Qualitative reasoning about space with hybrid logic

Size: px
Start display at page:

Download "Qualitative reasoning about space with hybrid logic"

Transcription

1 Qualitative reasoning about space with hybrid logic Stanislovas Norgėla Julius Andrikonis Arūnas Stočkus Vilnius University The Faculty of Mathematics and Informatics Department of Computer Science Naugarduko 24, Vilnius 2012 July 11

2 Contents 1 2 3

3 Contents 1 2 3

4 RCC with 5 predicates Any relation between two areas of the plane can be defined using following predicates: x y x y x y DC(x, y) EC(x, y) PO(x, y) x x y y TPP(x, y) NTPP(x, y)

5 RCC with 8 predicates However, usually eight predicates are used: x y x y x y x y DC(x, y) EC(x, y) PO(x, y) EQ(x, y) x x y y y y x x TPP(x, y) NTPP(x, y) TPPI(x, y) NTPPI(x, y) Definition Such theory is called RCC-8.

6 Spatial information of points, lines and regions The aim is to show how spatial information can be presented using Hybrid logic. But spatial information may consist of lines and points too. The definition of predicates DC, EC, PO, EQ, TPP, NTPP, TPPI and NTPPI can be extended to cover lines and points. However to cover all the possible relations, predicate Cr is needed: x y x y x y Cr(x, y) Cr(x, y) Cr(x, y)

7 The results The work demonstrates: How spatial information of regions, lines and points can be presented using multimodal hybrid logic. How spatial information of regions can be presented using monomodal hybrid logic. How spatial information of regions, lines and points can be presented using monomodal hybrid logic.

8 Contents 1 2 3

9 Classical propositional logic Language consists of: p, q, r,... propositional variables; conjunction; disjunction; implication; (, ) parentheses; Interpretation is function ν : P {, }. P set of propositional variables.

10 Modal logic Additional modal operators: necessity; possibility. Kripke structure for modal logic W, R, ν : W set of worlds; R relation between elements of W; ν : W P {, } interpretation function. For some Kripke structure S = W, R, ν : F is true in world w W, iff F is true in every w W such that wrw ; F is true in world w W, iff F is true in some w W such that wrw.

11 Example of Kripke structure for modal logic w 2 p = w 1 w 4 p = p = w 3 p = Formula p is true in worlds w 1 and w 3 ; Formula p is true in worlds w 1 and w 2 ;

12 Multimodal logic n of each modal operator: i, i [1, n] necessity; i, i [1, n] possibility. Kripke structure for multimodal logic W, R 1, R 2,..., R n, ν : W set of worlds; R i relation between elements of W for i th modality; ν : W P {, } interpretation function. For some Kripke structure S = W, R 1, R 2,..., R n, ν : i F is true in world w W, iff F is true in every w W such that wr i w ; i F is true in world w W, iff F is true in some w W such that wr i w.

13 Hybrid logic ) A set of nominals N = {i, j,... } is used; Each nominal is true in exactly one world of Kripke structure; A nominal is a formula; Two new and ; i F is true, if F is true in world i; Formula x.f is true, if F is true in current state, which is denoted x in formula F.

14 Example of Kripke structure for hybrid logic w 2 p =, i 2 w 1 w 4 p =, i 1 p =, i 4 w 3 p =, i 3 Formula i1 p) is false in all the worlds; Formula i2 p) is true in worlds w 1 and w 3 ; Formula x. (p x) is true in worlds w 2 and w 4 ;

15 Contents 1 2 3

16 Contents 1 2 3

17 Kripke structure is: W consists of regions, lines and points; Nine relations: R DC, R EC, R PO, R EQ, R TPP, R NTPP, R TPPI, R NTPPI and R Cr ; ν(w, r) =, iff w is a region; ν(w, l) =, iff w is a line; ν(w, p) =, iff w is a point; Set of nominals consists of object names; Other propositional variables, that describe the object, might be included: f forest, s see, c country, d district

18 Example r,c,a B C F A D E TPP(E,A) EC(B,A) TPP(C,A) TPP(D,A) r,d,e NTPP(F,A) r,d,c r,d,d EC(D,E) EC(B,C) EC(C,D) r,s,b PO(C,F) PO(D,F) r,f,f

19 Examples Is there a see, which is next to a forest? s EC f ; Is there any forest in Lithuania (c NTPP f ); Is there any country, without a land boarder? c EC c; Is there a forest, which is in more than one country? x.f PO ( c y.@x PO (c y) ) ;

20 Contents 1 2 3

21 Districts It is known how predicates of RCC-8 can be expressed using predicate C and formulas of predicate logic. C(x, y) is reflexive and symmetric. Let s divide the set of regions into a finite number of closed areas, called districts, such that: each district is bounded by several closed lines, which are part of the outset of some regions; the district can not be divided further; two districts do not intersect.

22 Example of regions and districts A * C * F * D *

23 Kripke structure for RCC-8 W consists of regions, districts and two other worlds: complement of the union of all the worlds; world g; R is defined as follows: if C(w 1, w 2 ), then w 1 Rw 2 ; grw for every w g; in addition ν(w, r) =, iff w is a region ν(w, d) =, iff w is a district;

24 Additional predicates Several auxiliary predicates are used: PP(x, y) = TPP(x, y) NTPP(x, y); P(x, y) = PP(x, y) EQ(x, y); O(x, y) = P(x, y) PO(x, y) P(y, x).

25 Formulas of hybrid logic for RCC-8 DC(x, x y; P(x, x g ( x y); PP(x, y): P(x, y) P(y, x); EQ(x, y): P(x, y) P(y, x); O(x, g z. ( P(z, x) P(z, y) ) ; PO(x, y): O(x, y) P(x, y) P(y, x); EC(x, x y O(x, y); TPP(x, y): PP(x, g z. ( EC(z, x) EC(z, y) ) ; NTPP(x, y): PP(x, g z. ( EC(z, x) EC(z, y) ) ; TPPI(x, y): TPP(y, x); NTPPI(x, y): NTPP(y, x).

26 Corollary for RCC-8 It is known that the complexity of model checking algorithm in logic ) is O(l n), where l is the length of the formula (query) and n is the number of the nodes; Complexity of model checking algorithm, that decides if a Kripke structure of the spatial information is a model of the query, is O((2 + k + r) l), where r is the number of regions, k is the number of districts and l is the length of the formula (query).

27 Contents 1 2 3

28 Segments Let s divide each line into segments which end at the point in the outline of some district or in the crossing of several lines; R 1 R 3 R 2

29 Kripke structure for regions, lines and points Let s introduce additional information into Kripke structure: all the segments and points are part of W; the inside of every region and district is part of W; w 1 Rw 2 if: w 1 is the inside of region or district w 2 ; w 1 is a segment or point on the outline of region or district w 2 ; w 1 is a segment or point inside region or district and w 2 is the inside of the region or district; w 1 and w 2 are two segments with common point; w 1 is a segment, which crosses point w 2 ; ν(w, l) =, if w is a segment; ν(w, p) =, if w is a point; ν(w, in) =, if w is an inside of region or district;

30 Formulas of hybrid logic for regions, lines and points Relation between regions are already covered; EQ(x, y) : (@ x y x y) (@ x y x y); Segment x is inside region x y x (in y); Segment x is on the outline of region x y x y; Segment x touches segment x y x y; Point x is on segment x y x y; Point x is inside region x y x (in y); Point x is on the outline of region x y x y;

31 Corollary for regions, lines and points There are 2r + 2k + s + p + 2 = m nodes, where r is the number of regions, k is the number of districts, s is the number of segments and p is the number of points. Complexity of model checking algorithm, that decides if a Kripke structure of the spatial information is a model of the query, is O(m n), where l is the length of the formula (query).

Nearness Rules and Scaled Proximity

Nearness Rules and Scaled Proximity Nearness Rules and Scaled Proximity Özgür L. Özçep 1 and Rolf Grütter 2 and Ralf Möller 3 Abstract. An artificial intelligence system that processes geothematic data would profit from a (semi-)formal or

More information

Defining Relations: a general incremental approach with spatial and temporal case studies

Defining Relations: a general incremental approach with spatial and temporal case studies Defining Relations: a general incremental approach with spatial and temporal case studies Brandon BENNETT a,1 Heshan DU a a Lucía GÓMEZ ÁLVAREZ Anthony G. COHN a,2 a School of Computing, University of

More information

On Terminological Default Reasoning about Spatial Information: Extended Abstract

On Terminological Default Reasoning about Spatial Information: Extended Abstract On Terminological Default Reasoning about Spatial Information: Extended Abstract V. Haarslev, R. Möller, A.-Y. Turhan, and M. Wessel University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30,

More information

SPATIAL LOGICS WITH CONNECTEDNESS PREDICATES

SPATIAL LOGICS WITH CONNECTEDNESS PREDICATES SPATIAL LOGICS WITH CONNECTEDNESS PREDICATES R. KONTCHAKOV, I. PRATT-HARTMANN, F. WOLTER, AND M. ZAKHARYASCHEV School of Computer Science and Information Systems, Birkbeck College London e-mail address:

More information

Agenda: Nothing New, Just Review of Some Formal Approaches

Agenda: Nothing New, Just Review of Some Formal Approaches Agenda: Nothing New, Just Review of Some Formal Approaches Challenges Mereotopology: Parts + Connectivity The Region Connection Calculus (RCC): variants & meaning Granularity, Approximation, & Vagueness

More information

Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

Combining Spatial and Temporal Logics: Expressiveness vs. Complexity Journal of Artificial Intelligence Research 23 (2005) 167-243 Submitted 07/04; published 02/05 Combining Spatial and Temporal Logics: Expressiveness vs. Complexity David Gabelaia Roman Kontchakov Agi Kurucz

More information

Transformations of formulae of hybrid logic

Transformations of formulae of hybrid logic LMD2010log_norg 2010/10/1 18:30 page 1 #1 Lietuvos matematikos rinkinys. LMD darbai ISSN 0132-2818 Volume 51, 2010, pages 1 14 www.mii.lt/lmr/ Transformations of formulae of hybrid logic Stanislovas Norgėla,

More information

Incomplete Information in RDF

Incomplete Information in RDF Incomplete Information in RDF Charalampos Nikolaou and Manolis Koubarakis charnik@di.uoa.gr koubarak@di.uoa.gr Department of Informatics and Telecommunications National and Kapodistrian University of Athens

More information

Modal logics and their semantics

Modal logics and their semantics Modal logics and their semantics Joshua Sack Department of Mathematics and Statistics, California State University Long Beach California State University Dominguez Hills Feb 22, 2012 Relational structures

More information

Combining topological and size information for spatial reasoning

Combining topological and size information for spatial reasoning Artificial Intelligence 137 (2002) 1 42 www.elsevier.com/locate/artint Combining topological and size information for spatial reasoning Alfonso Gerevini a,, Jochen Renz b a Dipartimento di Elettronica

More information

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae Logic and Discrete Mathematics Section 3.5 Propositional logical equivalence Negation of propositional formulae Slides version: January 2015 Logical equivalence of propositional formulae Propositional

More information

Boolean connection algebras: A new approach to the Region-Connection Calculus

Boolean connection algebras: A new approach to the Region-Connection Calculus Artificial Intelligence 122 (2000) 111 136 Boolean connection algebras: A new approach to the Region-Connection Calculus J.G. Stell Department of Computer Science, Keele University, Keele, Staffordshire,

More information

On the Computational Complexity of Spatio-Temporal Logics

On the Computational Complexity of Spatio-Temporal Logics On the Computational Complexity of Spatio-Temporal Logics David Gabelaia, Roman Kontchakov, Agi Kurucz, Frank Wolter and Michael Zakharyaschev Department of Computer Science, King s College Strand, London

More information

On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8

On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8 On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8 Jochen Renz Bernhard Nebel Institut fur Informatik, Albert-Ludwigs-Universitat, D-79110 Freiburg, Germany {renz.nebel}oinformatik.uni-freiburg.de

More information

Syntax and Semantics of Propositional Linear Temporal Logic

Syntax and Semantics of Propositional Linear Temporal Logic Syntax and Semantics of Propositional Linear Temporal Logic 1 Defining Logics L, M, = L - the language of the logic M - a class of models = - satisfaction relation M M, ϕ L: M = ϕ is read as M satisfies

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Modal Dependence Logic

Modal Dependence Logic Modal Dependence Logic Jouko Väänänen Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam, The Netherlands J.A.Vaananen@uva.nl Abstract We

More information

Graph Theory and Modal Logic

Graph Theory and Modal Logic Osaka University of Economics and Law (OUEL) Aug. 5, 2013 BLAST 2013 at Chapman University Contents of this Talk Contents of this Talk 1. Graphs = Kripke frames. Contents of this Talk 1. Graphs = Kripke

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic

On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic On the satisfiability problem for a 4-level quantified syllogistic and some applications to modal logic Domenico Cantone and Marianna Nicolosi Asmundo Dipartimento di Matematica e Informatica Università

More information

Spatial Knowledge Representation on the Semantic Web

Spatial Knowledge Representation on the Semantic Web Spatial Knowledge Representation on the Semantic Web Frederik Hogenboom, Bram Borgman, Flavius Frasincar, and Uzay Kaymak Erasmus University Rotterdam Box 1738, NL-3000 DR Rotterdam, the Netherlands Email:

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

Modal Logic. UIT2206: The Importance of Being Formal. Martin Henz. March 19, 2014

Modal Logic. UIT2206: The Importance of Being Formal. Martin Henz. March 19, 2014 Modal Logic UIT2206: The Importance of Being Formal Martin Henz March 19, 2014 1 Motivation The source of meaning of formulas in the previous chapters were models. Once a particular model is chosen, say

More information

Extensions of Analytic Pure Sequent Calculi with Modal Operators

Extensions of Analytic Pure Sequent Calculi with Modal Operators Extensions of Analytic Pure Sequent Calculi with Modal Operators Yoni Zohar Tel Aviv University (joint work with Ori Lahav) GeTFun 4.0 Motivation C 1 [Avron, Konikowska, Zamansky 12] Positive rules of

More information

A generalization of modal definability

A generalization of modal definability A generalization of modal definability Tin Perkov Polytechnic of Zagreb Abstract. Known results on global definability in basic modal logic are generalized in the following sense. A class of Kripke models

More information

Bisimulation for Neighbourhood Structures

Bisimulation for Neighbourhood Structures Bisimulation for Neighbourhood Structures Helle Hvid Hansen 1,2 Clemens Kupke 2 Eric Pacuit 3 1 Vrije Universiteit Amsterdam (VUA) 2 Centrum voor Wiskunde en Informatica (CWI) 3 Universiteit van Amsterdam

More information

Neighborhood Semantics for Modal Logic Lecture 3

Neighborhood Semantics for Modal Logic Lecture 3 Neighborhood Semantics for Modal Logic Lecture 3 Eric Pacuit ILLC, Universiteit van Amsterdam staff.science.uva.nl/ epacuit August 15, 2007 Eric Pacuit: Neighborhood Semantics, Lecture 3 1 Plan for the

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

Predicate Calculus - Syntax

Predicate Calculus - Syntax Predicate Calculus - Syntax Lila Kari University of Waterloo Predicate Calculus - Syntax CS245, Logic and Computation 1 / 26 The language L pred of Predicate Calculus - Syntax L pred, the formal language

More information

University of Aberdeen, Computing Science CS2013 Predicate Logic 4 Kees van Deemter

University of Aberdeen, Computing Science CS2013 Predicate Logic 4 Kees van Deemter University of Aberdeen, Computing Science CS2013 Predicate Logic 4 Kees van Deemter 01/11/16 Kees van Deemter 1 First-Order Predicate Logic (FOPL) Lecture 4 Making numerical statements: >0, 1,>2,1,2

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Modal Logics Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg May 2 & 6, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

Model Theory of Modal Logic Lecture 4. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 4. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 4 Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, January 28, 2010 Model Theory of Modal Logic Lecture

More information

Machine Learning for Interpretation of Spatial Natural Language in terms of QSR

Machine Learning for Interpretation of Spatial Natural Language in terms of QSR Machine Learning for Interpretation of Spatial Natural Language in terms of QSR Parisa Kordjamshidi 1, Joana Hois 2, Martijn van Otterlo 1, and Marie-Francine Moens 1 1 Katholieke Universiteit Leuven,

More information

Combining Propositional Dynamic Logic with Formal Concept Analysis

Combining Propositional Dynamic Logic with Formal Concept Analysis Proc. CS&P '06 Combining Propositional Dynamic Logic with Formal Concept Analysis (extended abstract) N.V. Shilov, N.O. Garanina, and I.S. Anureev A.P. Ershov Institute of Informatics Systems, Lavren ev

More information

Propositional and Predicate Logic - II

Propositional and Predicate Logic - II Propositional and Predicate Logic - II Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II WS 2016/2017 1 / 16 Basic syntax Language Propositional logic

More information

Existential Second-Order Logic and Modal Logic with Quantified Accessibility Relations

Existential Second-Order Logic and Modal Logic with Quantified Accessibility Relations Existential Second-Order Logic and Modal Logic with Quantified Accessibility Relations preprint Lauri Hella University of Tampere Antti Kuusisto University of Bremen Abstract This article investigates

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra.

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra. Section 2.2 Set Operations Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. The operators in set theory are defined in terms of the corresponding

More information

Propositional Logic Truth-functionality Definitions Soundness Completeness Inferences. Modal Logic. Daniel Bonevac.

Propositional Logic Truth-functionality Definitions Soundness Completeness Inferences. Modal Logic. Daniel Bonevac. January 22, 2013 Modal logic is, among other things, the logic of possibility and necessity. Its history goes back at least to Aristotle s discussion of modal syllogisms in the Prior Analytics. But modern

More information

Logic Part II: Intuitionistic Logic and Natural Deduction

Logic Part II: Intuitionistic Logic and Natural Deduction Yesterday Remember yesterday? classical logic: reasoning about truth of formulas propositional logic: atomic sentences, composed by connectives validity and satisability can be decided by truth tables

More information

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms History Phase 1 implementation of systems based on incomplete structural subsumption algorithms Phase 2 tableau-based algorithms and complexity results first tableau-based systems (Kris, Crack) first formal

More information

Spatial reasoning in RCC-8 with Boolean region terms

Spatial reasoning in RCC-8 with Boolean region terms Spatia reasoning in RCC-8 with Booean region terms Frank Woter 1 and Michae Zakharyaschev 2 Abstract. We extend the expressive power of the region connection cacuus RCC-8 by aowing appications of the 8

More information

Spatio-Temporal Stream Reasoning with Incomplete Spatial Information

Spatio-Temporal Stream Reasoning with Incomplete Spatial Information Spatio-Temporal Stream Reasoning with Incomplete Spatial Information Fredrik Heintz and Daniel de Leng IDA, Linköping University, Sweden Abstract. Reasoning about time and space is essential for many applications,

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

Equational Logic: Part 2. Roland Backhouse March 6, 2001

Equational Logic: Part 2. Roland Backhouse March 6, 2001 1 Equational Logic: Part 2 Roland Backhouse March 6, 2001 Outline 2 We continue the axiomatisation of the propositional connectives. The axioms for disjunction (the logical or of two statements) are added

More information

ECE473 Lecture 15: Propositional Logic

ECE473 Lecture 15: Propositional Logic ECE473 Lecture 15: Propositional Logic Jeffrey Mark Siskind School of Electrical and Computer Engineering Spring 2018 Siskind (Purdue ECE) ECE473 Lecture 15: Propositional Logic Spring 2018 1 / 23 What

More information

09 Modal Logic II. CS 3234: Logic and Formal Systems. October 14, Martin Henz and Aquinas Hobor

09 Modal Logic II. CS 3234: Logic and Formal Systems. October 14, Martin Henz and Aquinas Hobor Martin Henz and Aquinas Hobor October 14, 2010 Generated on Thursday 14 th October, 2010, 11:40 1 Review of Modal Logic 2 3 4 Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence

More information

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic Discrete Mathematical Structures Chapter 1 he oundation: Logic 1 Lecture Overview 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Quantifiers l l l l l Statement Logical Connectives Conjunction

More information

Rules of Inference. Lecture 1 Tuesday, September 24. Rosalie Iemhoff Utrecht University, The Netherlands

Rules of Inference. Lecture 1 Tuesday, September 24. Rosalie Iemhoff Utrecht University, The Netherlands Rules of Inference Lecture 1 Tuesday, September 24 Rosalie Iemhoff Utrecht University, The Netherlands TbiLLC 2013 Gudauri, Georgia, September 23-27, 2013 1 / 26 Questions Given a theorem, what are the

More information

MEREOLOGICAL FUSION AS AN UPPER BOUND

MEREOLOGICAL FUSION AS AN UPPER BOUND Bulletin of the Section of Logic Volume 42:3/4 (2013), pp. 135 149 Rafał Gruszczyński MEREOLOGICAL FUSION AS AN UPPER BOUND Abstract Among characterizations of mereological set that can be found in the

More information

Modal logics: an introduction

Modal logics: an introduction Modal logics: an introduction Valentin Goranko DTU Informatics October 2010 Outline Non-classical logics in AI. Variety of modal logics. Brief historical remarks. Basic generic modal logic: syntax and

More information

Propositional logic (revision) & semantic entailment. p. 1/34

Propositional logic (revision) & semantic entailment. p. 1/34 Propositional logic (revision) & semantic entailment p. 1/34 Reading The background reading for propositional logic is Chapter 1 of Huth/Ryan. (This will cover approximately the first three lectures.)

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

A New Intuitionistic Fuzzy Implication

A New Intuitionistic Fuzzy Implication BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No Sofia 009 A New Intuitionistic Fuzzy Implication Lilija Atanassova Institute of Information Technologies, 1113 Sofia

More information

Propositional Dynamic Logic

Propositional Dynamic Logic Propositional Dynamic Logic Contents 1 Introduction 1 2 Syntax and Semantics 2 2.1 Syntax................................. 2 2.2 Semantics............................... 2 3 Hilbert-style axiom system

More information

1 Introduction. (C1) If acb, then a 0 and b 0,

1 Introduction. (C1) If acb, then a 0 and b 0, DISTRIBUTIVE MEREOTOPOLOGY: Extended Distributive Contact Lattices Tatyana Ivanova and Dimiter Vakarelov Department of Mathematical logic and its applications, Faculty of Mathematics and Informatics, Sofia

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Fall 2017 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

VILNIUS UNIVERSITY. Julius Andrikonis. Mathematical Logic. Lecture Notes

VILNIUS UNIVERSITY. Julius Andrikonis. Mathematical Logic. Lecture Notes VILNIUS UNIVERSITY Julius Andrikonis Mathematical Logic Lecture Notes Vilnius, 2012 Contents Table of Contents 2 1 Introduction 3 1.1 A short history of logic..................... 3 1.2 Important notation.......................

More information

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS 1 Language There are several propositional languages that are routinely called classical propositional logic languages. It is due to the functional dependency

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19. Intelligent Agents First Order Logic Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 19. Mai 2015 U. Schmid (CogSys) Intelligent Agents last change: 19. Mai 2015

More information

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies Valentin Stockholm University September 2016 Propositions Proposition:

More information

Hybrid Logic Dependency Semantics

Hybrid Logic Dependency Semantics Hybrid Logic Dependency Semantics What goes into the OpenCCG surface realiser? Lecture 2 January 22, 2013 Brief recap - What is NLG? How computer programs can be made to produce (high-quality) natural

More information

Modal Logic XVI. Yanjing Wang

Modal Logic XVI. Yanjing Wang Modal Logic XVI Yanjing Wang Department of Philosophy, Peking University April 27th, 2017 Advanced Modal Logic (2017 Spring) 1 Sahlqvist Formulas (cont.) φ POS: a summary φ = p (e.g., p p) φ =... p (e.g.,

More information

Solutions to Homework I (1.1)

Solutions to Homework I (1.1) Solutions to Homework I (1.1) Problem 1 Determine whether each of these compound propositions is satisable. a) (p q) ( p q) ( p q) b) (p q) (p q) ( p q) ( p q) c) (p q) ( p q) (a) p q p q p q p q p q (p

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

Packet #1: Logic & Proofs. Applied Discrete Mathematics

Packet #1: Logic & Proofs. Applied Discrete Mathematics Packet #1: Logic & Proofs Applied Discrete Mathematics Table of Contents Course Objectives Page 2 Propositional Calculus Information Pages 3-13 Course Objectives At the conclusion of this course, you should

More information

Scalable Geo-thematic Query Answering

Scalable Geo-thematic Query Answering Scalable Geo-thematic Query Answering Özgür Lütfü Özçep and Ralf Möller Institute for Software Systems (STS) Hamburg University of Technology Hamburg, Germany {oezguer.oezcep,moeller}@tu-harburg.de Abstract.

More information

With Question/Answer Animations. Chapter 2

With Question/Answer Animations. Chapter 2 With Question/Answer Animations Chapter 2 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Sequences and Summations Types of

More information

Semantics for Enough-Certainty and Fitting s Embedding of Classical Logic in S4

Semantics for Enough-Certainty and Fitting s Embedding of Classical Logic in S4 Semantics for Enough-Certainty and Fitting s Embedding of Classical Logic in S4 Gergei Bana 1 and Mitsuhiro Okada 2 1 INRIA de Paris, Paris, France bana@math.upenn.edu 2 Department of Philosophy, Keio

More information

A consistent theory of truth for languages which conform to classical logic

A consistent theory of truth for languages which conform to classical logic Nonlinear Studies - www. nonlinearstudies.com MESA - www.journalmesa.com Preprint submitted to Nonlinear Studies / MESA A consistent theory of truth for languages which conform to classical logic S. Heikkilä

More information

Equivalence and Implication

Equivalence and Implication Equivalence and Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February 7 8, 2018 Alice E. Fischer Laws of Logic... 1/33 1 Logical Equivalence Contradictions and Tautologies 2 3 4 Necessary

More information

Model Theory of Modal Logic Lecture 1: A brief introduction to modal logic. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 1: A brief introduction to modal logic. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 1: A brief introduction to modal logic Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, 25 January, 2010

More information

arxiv: v2 [cs.ai] 13 Feb 2015

arxiv: v2 [cs.ai] 13 Feb 2015 On Redundant Topological Constraints Sanjiang Li a,, Zhiguo Long a, Weiming Liu b, Matt Duckham c, Alan Both c a Centre for Quantum Computation & Intelligent Systems, University of Technology Sydney b

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete Mathematics

More information

Propositional Logic, Predicates, and Equivalence

Propositional Logic, Predicates, and Equivalence Chapter 1 Propositional Logic, Predicates, and Equivalence A statement or a proposition is a sentence that is true (T) or false (F) but not both. The symbol denotes not, denotes and, and denotes or. If

More information

From Residuated Lattices to Boolean Algebras with Operators

From Residuated Lattices to Boolean Algebras with Operators From Residuated Lattices to Boolean Algebras with Operators Peter Jipsen School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University October

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Evaluate which proof technique(s) is appropriate for a given proposition Direct proof Proofs by contraposition

More information

A Description Logic with Concrete Domains and a Role-forming Predicate Operator

A Description Logic with Concrete Domains and a Role-forming Predicate Operator A Description Logic with Concrete Domains and a Role-forming Predicate Operator Volker Haarslev University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30, 22527 Hamburg, Germany http://kogs-www.informatik.uni-hamburg.de/~haarslev/

More information

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω 1 Preliminaries In this chapter we first give a summary of the basic notations, terminology and results which will be used in this thesis. The treatment here is reduced to a list of definitions. For the

More information

First-Order Modal Logic and the Barcan Formula

First-Order Modal Logic and the Barcan Formula First-Order Modal Logic and the Barcan Formula Eric Pacuit Stanford University ai.stanford.edu/ epacuit March 10, 2009 Eric Pacuit: The Barcan Formula, 1 Plan 1. Background Neighborhood Semantics for Propositional

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

Introduction. Foundations of Computing Science. Pallab Dasgupta Professor, Dept. of Computer Sc & Engg INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Introduction. Foundations of Computing Science. Pallab Dasgupta Professor, Dept. of Computer Sc & Engg INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1 Introduction Foundations of Computing Science Pallab Dasgupta Professor, Dept. of Computer Sc & Engg 2 Comments on Alan Turing s Paper "On Computable Numbers, with an Application to the Entscheidungs

More information

On minimal models of the Region Connection Calculus

On minimal models of the Region Connection Calculus Fundamenta Informaticae 69 (2006) 1 20 1 IOS Press On minimal models of the Region Connection Calculus Lirong Xia State Key Laboratory of Intelligent Technology and Systems Department of Computer Science

More information

Topological Logics over Euclidean Spaces

Topological Logics over Euclidean Spaces Topological Logics over Euclidean Spaces Roman Kontchakov Department of Computer Science and Inf Systems, Birkbeck College, London http://wwwdcsbbkacuk/~roman joint work with Ian Pratt-Hartmann and Michael

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1 Přednáška 12 Důkazové kalkuly Kalkul Hilbertova typu 11/29/2006 Hilbertův kalkul 1 Formal systems, Proof calculi A proof calculus (of a theory) is given by: A. a language B. a set of axioms C. a set of

More information

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester DESCRIPTION LOGICS Paula Severi University of Leicester October 12, 2009 Description Logics Outline Introduction: main principle, why the name description logic, application to semantic web. Syntax and

More information

Chapter 11: Automated Proof Systems

Chapter 11: Automated Proof Systems Chapter 11: Automated Proof Systems SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems are

More information

Constructing Finite Least Kripke Models for Positive Logic Programs in Serial Regular Grammar Logics

Constructing Finite Least Kripke Models for Positive Logic Programs in Serial Regular Grammar Logics Constructing Finite Least Kripke Models for Positive Logic Programs in Serial Regular Grammar Logics Linh Anh Nguyen Institute of Informatics, University of Warsaw ul. Banacha 2, 02-097 Warsaw, Poland

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

arxiv:math/ v1 [math.lo] 5 Mar 2007

arxiv:math/ v1 [math.lo] 5 Mar 2007 Topological Semantics and Decidability Dmitry Sustretov arxiv:math/0703106v1 [math.lo] 5 Mar 2007 March 6, 2008 Abstract It is well-known that the basic modal logic of all topological spaces is S4. However,

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

Quantification and Modality

Quantification and Modality Quantification and Modality Terry Langendoen Professor Emeritus of Linguistics University of Arizona Linguistics Colloquium University of Arizona 13 Mar 2009 Appearance The modal operators are like disguised

More information