Strain gauge measurement uncertainties on hydraulic turbine runner blade

Size: px
Start display at page:

Download "Strain gauge measurement uncertainties on hydraulic turbine runner blade"

Transcription

1 IOP Conference Series: Earth and Environmental Science Strain gauge measurement uncertainties on hydraulic turbine runner blade To cite this article: J Arpin-Pont et al 2012 IOP Conf. Ser.: Earth Environ. Sci View the article online for updates and enhancements. Related content - The role of high cycle fatigue (HCF) onset in Francis runner reliability M Gagnon, S A Tahan, P Bocher et al. - Evaluation of RSI-induced stresses in Francis runners U Seidel, B Hübner, J Löfflad et al. - Fatigue analyses of the prototype Francis runners based on site measurements and simulations X Huang, J Chamberland-Lauzon, C Oram et al. Recent citations - Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends Alexandre Presas et al This content was downloaded from IP address on 07/03/2019 at 13:47

2 Strain gauge measurement uncertainties on hydraulic turbine runner blade J Arpin-Pont 1, M Gagnon 1, S A Tahan 1, A Coutu 2 and D Thibault 3 1 Mechanical Engineering Department, École de technologie supérieure, 1100 Notre- Dame Street West, Montreal, QC H3C 1K3, Canada 2 ANDRITZ-Hydro LTÉE, 6100, Trans-Canada Highway, Pointe-Claire, QC H9R 1B9, Canada 3 Institut de recherche d Hydro-Québec (IREQ), 1800 Boul. Lionel Boulet, Varennes, QC J3X 1S1, Canada jeremy.arpin-pont@gadz.org Abstract. Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 με to 165 με. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from -36 to 36 με. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry. 1. Introduction In this paper, we introduce a numerical method to evaluate the uncertainties of strain measurements. Strains have a significant influence on mechanical analyses, such as lifetime estimation. Accurately determining strains and stresses is not as simple as it might seem. Experimental, analytical and numerical methods can be used to determine strain levels. Typical experimental methods involve the use of strain gauges to measure strains at specific locations on the surface of a part [1, 2]. In comparison, the Finite Element Method (FEM) is a numerical method used to estimate strain levels. Both methods have their respective simplifications which introduce uncertainties in the estimated strains. These uncertainties in turn can produce significant differences between the values estimated by FEM and those measured with strain gauges. The list of uncertainty sources is large, as shown in figure 1. In this paper, the uncertainties studied will be limited to the ones generated by the combination of the behavior of a welded gauge, its position uncertainty and its integration effect. The proposed numerical method incorporates Monte Carlo simulations to evaluate the extent of these uncertainties. For each Monte Carlo simulation, the displacement fields estimated with FEM are Published under licence by Ltd 1

3 used to evaluate the strain measured by a virtual welded gauge located on the Finite Element model, and accounting for the studied uncertainties. The distribution of these strains determines the uncertainty range at the target gauge location. Figure 1. Uncertainties from FEM and Strain Gauge Measures. Using the proposed methodology, the uncertainties of in situ data obtained on a hydraulic turbine runner were evaluated. The data from two runner blades instrumented with ten uniaxial welded strain gauges at five key locations were compared to the strains evaluated by FEM. To understand the differences observed between the two, we used our numerical method to estimate the uncertainty ranges around the estimated strains. For each gauge location, three strain values can be compared: the strain estimated by FEM at the target location, the strains of experimental measurements, and the strain distribution evaluated by virtual gauges placed on the FEM model and accounting for the studied uncertainties. Note that the proposed method is not specific to the sensor used, and could also be applied to other sensor geometries, types and other parts. This paper is structured as follows: first, a review of the studied measurement uncertainty sources is presented. Next, our numerical method is introduced, and is followed by its application on a hydraulic turbine runner blade. Finally, a discussion on the results of the study case and the parameters influencing the uncertainty ranges concludes the paper. 2. Gauge measurement uncertainties A bonded strain gauge is a sensor composed of an electrical wire forming grid lines on a matrix, as shown in figure 3. The electrical resistance of the wire is a function of its length, cross-sectional area and electrical resistivity. This type of gauge is glued directly on the part surface. When the part surface deforms, the gauge also deforms in the same manner; strain readings are obtained from the change in the electrical resistance of the electrical wire of the gauge due to its variations in length and crosssectional area. The relation between the measured strain and the electrical resistance can be approximated by equation (1), where Measured is the strain measured by the gauge following its longitudinal axis; K is the gauge factor (which is a function of the electrical wire material); and R and R are the resistance and the resistance variation of the electrical wire, respectively [2]. Measured 1 R (1) K R In his work, J. Pople [3] listed more than 70 uncertainty sources for strain gauge measurements. Most of them are linked to human factors, but others are inherent to the gauge technology. Uncertainties can be introduced during the positioning of the gauge at a target location, in which case the actual location might differ from the target location combined with an alignment error. Moreover, welded strain gauges behave differently from bonded strain gauges due to their construction. In this paper, the uncertainties produced by the gauge behavior, the location uncertainty which includes positioning and alignment errors, and the integration effect of a welded gauge are investigated. These 2

4 uncertainty sources are illustrated in figure 2. We consider the other uncertainty sources, presented in figure 1, as controlled or negligible. Figure 2. Definition of uncertainty sources: welded gauge behavior, location uncertainty (including positioning and alignment errors) and integration effect. A unidirectional welded gauge possesses three main components: a thin carrier plate, a bonded gauge and connection cables [4]. The bonded gauge is glued on the thin carrier plate, which is then spot-welded on its periphery to the part surface, as shown in figure 4. Therefore, we obtain the strain measured on the carrier plate rather than the strain from the part surface. Displacement fields on the carrier plate can differ significantly from displacement fields on the part surface, leading to difference in strains and stresses. In our study, the uncertainty generated by the intermediate carrier plate is based on an FEM analysis of the carrier plate from which the displacement fields are obtained as a function of the gauge location. Note that welded gauges are easy to install on the part surface, are ready to use directly after their placement, and can be used in high temperature environments, where glues are not suitable [5]. Figure 3. Bonded strain gauge. Figure 4. Welded strain gauge. Experimentally, welded gauges are however difficult to accurately position at a target location and along a specific orientation, which produces positioning uncertainties. The displacement fields need to be known in order to evaluate the influence of these uncertainties but displacement fields are difficult to assess experimentally. We count few studies which examine the influence of positioning uncertainties [6, 7]. It should be noted that for a bonded gauge, the error on the strain produced by a misalignment in a uniform biaxial strain field was determined by C. Perry in 1969 [8]. This error is a function of three parameters: the ratio of the maximum-to-minimum algebraic principal strain; the angle between the gauge longitudinal axis and the maximum principal strain axis; and the alignment error of the gauge. The method proposed by C. Perry [8] is well adapted to bonded strain gauges but does not account for the behavior of the intermediate carrier plate of welded gauges. The method we propose uses the displacement fields of the carrier plate estimated by FEM and accounts for the positioning uncertainties to evaluate the strain measured by the gauge. These displacement fields also allow the evaluation of the integration error of the gauge. A strain gauge does not measure the strain at its center, but integrates the strains under its active grid surface. Gafitanu and al. [9], and more recently, Younis and Kang [10], both developed different methods to evaluate this integration error. The error is a function of two factors: the size of the active grid of the gauge, and the strain gradient under the gauge, as shown in figure 5. According to Le Goër 3

5 and Avril [2] and Gafitanu and al. [9], the integration effect could generate a difference of 30% between the measured strain and the strain at the center point of the gauge. Figure 5. Influence of integration effect. It should be noted that these uncertainties depend on the displacement fields in the neighborhood of the target location and the gauge geometry. In our study, the gauge geometry is known from specifications while displacement fields are estimated using an FEM model. 3. Numerical model The numerical methodology developed in this study allows the estimation of the studied uncertainties using the displacement fields from the FEM. In our methodology, a Virtual Welded Gauge (VWG) is first generated numerically on the FEM surface. The VWG is positioned near the target location by accounting for positioning and alignment uncertainties. Since the accurate position of a gauge can be unknown during the experimental measurements, positioning uncertainties are generated using random distribution laws. These uncertainties determine an area around the target location in which the VWG can be positioned. From the position of the VWG, displacements at the welding points on the periphery of the carrier plate are obtained by the interpolation of the displacement fields of the FEM surface. At welding points, the displacements of the carrier plate are assumed to be the same as those on the FEM surface. From these imposed displacements, a 2D FEM analysis of the carrier plate is computed. The rectangular carrier plate is meshed with 4-node shell elements. Nodes are positioned at the welding points on which the displacements are imposed. Therefore, the displacement fields obtained on the carrier plate can be compared to the displacement fields of the FEM part surface, as shown in figure 6. In this figure, a VWG is located on the FEM surface with positioning and alignment errors. The longitudinal displacement field isolines (mm) of the FEM surface and of the welded gauge carrier plate are plotted. We notice that even if the displacement fields are similar on the left side of the carrier plate, significant discrepancies are observed on the right. These discrepancies then influence the reading of the carrier plate strain gauge. Figure 6. Virtual Welded Gauge created on an FEM part model surface. Positioning errors: 12 mm in longitudinal axis X ; 8 mm in tangential axis Y ; 6 angular. Longitudinal displacement fields UX are plotted as isodisplacement lines (mm). 4

6 Using the displacement fields of the carrier plate, the strain measured by the VWG is evaluated by taking into account the gauge integration effect. In this case, the integration method on the all filaments length developed by Gafitanu and al. [9] is used. In this method, the strain from each grid line of the gauge gl j is determined with equation (2), where L 0 and L are respectively the initial and final length of the grid line j. U 1 and U 2 are the displacement vectors at the extremity points 1 and 2 of the grid line j, as shown in figure 7. These displacements are interpolated from the displacement fields of the 2D FEM model of the carrier plate. The final strain VWG is estimated using equation (3), in which n is the number of grid lines of the gauge. Figure 7. Strain determination for each grid line of the gauge. gl j 1/2 2 2 L L L ( L 0 0 U2 X U1 X ) ( U2 Y U1 Y) L0 (2) L L L n j 1 gl j VWG (3) Finally, Monte Carlo simulations are carried out to evaluate uncertainties. For each simulation, a VWG is generated next to the target location with random positioning uncertainties. The distribution of strains evaluated by the VWGs is computed and can be compared to the FEM strain at the target location, and to experimental values. Our assumption is that the difference observed between the median of the strain distribution obtained using our numerical method and the FEM strain at the target location can be assimilated to the bias observed between experimental measurements and original FEM analysis results. An overview of the methodology is presented in figure 8. The method incorporates the following assumptions. We assume that the uncertainties observed are only due to the welded gauge behavior, the positioning uncertainties and the integration effect. These three sources of uncertainties depend on the displacement fields in the neighborhood of the target location. These displacement fields are estimated by FEM. However, because of the inherent uncertainties on FEM (see figure 1), the results cannot be considered to be exactly representative of actual displacement fields. This is combined with the assumption that displacements at the welding points of the carrier plate can be interpolated linearly from the displacement fields of the FEM surface. The displacements at the end of the grid lines are also interpolated linearly from the displacement fields of the carrier plate. It is assumed that the strain is uniform along each individual grid line of the gauge. Finally, the bonded gauge location on the carrier plate is known and the positioning uncertainties of the bonded gauge on the carrier plate are considered negligible. n 5

7 Figure 8. Method presentation. 4. Study case The presented methodology was applied to experimental measurements made on a Francis hydraulic turbine runner. A total of ten (10) welded gauges were installed on two (2) blades. Each blade was instrumented at five (5) specific locations, as shown on the figure 9. At each location, strain distributions obtained with our numerical method are compared to FEM strain at the target location and experimental measurements. 6

8 Figure 9. Position of the gauges placed on the hydraulic turbine blade during measurements. The gauges used are referenced as HBW UP (Hitec Products Inc.). The distribution laws used to generate positioning and alignment errors were the same for the five locations, and are presented in table 1. These random position laws were estimated from the results of a Reproducibility and Reliability analysis (R&R) realized on a similar runner. This analysis was conducted using several strain gauges repeatedly installed at specific locations, following the experimental conditions of our reference project. Each time a gauge was installed, its positioning errors were accurately measured, and the gauge was removed. The process was repeated until the parameters of the distribution of the positioning uncertainties could be estimated Table 1. Positioning uncertainty distribution laws used for the simulations. Uncertainty Distribution Parameters Position along target axis X (mm) Uniform [ -10; 10 ] Position along tangential axis Y (mm) Uniform [ -6; 6 ] Alignment angle ( ) Uniform [ -5; 5 ] Furthermore, sensibility analyses were carried out to determine the influences of the number of elements in the 2D FEM of the carrier plate and the Monte Carlo simulation number. Stability is obtained with 400 elements and 2x10 3 Monte Carlo simulations. For the study case, we meshed the carrier plate with 551 rectangular elements (30 nodes in length and 20 nodes in width of the carrier plate) and computed uncertainties using 5x10 3 Monte Carlo simulations. 5. Results The strain results obtained are shown in figure 10, with detailed results for each location in table 2. Figure 10. Strain distributions resulting from 5x10 3 Monte Carlo simulations and experimental strain ranges for each of the five locations. Strains are expressed relative to the FEM strain at the target location. 7

9 Location Table 2. Relative strain results. Numerical method strain results (Microstrain με) Median (Q 50% ) [Q 25% ; Q 75% ] (range ) Measurement (με) range [Min; Max] (range) [Min; Max] (range) 1 36 [21; 83] (62) [10; 172] (162) [-54; -6] (48) 2 4 [-27; 38] (65) [-64; 101] (165) [-38; 29] (67) 3-7 [-20; -2] (18) [-69; 5] (74) [-61; 125] (186) 4-27 [-46; -6] (40) [-81; 45] (126) [-225; -5] (220) 5-36 [-64; -7] (57) [-104; 38] (142) [-177; -79] (98) The relative strains represent the difference between the strains obtained and the expected strain from the FEM at the target location. The boxes represent the first and third quartile (Q 25% and Q 75% ) of the relative strain distribution obtained with our numerical method, the middle line is the median (Q 50% ), and whiskers extend to the extreme values. The measurement ranges are the interval formed by strains observed during measurements. Measured strains were established from three independent measurements made at similar operating conditions. We observe an offset between the calibration values of each measurement, which produces variations in measured strains. Moreover, for each location, two different blades were instrumented. The strain measurement ranges presented in this study include the variations observed between both blades and the three independent measurements. Their statistical distributions, however, have not been determined. 6. Discussion We observe three different result combinations. The first, observed at location 1, is that the strain distribution obtained with our numerical method and the experimental measure range do not overlap. At this location, the FEM strain estimated at the target location is outside the measurement range. The uncertainties estimated with our method cannot explain this difference. In this case, it is possible that assumptions on both FEM and experimental measurements are false. The second combination, observed at locations 2, 3 and 4, is that more than 50% of the strains obtained with our numerical method overlap with the experimental measurement range. For location 4, the FEM strain at the target location is out of the experimental strain range, but the strain distribution estimate with our numerical method cover both the initial FEM results and part of the measurement range. Thus, the studied uncertainties could be considered as a cause of the differences between the FEM strain and experimental strains. A third possibility is observed for location 5. For this gauge, only a small part of the strains estimated with our numerical method overlap with the measurement range. The difference between the FEM strain at the target location and the nearest measured strain is 79 με. We observe that the strain distribution obtained with the numerical method, including the calculated uncertainties, shifted to the same side as the experimental measurements, which can only partially explain the differences observed between FEM and experimental strains. Strain distributions estimated by the virtual welded gauges are directly dependent on the FEM displacement fields around the target location. The geometry of the welded gauge, including the sizes of the carrier plate and of the bonded gauge, are determinant factors in the estimation of the welded gauge behavior error and the integration error. The random distribution laws used to generate the positions of virtual welded gauges are also important due to the importance of the FEM displacement fields. Uncertainty ranges obtained in this study case vary from 74 to 165 με for locations 3 and 2, respectively. The biases of the relative strains obtained vary from -36 to 36 με for locations 5 and 1, 8

10 respectively. Results are specific to each location and the numerical method has to be applied at each location independently in order to estimate the measurement uncertainties. 7. Conclusions In this paper, we have presented a numerical method, which enables the estimation of measurement uncertainties due to welded gauge behavior, positioning uncertainties and integration effect in strain measurement with welded strain gauges. In this method, the uncertainty ranges are estimated using the part surface displacement fields evaluated with an FEM analysis. Using these displacement fields, Monte Carlo simulations are carried out to estimate the distribution of strains estimated by virtual welded gauges randomly placed in the neighborhood of the target location on the FEM surface. The obtained distribution allows the estimation of the measurement uncertainty ranges. When applied to in situ measurements carried out on hydraulic turbine runner blades, uncertainty ranges obtained extend from 74 to 165 με, while biases vary from -36 με to 36 με. We observe that in some cases, the differences between experimental measured strains and strains evaluated by FEM cannot be explained by our simulation results. In these cases, we consider that the observed differences are due to the assumptions of both FEM analysis and experimental measurements. In most cases, the studied uncertainty could explain the differences between experimental measured strains and FEM strains. However, our numerical method does not include all the measurement uncertainty sources: uncertainties due to the transverse sensitivity of the gauge, the temperature compensation or the signal processing are not taken in account. Moreover, actual geometrical and load differences between the finite element model and the real runner are not considered either. We believe, however, that the two main factors influencing the measurement uncertainty sources are the displacement fields and the gauge geometry. Acknowledgments This study was carried out with the financial support of the Canadian research internship program, Mitacs-Accelerate. The authors acknowledge Andritz Hydro Ltd., the Institut de Recherche d Hydro- Québec (IREQ) and the École de technologie supérieure (ÉTS) for their support, materials and advice. Nomenclature K Gauge factor ΔL Length variation [mm] L 0 Initial gauge grid line length [mm] ΔR Gauge resistance variation [Ω] L Final gauge grid line length [mm] Measured Strain measured by the gauge [με] n Number of grid lines of the gauge gl j Estimated strain for the grid line j [με] R Gauge resistance [Ω] Estimated strain for the Virtual VWG Welded Gauge [με] U Displacement vector of point i [mm] Microstrain [mm/mm x 10 6 ] i References [1] James W F R and Dally W 1991 Experimental Stress Analysis 3rd ed (New-York: McGraw-Hill College Division) [2] Le Goër J L and Avril J 1992 Extensométrie Techniques de l ingénieur R [3] Pople J 1984 Experimental Techniques [4] Vishay Micro-Measurements 2010 Special use sensors weldable strain gages Standard Weldable Patterns Document Number [5] Avril J 1984 Encyclopédie d analyse des contraintes (Malakoff: Micromesures) [6] Little E G, Ticher D, Colgan D and O Donnell P 2006 Strain [7] Kobayoshi M and Queenie S H C 2005 Measurement [8] Perry C 1969 Instruments and control systems [9] Gafitanu M, Barsanescu P D and Poterasu V F 1989 Int. J. Pres. Ves & Piping

11 [10] Younis N T and Kang B 2011 Journal of Mechanical Science and Technology

Available online at ScienceDirect. Procedia Engineering 133 (2015 ) th Fatigue Design conference, Fatigue Design 2015

Available online at  ScienceDirect. Procedia Engineering 133 (2015 ) th Fatigue Design conference, Fatigue Design 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 133 (2015 ) 613 621 6th Fatigue Design conference, Fatigue Design 2015 Response Spectra and Expected Fatigue Reliability: A

More information

Efficient runner safety assessment during early design phase and root cause analysis

Efficient runner safety assessment during early design phase and root cause analysis IOP Conference Series: Earth and Environmental Science Efficient runner safety assessment during early design phase and root cause analysis To cite this article: Q W Liang et al 2012 IOP Conf. Ser.: Earth

More information

What is a Strain Gauge? Strain Gauge. Schematic View Of Strain Gauge

What is a Strain Gauge? Strain Gauge. Schematic View Of Strain Gauge ( ) : 1391-92 92 What is Strain? Strain is the amount of deformation of a body due to an applied force. More specifically, strain (ε) is defined as the fractional change in length. Strain can be positive

More information

Numerical simulation of pressure pulsations in Francis turbines

Numerical simulation of pressure pulsations in Francis turbines IOP Conference Series: Earth and Environmental Science Numerical simulation of pressure pulsations in Francis turbines To cite this article: M V Magnoli and R Schilling 2012 IOP Conf. Ser.: Earth Environ.

More information

Investigation on fluid added mass effect in the modal response of a pump-turbine runner

Investigation on fluid added mass effect in the modal response of a pump-turbine runner IOP Conference Series: Materials Science and Engineering OPEN ACCESS Investigation on fluid added mass effect in the modal response of a pump-turbine runner To cite this article: L Y He et al 2013 IOP

More information

Strain Measurement on Composites: Errors due to Rosette Misalignment

Strain Measurement on Composites: Errors due to Rosette Misalignment Strain Measurement on Composites: Errors due to Rosette Misalignment A. Ajovalasit, A. Mancuso and N. Cipolla Dipartimento di Meccanica e Aeronautica (DIMA) and Composite Materials Research Centre (CIRMAC),

More information

CFD configurations for hydraulic turbine startup

CFD configurations for hydraulic turbine startup IOP Conference Series: Earth and Environmental Science OPEN ACCESS CFD configurations for hydraulic turbine startup To cite this article: J Nicolle et al 214 IOP Conf. Ser.: Earth Environ. Sci. 22 3221

More information

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground To cite this article: Jozef Vlek and Veronika

More information

Averaging effects of a strain gage

Averaging effects of a strain gage Journal of Mechanical Science and Technology 5 () () 63~69 wwwspringerlinkcom/content/738-494x DOI 7/s6--- Averaging effects of a strain gage N T Younis * and B Kang Department of Engineering, Indiana

More information

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Evy Van Puymbroeck 1, a *, Wim Nagy 1,b and Hans De Backer 1,c 1 Ghent University, Department

More information

Self-weight loading of horizontal hydraulic cylinders with axial load

Self-weight loading of horizontal hydraulic cylinders with axial load Journal of Physics: Conference Series PAPER OPEN ACCESS Self-weight loading of horizontal hydraulic cylinders with axial load Related content - Stability analysis of large slenderness ratio horizontal

More information

Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets Journal of Physics: Conference Series PAPER OPEN ACCESS Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets To cite this article: Z. Malinowski

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine

The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine Journal of Physics: Conference Series OPEN ACCESS The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine To cite this article: D eli and H Ondráka 2015 J.

More information

The stiffness tailoring of megawatt wind turbine

The stiffness tailoring of megawatt wind turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS The stiffness tailoring of megawatt wind turbine To cite this article: Z M Li et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 052008

More information

Analysis of flow characteristics of a cam rotor pump

Analysis of flow characteristics of a cam rotor pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Analysis of flow characteristics of a cam rotor pump To cite this article: Y Y Liu et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 032023

More information

Damping of materials and members in structures

Damping of materials and members in structures Journal of Physics: Conference Series Damping of materials and members in structures To cite this article: F Orban 0 J. Phys.: Conf. Ser. 68 00 View the article online for updates and enhancements. Related

More information

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Excerpt from the Proceedings of the COMSOL Conference 21 Boston Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam S. Kargar *, D.M. Bardot. University of

More information

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie Journal of Applied Mathematics and Physics, 2015, 3, 577-583 Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.35071 Fatigue Crack Analysis on the

More information

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement The design of load-carrying components for machines and structures requires information about the distribution

More information

CFD evaluation of added damping due to fluid flow over a hydroelectric turbine blade

CFD evaluation of added damping due to fluid flow over a hydroelectric turbine blade IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS CFD evaluation of added damping due to fluid flow over a hydroelectric turbine blade To cite this article: J P Gauthier et al 2016

More information

Application of the Shannon-Kotelnik theorem on the vortex structures identification

Application of the Shannon-Kotelnik theorem on the vortex structures identification IOP Conference Series: Earth and Environmental Science OPEN ACCESS Application of the Shannon-Kotelnik theorem on the vortex structures identification To cite this article: F Pochylý et al 2014 IOP Conf.

More information

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis Rotating Machinery, 10(4): 283 291, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490447728 Deflections and Strains in Cracked Shafts due to Rotating

More information

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9 ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 9 1 Introduction If we design a load bearing component, how do we know it will not fail? Simulate/predict behavior from known fundamentals

More information

Validation of simulation strategies for the flow in a model propeller turbine during a runaway event

Validation of simulation strategies for the flow in a model propeller turbine during a runaway event IOP Conference Series: Earth and Environmental Science OPEN ACCESS Validation of simulation strategies for the flow in a model propeller turbine during a runaway event To cite this article: M Fortin et

More information

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Natural frequency analysis of fluid-conveying pipes in the ADINA system Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone

Flow behaviour analysis of reversible pumpturbine in S characteristic operating zone IOP Conference Series: Earth and Environmental Science Flow behaviour analysis of reversible pumpturbine in "S" characteristic operating zone To cite this article: S Q Zhang et al 2012 IOP Conf. Ser.:

More information

AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL

AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL Objective AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF OOP STRESSES FOR A TIN-WA PRESSURE VESSE This experiment will allow you to investigate hoop and axial stress/strain relations

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue

Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue Journal of Physics: Conference Series OPEN ACCESS Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue To cite this article: M Reiso and M Muskulus 2014 J.

More information

Study of the influence of heat transfer of a CLT beam through FEM

Study of the influence of heat transfer of a CLT beam through FEM Journal of Physics: Conference Series PAPER OPEN ACCESS Study of the influence of heat transfer of a CLT beam through FEM To cite this article: Juan Enrique Martínez-Martínez et al 2018 J. Phys.: Conf.

More information

Implementation of an advanced beam model in BHawC

Implementation of an advanced beam model in BHawC Journal of Physics: Conference Series PAPER OPEN ACCESS Implementation of an advanced beam model in BHawC To cite this article: P J Couturier and P F Skjoldan 28 J. Phys.: Conf. Ser. 37 625 Related content

More information

Errors Due to Transverse Sensitivity in Strain Gages

Errors Due to Transverse Sensitivity in Strain Gages Index: Transverse Sensitivity Errors Due to Transverse Sensitivity in Strain Gages Introduction Transverse Sensitivity Table of Contents Transverse Sensitivity Errors & Their Corrections Errors Corrections

More information

Finite Element Simulation of Eddy-Current Flaw Detection Systems

Finite Element Simulation of Eddy-Current Flaw Detection Systems Konstanty Marek Gawrylczyk Politechnika Szczeciñska Katedra Elektrotechniki Teoretycznej i Informatyki Finite Element Simulation of Eddy-Current Flaw Detection Systems Introduction The eddy-current method

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer. M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G.

3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer. M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G. 3-D Finite Element Modelling of a High Pressure Strain Gauge Pressure Transducer M. H. Orhan*, Ç. Doğan*, H. Kocabaş**, G. Tepehan*** * TÜBİTAK, Ulusal Metroloji Enstitüsü (UME), Gebze- Kocaeli, Turkey

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Analysis of the Impact of Major Influencing Factors on the Waveform of the Surface Eddy Current Probe for Electroconductive Nonmagnetic Pipe Thickness

Analysis of the Impact of Major Influencing Factors on the Waveform of the Surface Eddy Current Probe for Electroconductive Nonmagnetic Pipe Thickness Journal of Physics: Conference Series PAPER OPEN ACCESS Analysis of the Impact of Major Influencing Factors on the Waveform of the Surface Eddy Current Probe for Electroconductive Nonmagnetic Pipe Thickness

More information

NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS

NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS Journal of Engineering Studies and Research Volume 18 (2012) No. 3 29 NUMERICAL AND EXPERIMENTAL METHOD TO ALIGN 2500 TF PRESS COLUMNS DOBROT OANA-MIRELA 1*, ŢOCU FLORENTINA 1, MOCANU COSTEL IULIAN 1 1

More information

Experimental and Finite Element Analysis of a T-Joint Welding

Experimental and Finite Element Analysis of a T-Joint Welding Journal of Mechanics Engineering and Automation (01) 411-41 D DAVID PUBLISHING Experimental and Finite Element Analysis of a T-Joint Welding Rabih Kamal Kassab 1, Henri Champliaud 1, Ngan Van Lê 1, Jacques

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure

Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure To cite this article:

More information

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Strain Gauges Strain Gauges 2 Stress and strain in elastic materials Piezoresistive Effect Strain Gauge principle

More information

Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting IOP Conference Series: Materials Science and Engineering OPEN ACCESS Coupled vibration study of the blade of the fleible wind wheel with the low-speed shafting To cite this article: L Y Su et al 013 IOP

More information

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

More information

Modal Based Fatigue Monitoring of Steel Structures

Modal Based Fatigue Monitoring of Steel Structures Modal Based Fatigue Monitoring of Steel Structures Jesper Graugaard-Jensen Structural Vibration Solutions A/S, Denmark Rune Brincker Department of Building Technology and Structural Engineering Aalborg

More information

Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances

Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances Journal of Physics: Conference Series Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances To cite this article:

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 1667 Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN Yu. A. Ilyin, A. Nijhuis, H. H. J. ten

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Dheeraj Gunwant, J. P. Singh mailto.dheerajgunwant@gmail.com, jitenderpal2007@gmail.com, AIT, Rampur Abstract- A static

More information

6 th Pipeline Technology Conference 2011

6 th Pipeline Technology Conference 2011 6 th Pipeline Technology Conference 2011 Mechanical behavior of metal loss in heat affected zone of welded joints in low carbon steel pipes. M. J. Fernández C. 1, J. L. González V. 2, G. Jarvio C. 3, J.

More information

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Theoretical Manual Theoretical background to the Strand7 finite element analysis system Theoretical Manual Theoretical background to the Strand7 finite element analysis system Edition 1 January 2005 Strand7 Release 2.3 2004-2005 Strand7 Pty Limited All rights reserved Contents Preface Chapter

More information

Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization

Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization IOP Conference Series: Materials Science and Engineering Identification of welding residual stress of buttwelded plate using the boundary element inverse analysis with Tikhonov's regularization To cite

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Young's Modulus, Y Shear Modulus, S Bulk Modulus, B Poisson's Ratio 10 11 N/m

More information

Design and Development of Impact Load Sensor for Dynamic Testing Purposes

Design and Development of Impact Load Sensor for Dynamic Testing Purposes IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Design and Development of Impact Load Sensor for Dynamic Testing Purposes To cite this article: E Permana and Yayat 2018 IOP Conf.

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen To cite this article:

More information

Indentation tests of aluminium honeycombs

Indentation tests of aluminium honeycombs Journal of Physics: Conference Series OPEN ACCESS Indentation tests of aluminium honeycombs To cite this article: A Ashab et al 213 J. Phys.: Conf. Ser. 451 123 View the article online for updates and

More information

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES Delete endnote 18, which says "Express metric values in exponential form" A-8100 INTRODUCTION A-8110 SCOPE (a) This Article contains a method of analysis

More information

FIELD INSTRUMENTATION AND ANALYSIS OF PROTOTYPE AND EXISTING LIGHT POLES ON THE BRONX-WHITESTONE BRIDGE. Final Report. Ian C. Hodgson.

FIELD INSTRUMENTATION AND ANALYSIS OF PROTOTYPE AND EXISTING LIGHT POLES ON THE BRONX-WHITESTONE BRIDGE. Final Report. Ian C. Hodgson. FIELD INSTRUMENTATION AND ANALYSIS OF PROTOTYPE AND EXISTING LIGHT POLES ON THE BRONX-WHITESTONE BRIDGE Final Report by Ian C. Hodgson and Robert J. Connor ATLSS Report No. 03-17 August 2003 ATLSS is a

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

Schur decomposition in the scaled boundary finite element method in elastostatics

Schur decomposition in the scaled boundary finite element method in elastostatics IOP Conference Series: Materials Science and Engineering Schur decomposition in the scaled boundary finite element method in elastostatics o cite this article: M Li et al 010 IOP Conf. Ser.: Mater. Sci.

More information

Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

More information

A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds

A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds 1 A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds Michael R. Hill Mechanical and Aeronautical Engineering Department University of California, Davis

More information

MENG 302L Lab 6: Stress Concentration

MENG 302L Lab 6: Stress Concentration Introduction 1 : The purpose of this experiment is to demonstrate the existence of stress and strain concentration in the vicinity of a geometric discontinuity in a cantilever beam, and to obtain an approximate

More information

Metrological Characterization of Hardness Indenter Calibration System

Metrological Characterization of Hardness Indenter Calibration System Journal of Physics: Conference Series PAPER OPEN ACCESS Metrological Characterization of Hardness Indenter Calibration System To cite this article: Cihan Kuzu et al 2018 J. Phys.: Conf. Ser. 1065 062014

More information

Propagation of Uncertainty in Stress Estimation in Turbine Engine Blades

Propagation of Uncertainty in Stress Estimation in Turbine Engine Blades Propagation of Uncertainty in Stress Estimation in Turbine Engine Blades Giorgio Calanni, Vitali Volovoi, and Massimo Ruzzene Georgia Institute of Technology Atlanta, Georgia and Charles Vining Naval Air

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

Chapter 2. Formulation of Finite Element Method by Variational Principle

Chapter 2. Formulation of Finite Element Method by Variational Principle Chapter 2 Formulation of Finite Element Method by Variational Principle The Concept of Variation of FUNCTIONALS Variation Principle: Is to keep the DIFFERENCE between a REAL situation and an APPROXIMATE

More information

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how ELECTRONIC SENSORS PREAMBLE This note gives a brief introduction to sensors. The focus is on sensor mechanisms. It describes in general terms how sensors work. It covers strain gage sensors in detail.

More information

Determination of power requirements for solid core pulp screen rotors

Determination of power requirements for solid core pulp screen rotors 213-217 4703 04-04-16 16.34 Sida 213 Determination of power requirements for solid core pulp screen rotors James A. Olson, University of British Columbia, Canada, Serge Turcotte and Robert W. Gooding,

More information

Burst Pressure Prediction of Multiple Cracks in Pipelines

Burst Pressure Prediction of Multiple Cracks in Pipelines IOP Conference Series: Materials Science and Engineering OPEN ACCESS Burst Pressure Prediction of Multiple Cracks in Pipelines To cite this article: N A Razak et al 2013 IOP Conf. Ser.: Mater. Sci. Eng.

More information

Burst pressure estimation of reworked nozzle weld on spherical domes

Burst pressure estimation of reworked nozzle weld on spherical domes Indian Journal of Engineering & Materials Science Vol. 21, February 2014, pp. 88-92 Burst pressure estimation of reworked nozzle weld on spherical domes G Jegan Lal a, Jayesh P a & K Thyagarajan b a Cryo

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

Predicting Fatigue Life with ANSYS Workbench

Predicting Fatigue Life with ANSYS Workbench Predicting Fatigue Life with ANSYS Workbench How To Design Products That Meet Their Intended Design Life Requirements Raymond L. Browell, P. E. Product Manager New Technologies ANSYS, Inc. Al Hancq Development

More information

STRAIN ANALYSIS OF HDPE BUTT FUSION JOINT IN SIDE BEND TEST

STRAIN ANALYSIS OF HDPE BUTT FUSION JOINT IN SIDE BEND TEST STRAIN ANALYSIS OF HDPE BUTT FUSION JOINT IN SIDE BEND TEST Meng Xiangli (Shawn), McElroy Manufacturing, Inc., Tulsa, OK Abstract The standard practice ASTM F3183-16 (F3183) has been developed for conducting

More information

The Strain Gauge. James K Beard, Ph.D. Rowan Hall Auditorium November 2, 2006

The Strain Gauge. James K Beard, Ph.D. Rowan Hall Auditorium  November 2, 2006 The Strain Gauge James K Beard, Ph.D. Rowan Hall Auditorium beard@rowan.edu http://rowan.jkbeard.com November 2, 2006 What is Strain? Strain is elongation or deformation of a solid body due to forces applied

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

On propagation of Love waves in an infinite transversely isotropic poroelastic layer

On propagation of Love waves in an infinite transversely isotropic poroelastic layer Journal of Physics: Conference Series PAPER OPEN ACCESS On propagation of Love waves in an infinite transversely isotropic poroelastic layer To cite this article: C Nageswara Nath et al 2015 J. Phys.:

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient) Strain Gage Calibration Factors for Constant Room Temperature Conditions (Or equivalently, measurement of the room temperature (Or equivalently, measurement of the room temperature Gage Resistance, Gage

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL

TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL Proceedings of IPC 28 International Pipeline Conference 28 September 29-October 3, 28, Calgary Alberta IPC28-64621 TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL Brock Bolton 1, Vlado Semiga

More information

Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors To cite this article: K Nakano

More information

Exact solutions to model surface and volume charge distributions

Exact solutions to model surface and volume charge distributions Journal of Physics: Conference Series PAPER OPEN ACCESS Exact solutions to model surface and volume charge distributions To cite this article: S Mukhopadhyay et al 2016 J. Phys.: Conf. Ser. 759 012073

More information

Study on the construction of the shaft used in naval propulsion

Study on the construction of the shaft used in naval propulsion IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Study on the construction of the shaft used in naval propulsion To cite this article: F Kmen and S Macuta 2016 IOP Conf. Ser.:

More information

ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A BODY STRUCTURE

ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A BODY STRUCTURE The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A

More information

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 29-31 December 2007, Dhaka, Bangladesh ICME2007-AM-76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE

More information

Multi-Capacity Load Cell Concept

Multi-Capacity Load Cell Concept Sensors & Transducers 4 by IFSA Publishing, S. L. http://www.sensorsportal.com Multi-Capacity Load Cell Concept Seif. M. OSMAN, Ebtisam H. HASAN, H. M. EL-HAKEEM, R. M. RASHAD, F. KOUTA National Institute

More information

Finite Element Formulation for Prediction of Over-speed and burst-margin limits in Aero-engine disc

Finite Element Formulation for Prediction of Over-speed and burst-margin limits in Aero-engine disc International Journal of Soft Computing and Engineering (IJSCE) Finite Element Formulation for Prediction of Over-speed and burst-margin limits in Aero-engine disc Maruthi B H, M. Venkatarama Reddy, K.

More information

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION

PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION IMEKO 22 nd TC3, 15 th TC5 and 3 rd TC22 International Conferences 3 to 5 February, 2014, Cape Town, Republic of South Africa PTB S 16.5 MN HYDRAULIC AMPLIFICATION MACHINE AFTER MODERNIZATION R. Kumme

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

Data Logger V2. Instruction Manual

Data Logger V2. Instruction Manual Data Logger V2 Instruction Manual Joe Holdsworth 7-29-2018 Contents Revision History... 2 Specifications... 3 Power Limits... 3 Data Rates... 3 Other Specifications... 3 Pin Outs... 4 AS218-35SN... 4 AS210-35SN...

More information

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Fracture Test & Fracture Parameters

More information