different Types of Finite Elements Chapter 2 Definition of Different Types of Finite Elements Abstract This chapter presents a wide variety of finite elements of different shapes (quadrilaterals, hexahedra, triangles, tetrahedra, pyramids

More information

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++ . p.1/13 10 ec. 2014, LJLL, Paris FreeFem++ workshop : BECASIM session Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

More information

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods Introduction In this workshop we will introduce you to the least-squares spectral element method. As you can see from the lecture notes, this method is a combination of the weak formulation derived from

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Mario Kapl a Vito Vitrih b Bert Jüttler a Katharina Birner a a Institute of Applied Geometry Johannes Kepler University

More information

Geometric Decomposition of Serendipity Finite Element Spaces

Geometric Decomposition of Serendipity Finite Element Spaces Geometric Decomposition of Serendipity Finite Element Spaces Andrew Gillette Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/ Joint Mathematics Meetings 2013

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 24, 69 76, 2011 EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS S. J. Lai 1, *, B. Z. Wang 1, and Y. Duan 2 1 Institute

More information

The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics The Finite Element Method for Solid and Structural Mechanics Sixth edition O.C. Zienkiewicz, CBE, FRS UNESCO Professor of Numerical Methods in Engineering International Centre for Numerical Methods in

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches

Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches Splitting Techniques in the Face of Huge Problem Sizes: Block-Coordinate and Block-Iterative Approaches Patrick L. Combettes joint work with J.-C. Pesquet) Laboratoire Jacques-Louis Lions Faculté de Mathématiques

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

2 FORMULATIONS 2.1 The H-J formulation Let Ω be a domain consisting of a conducting region R and a non-conducting region S. Here assume that Ω, R and

2 FORMULATIONS 2.1 The H-J formulation Let Ω be a domain consisting of a conducting region R and a non-conducting region S. Here assume that Ω, R and Annual Report of ADVENTURE Project ADV-99-1(1999) LARGE-SCALE MAGNETIC FIELD ANALYSES Hiroshi KANAYAMA Department of Intelligent Machinery and Systems Graduate School of Engineering, Kyushu University

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

The mortar element method for quasilinear elliptic boundary value problems

The mortar element method for quasilinear elliptic boundary value problems The mortar element method for quasilinear elliptic boundary value problems Leszek Marcinkowski 1 Abstract We consider a discretization of quasilinear elliptic boundary value problems by the mortar version

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD

SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD Progress In Electromagnetics Research B, Vol. 24, 351 367, 2010 SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD S. J. Lai and B. Z. Wang Institute of Applied Physics University of

More information

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS SHANGYOU ZHANG DEDICATED TO PROFESSOR PETER MONK ON THE OCCASION OF HIS 6TH BIRTHDAY Abstract. On triangular grids, the continuous

More information