Research Article Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations

Size: px
Start display at page:

Download "Research Article Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations"

Transcription

1 Hndaw Publshng Corporaton Advances n Dfference Equatons Volume 200 Artcle ID pages do:0.55/200/38909 Research Artcle Oscllaton of Second-Order Mxed-Nonlnear Delay Dynamc Equatons M. Ünal and A. Zafer 2 Department of Software Engneerng Bahçeşehr Unversty Beşktaş Istanbul Turkey 2 Department of Mathematcs Mddle East Techncal Unversty 0653 Ankara Turkey Correspondence should be addressed to M. Ünal munal@bahcesehr.edu.tr Receved 9 January 200; Accepted 20 March 200 Academc Edtor: Josef Dblk Copyrght q 200 M. Ünal and A. Zafer. Ths s an open access artcle dstrbuted under the Creatve Commons Attrbuton Lcense whch permts unrestrcted use dstrbuton and reproducton n any medum provded the orgnal work s properly cted. New oscllaton crtera are establshed for second-order mxed-nonlnear delay dynamc equatons on tme scales by utlzng an nterval averagng technque. No restrcton s mposed on the coeffcent functons and the forcng term to be nonnegatve.. Introducton In ths paper we are concerned wth oscllatory behavor of the second-order nonlnear delay dynamc equaton of the form rtx Δ t) Δ p0 txτ 0 t p t xτ t α xτ t et t t 0. on an arbtrary tme scale T where α >α 2 > >α m > >α m > >α n > 0 n >m ;.2 the functons r p e: T R are rght-dense contnuous wth r>0 nondecreasng; the delay functons τ : T T are nondecreasng rght-dense contnuous and satsfy τ t t for t T wth τ t as t. We assume that the tme scale T s unbounded above that s sup T and defne the tme scale nterval t 0 T by t 0 T :t 0 T. It s also assumed that the reader s already famlar wth the tme scale calculus. A comprehensve treatment of calculus on tme scales can be found n 3.

2 2 Advances n Dfference Equatons By a soluton of. we mean a nontrval real valued functon x : T R such that x C rd T T and rxδ C rd T T for all T T wth T t 0andthatx satsfes.. A functon x s called an oscllatory soluton of. f x s nether eventually postve nor eventually negatve otherwse t s nonoscllatory. Equaton. s sad to be oscllatory f and only f every soluton x of. s oscllatory. Notce that when T R. s reduced to the second-order nonlnear delay dfferental equaton rtx t ) p0 txτ 0 t p t xτ t α xτ t et t t 0.3 whle when T Z t becomes a delay dfference equaton ΔrkΔxk p 0 kxτ 0 k p k xτ k α xτ k ek k k 0..4 Another useful tme scale s T q N : {q m : m N and q> s a real number} whch leads to the quantum calculus. In ths case. s the q-dfference equaton Δ q rtδq xt ) p 0 txτ 0 t p t xτ t α xτ t et t t 0.5 where Δ q ft fσt ft/μt σt qt andμt q t. Interval oscllaton crtera are more natural n vew of the Sturm comparson theory snce t s stated on an nterval rather than on nfnte rays and hence t s necessary to establsh more nterval oscllaton crtera for equatons on arbtrary tme scales as n T R. Asfar as we know when T R an nterval oscllaton crteron for forced second-order lnear dfferental equatons was frst establshed by El-Sayed 4. In 2003 Sun 5 demonstrated ncely how the nterval crtera method can be appled to delay dfferental equatons of the form x t pt xτt α xτt et α.6 where the potental p and the forcng term e may oscllate. Some of these nterval oscllaton crtera were recently extended to second-order dynamc equatons n 6 0. Further results on oscllatory and nonoscllatory behavor of the second order nonlnear dynamc equatons on tme scales can be found n 23 and the references cted theren. Therefore motvated by Sun and Meng s paper 24 usng smlar technques ntroduced n 7 by Kong and an arthmetc-geometrc mean nequalty we gve oscllaton crtera for second-order nonlnear delay dynamc equatons of the form.. Examples are consdered to llustrate the results.

3 Advances n Dfference Equatons 3 2. Man Results We need the followng lemmas n provng our results. The frst two lemmas can be found n 25 Lemma. Lemma 2.. Let {α } 2...nbe the n-tuple satsfyng α >α 2 > >α m > >α m > > α n > 0. Then there exsts an n-tuple {η η 2...η n } satsfyng α η η < 0 <η <. 2. Lemma 2.2. Let {α } 2...nbe the n-tuple satsfyng α >α 2 > >α m > >α m > > α n > 0. Then there exsts an n-tuple {η η 2...η n } satsfyng α η η 0 <η <. 2.2 The next two lemmas are qute elementary va dfferental calculus; see Lemma 2.3. Let u A and B be nonnegatve real numbers. Then Au γ B γ γ ) /γ A /γ B /γ u γ >. 2.3 Lemma 2.4. Let u A and B be nonnegatve real numbers. Then Cu Du γ γ ) γ γ/ γ C γ/γ D / γ 0 <γ<. 2.4 The last mportant lemma that we need s a specal case of the one gven n 6. For completeness we provde a proof. Lemma 2.5. Let τ : T T be a nondecreasng rght-dense contnuous functon wth τt t and a b T wth a<b.ifx C rd τab T s a postve functon such that rtxδ t s nonncreasng on τab T wth r>0 nondecreasng then xτt Proof. By the Mean Value Theorem 2 Theorem.4 τt τa σt τa t a b T. 2.5 xt xτa x Δ η ) t τa 2.6 for some η τat T for any t τab T. Snce rtx Δ t s nonncreasng and rt s nondecreasng we have rtx Δ t r η ) x Δ η ) rtx Δ η ) t > η 2.7

4 4 Advances n Dfference Equatons and so x Δ t x Δ η t η.now xt xτa x Δ tt τa t τab T. 2.8 Defne μs : xs s τax Δ s s τtσt T t a b T. 2.9 It follows from 2.8 that μs xτa > 0fors τtσt T and t a b T. Thus we have 0 < σt τt μs xsx σ Δs s whch completes the proof. σt τt ) s τa Δ Δs xs σt τa τt τa 2.0 xτt In what follows we say that a functon Ht s : T 2 R belongs to H T f and only f H s rght-dense contnuous functon on {t s T 2 : t s t 0 } havng contnuous Δ-partal dervatves on {t s T 2 : t>s t 0 }wthht t 0 for all t and Ht s / 0 for all t / s.note that n case H R theδ-partal dervatves become the usual partal dervatves of Ht s.the partal dervatves for the cases H Z and H N wll be explctly gven later. Denotng the Δ-partal dervatves H Δ t t s and H Δ s t s of Ht s wth respect to t and s by H t s and H 2 t s respectvely the theorems below extend the results obtaned n 5 to nonlnear delay dynamc equaton on arbtrary tme scales and concde wth them when H 2 t s s replaced by Ht s. Indeed f we set Ht s Ut s then t follows that H t s U t s Uσts Ut s H 2 t s U 2 t s Ut σs Ut s. 2. When T R they become Ht s t Ut s/ t 2 Ut s Ht s Ut s/ s s 2 Ut s 2.2 as n 5. However we prefer usng H 2 t s nstead of Ut s for smplcty. Theorem 2.6. Suppose that for any gven arbtrarly large) T T there exst subntervals a b T and a 2 b 2 T of T T wherea <b and a 2 <b 2 such that p t 0 for t a b T a 2 b 2 T n l et > 0 for t a l b l T l where a l mn { τ j a l : j n } 2.4

5 Advances n Dfference Equatons 5 hold. Let {η η 2...η n } be an n-tuple satsfyng 2. of Lemma 2.. If there exst a functon H H T and numbers c ν b ν T such that cν [ QtH 2 σta H 2 ν rth 2 c ν t Δt bν [ QtH 2 b H 2 ν σt rth 2 2 b ν c ν b νt Δt >0 c ν 2.5 for ν 2 where Qt p 0 t τ 0t τ 0 σt τ 0 k 0 et η 0 k 0 0 η 0 p t ) ) η τ t τ α η σt τ η 2.6 then. s oscllatory. Proof. Suppose on the contrary that x s a nonoscllatory soluton of.. Frst assume that xt and xτ j t j n are postve for all t t for some t t 0 T. Choose a suffcently large so that τ j τ j a t.lett a b T. Defne Usng the delta quotent rule we have wt rt xδ t xt t t. 2.7 w Δ t rtx Δ t ) Δ xt rt x Δ t ) 2 xt rtx Δ t ) Δ rt x Δ t ) 2 xt. 2.8 Notce that [ [ xt xt xt μtx Δ t x 2 t μt wt rt x2 t[ rt μtwt rt 2.9 whch mples rt μtwt rt xσ t xt > Hence we obtan rtx Δ w Δ t ) Δ w 2 t t x σ t rt μtwt. 2.2

6 6 Advances n Dfference Equatons Substtutng 2.2 nto. yelds w Δ t p 0txτ 0 t w 2 t rt μtwt p t xτ t α xτ t et By assumpton we can choose a b t such that p t n and et 0 for all t a b T where a s defned as n 2.4. Clearly the condtons of Lemma 2.5 are satsfed when τ replaced wth τ j for each fxed j n. Therefore from 2.5 we have x τ j t ) τ jt τ j a σt τ j a t a b T 2.23 and takng nto account 2.22 yelds w Δ t p 0 t τ 0t τ 0 a σt τ 0 a w 2 t rt μtwt τ t τ a p k t σt τ a ) α α et Denote Q 0 t : p 0t τ 0t τ 0 a σt τ 0 a ) Q t : p τ t τ a α t σt τ a From 2.24 we have w Δ t Q w 0t 2 t rt μtwt Q txσ t α et Now recall the well-known arthmetc-geometrc mean nequalty see 26 u η 0 u η where η 0 n η and η > n. Settng u 0 η 0 : et u η : Q txσ t α 2.28 n 2.26 yelds w Δ t Q w 0t 2 t rt μtwt u η u 0 η 0 Q w 2 t 0t rt μtwt u η

7 Advances n Dfference Equatons 7 From 2.29 and takng nto account 2.27 weget w Δ t Q w 0t 2 t rt μtwt u η and hence w Δ t Q w 0t 2 t rt μtwt η η 0 et η 0 0 η 0 Q w 2 t 0t rt μtwt η η 0 0 et η 0 Q w 2 t 0t rt μtwt η η 0 0 et η 0 Q t) η α ) η Q t) η η 0 n j α jη j η j Q t) η 2.3 whch yelds w Δ t Q w 2 t 0t rt μtwt η η 0 0 et η 0 Qt w 2 t rt μtwt p t ) ) η τ t τ a α η σt τ a 2.32 where Qt Q 0 t η η 0 0 et η 0 p t ) ) η τ t τ a α η σt τ a Multplyng both sdes of 2.32 by H 2 σta and ntegratng both sdes of the resultng nequalty from a to c a <c <b yeld c a w Δ th 2 σta Δt c a QtH 2 σta Δt c a w 2 th 2 σta Δt rt μtwt Fx s and note that wth 2 Δt t s) H 2 σtsw Δ t H 2 Δt t s) wt H 2 σtsw Δ t H t shσtswt Ht sh t swt 2.35 from whch we obtan H 2 σtsw Δ t wth 2 t s) Δt H t shσtswt Ht sh t swt. 2.36

8 8 Advances n Dfference Equatons Therefore c a w Δ th 2 σta Δt c wth 2 Δt t a ) Δt a c H t a Hσta wt Ht a H t a wtδt. a 2.37 Notce that c a wth 2 t a ) Δt Δt wc H 2 c a wa H 2 a a wc H 2 c a 2.38 snce Ha a 0 and hence we obtan from 2.34 that wc H 2 c a c a QtH 2 σta Δt c a w 2 t rt μtwt H2 σta Δt c H t a Hσta wt Ht a H t a wtδt. a 2.39 On the other hand w 2 th 2 σts rt μtwt wthσtsh t s Ht sh t swt [ wthσts 2 rt μtwth t s rt μtwt 2.40 rt μtwt ) H 2 t s wthσtsh t s Ht sh t swt. Takng nto account that HσtsHt sμth t s we have w 2 th 2 σta rt μtwt wthσta H t a Ht a H t a wt rth 2 t a. 2.4 Usng ths nequalty n 2.39 we have wc H 2 c a c [ QtH 2 σta rth 2 t a Δt. a 2.42

9 Advances n Dfference Equatons 9 Smlarly by followng the above calculaton step by step that s multplyng both sdes of 2.32 ths tme by H 2 b σs after takng nto account that H 2 t σsw Δ s wsh 2 t s) Δs H 2 t sht σsws Ht sh 2 t sws 2.43 one can easly obtan wc H 2 b c b [ QsH 2 b σs rsh 2 2 b s Δs. c 2.44 Addng up 2.42 and 2.44weobtan 0 c [ QtH 2 σta H 2 rth 2 c a t a Δt a b [ QtH 2 b H 2 σt rsh 2 2 b c b t Δt. c 2.45 Ths contradcton completes the proof when xt s eventually postve. The proof when xt s eventually negatve s analogous by repeatng the above arguments on the nterval a 2 b 2 T nstead of a b T. Corollary 2.7. Suppose that for any gven arbtrarly large) T t 0 there exst subntervals a b and a 2 b 2 of T such that p t 0 for t a b a 2 b n l et 0 for t a l b l l where a l mn{τ j a l : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2. of Lemma 2.. If there exst a functon H H R and numbers c ν b ν such that for ν 2 where cν [ QtH 2 t a H 2 ν rth 2 c ν t dt bν [ QtH 2 b H 2 ν t rth 2 2 b ν c ν b νt dt > 0 c ν Qt p 0 t τ 0t τ 0 t τ 0 k 0 k 0 et η 0 0 η 0 p t ) η τ t τ t τ η ) α η then.3 s oscllatory.

10 0 Advances n Dfference Equatons Corollary 2.8. Suppose that for any gven arbtrarly large) T t 0 there exst a b a 2 b 2 Z wth T a <b and T a 2 <b 2 such that for each n p t 0 for t {a a a 2...b } {a 2 a 2 a b 2 } l et 0 for t {a l a l a l 2...b l } l where a l mn{τ j a l : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2. of Lemma 2.. If there exst a functon H H Z and numbers c ν { 2...b ν } such that c ν [ QtH 2 t a H 2 ν rth 2 c ν t t b ν [ QtH 2 b H 2 ν t rth 2 2 b ν c ν b νt > 0 tc ν 2.50 for ν 2 where H t : Ht Ht Qt p 0 t τ 0t τ 0 t τ 0 k 0 et η 0 k 0 0 H 2 b ν t : Hb ν t Hb ν t η 0 p t ) ) η τ t τ α η t τ η 2.5 then.4 s oscllatory. Corollary 2.9. Suppose that for any gven arbtrarly large) T t 0 there exst a b a 2 b 2 N wth T a <b and T a 2 <b 2 such that for each n p t 0 for t l et 0 { } { } q a q a...q b q a 2 q a2...q b 2 for t { } q a l q al...q b l l where q a l mn{τ j q a l : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2. of Lemma 2.. If there exst a functon H H q and numbers q c ν {q aν q aν2...q bν } such that H 2 ) q c ν q c ν q m m H 2 ) q b ν q c ν [ Q q m) H 2 q m q b ν q m mc ν ) r q m) H 2 q m q a ) ν [ Q q m) H 2 q b ν q m) r q m) H 2 2 q b ν q m) >

11 Advances n Dfference Equatons for ν 2 where H q m q a ) ν : H ) q m q H q m q ν) a ) H q q m 2 q b ν q m) : H q b ν q m) H q b ν q m) ) q q m Qt p 0 t τ 0t τ 0 q ) qt τ 0 q ) k 0 et η 0 p t ) η τ t τ q ) α η qt τ q a ν k 0 0 η 0 η 2.54 then.5 s oscllatory. Notce that Theorem 2.6 does not apply f there s no forcng term that s et 0. In ths case we have the followng theorem. Theorem 2.0. Suppose that for any gven arbtrarly large) T T there exsts a subnterval a b T of T T wherea<bsuch that p t 0 for t a b T n 2.55 where a mn{τ j a : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2.2 n Lemma 2.2. If there exst a functon H H T and a number c a b T such that H 2 c a c a H 2 b c [QtH 2 σta rth 2 t a Δt b c [ QtH 2 b σt rsh 2 2 b t2 Δt> where Qt p 0 t τ 0t τ 0 a σt τ 0 a k 0 p t ) ) η τ t τ a α η k 0 σt τ a 2.57 then. wth et 0 s oscllatory. Proof. We wll just hghlght the proof snce t s the same as the proof of Theorem 2.6. We should remark here that takng et 0andη 0 0 n proof of Theorem 2.6 we arrve at w Δ t Q w 0t 2 t rt μtwt u η. 2.58

12 2 Advances n Dfference Equatons The arthmetc-geometrc mean nequalty we now need s u η u η 2.59 where n η and η > nare as n Lemma 2.2. Corollary 2.. Suppose that for any gven arbtrarly large) T t 0 there exsts a subnterval a b of T wheret a<bwth a b R such that p t 0 for t a b n 2.60 where a mn{τ j a : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2.2 n Lemma 2.2. If there exst a functon H H R and a number c a b such that H 2 c a c a H 2 b c [QtH 2 t a rth 2 t a dt b c [QsH 2 b t rth 2 2 b t dt > where Qt p 0 t τ 0t τ 0 a t τ 0 a k 0 p t ) ) η τ t τ a α η k 0 t τ a 2.62 then.3 wth et 0 s oscllatory. Corollary 2.2. Suppose that for any gven arbtrarly large) T t 0 there exsts a b Z wth T a<bsuch that p t 0 for t {a a...b} n 2.63 where a mn{τ j a : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2.2 n Lemma 2.2. If there exst a functon H H Z and a number c {a a 2...b } such that c [QtH 2 t a rth 2 H 2 c a t a ta b [QtH 2 b t rth 2 H 2 2 b c b t > 0 tc 2.64

13 Advances n Dfference Equatons 3 where H t a : Ht a Ht a Qt p 0 t τ 0t τ 0 a t τ 0 a k 0 H 2 b t : Hb t Hb t p t ) ) η τ t τ a α η k 0 t τ a 2.65 then.4 wth et 0 s oscllatory. Corollary 2.3. Suppose that for any gven arbtrarly large) T t 0 there exst a b N wth T a<bsuch that p t 0 for t { q a q a...q b} n 2.66 where q a mn{τ j q a : j n} holds. Let {η η 2...η n } be an n-tuple satsfyng 2.2 n Lemma 2.2. If there exst a functon H H q N and a number q c {q a q a...q b } such that c H 2 q c q a) q m[ Q q m) H 2 q m q a) r q m) H q m q a ) 2 ma b H 2 q b q c) q [Q m q m) H 2 q b q m) r q m) ) 2 H 2 q b q m > 0 mc 2.67 where H q m q a) : H q m q a) H q m q a) ) H q q m 2 q b q m) : H q b q m) H q b q m) ) q q m Qt p 0 t τ 0t τ 0 q a ) qt τ 0 q a ) k 0 p t ) η τ t τ q a ) α η qt τ q a k then.5 wth et 0 s oscllatory. It s obvous that Theorem 2.6 s not applcable f the functons p t are nonpostve for m m 2...n. In ths case the theorem below s vald. Theorem 2.4. Suppose that for any gven arbtrarly large) T T there exst subntervals a b T and a 2 b 2 T of T T wherea <b and a 2 <b 2 such that p t 0 for t a b T a 2 b 2 T n l et > 0 for t a l b l T l

14 4 Advances n Dfference Equatons where a l mn{τ j a l : j n} holds. If there exst a functon H H T postve numbers λ and ν satsfyng m λ ν m 2.70 and numbers c ν b ν T such that cν [ QtH 2 σta H 2 ν rth 2 c ν t Δt bν [ QtH 2 b H 2 ν σt rth 2 2 b ν c ν b νt Δt >0 c ν 2.7 for ν 2 where Qt p 0 t τ 0t τ 0 m ) σt τ 0 μ λ et /α p /α τ t τ t σt τ m ) β ν et /α /α p τ t τ t σt τ 2.72 wth μ α α /α β α α /α p max { p t 0 } 2.73 then. s oscllatory. Proof. Suppose that. has a nonoscllatory soluton. Wthout losss of generalty we may assume that xt and xτ t n are eventually postve on a b T when a s suffcently large. If xt s eventually negatve one may repeat the same proof step by step on the nterval a 2 b 2 T. Rewrtng. for t a b T as rtx Δ t) Δ p0 txτ 0 t m [ p tx α τ t λ et [ p tx α τ t ν et 0 m and applyng Lemma 2.3 to each term n the frst sum we obtan 2.74 rtx Δ t) Δ p0 txτ 0 t m μ λ et /α p /α txτ t [ p tx α τ t ν et 0 m 2.75

15 Advances n Dfference Equatons 5 where μ α α /α for 2...m. Settng wt rt xδ t xt 2.76 yelds rtx Δ w Δ t ) Δ w 2 t t x σ t rt μtwt Substtutng the above last equalty nto 2.75 we have w Δ t p 0 t xτ 0t m m μ λ et /α p /α t xτ t [ p tx α τ t ν et w 2 t rt μtwt It follows from 2.5 that x α τ t xτ 0 t xτ t τ 0t τ 0 a σt τ 0 a τ t τ a σt τ a x α τ t τ t τ a σt τ a Notce that the second sum n 2.78 can be wrtten as [ p tx α τ t ν et m [ p t xα τ t m ν et [ τ t τ a [ ) α ν et σt τ a xτ t p t xτ t m 2.82 and hence applyng the Lemma 2.4 yelds [ τ t τ a [ ) α ν et σt τ a xτ t p t xτ t m [ τ t τ a β ν et /α /α p t σt τ a m 2.83

16 6 Advances n Dfference Equatons where β α α /α and p max{ p t 0} for m m 2...n. Usng and2.78 nto 2.78 weobtan w Δ t p 0 t τ 0t τ 0 a m [ σt τ 0 a τ t τ a σt τ a [ τ t τ a σt τ a m β ν et /α p /α t μ λ et /α p /α t w 2 t rt μtwt Settng Qt p 0 t τ 0t τ 0 a m ) σt τ 0 a μ λ et /α p /α τ t τ a t σt τ a m ) β ν et /α /α p τ t τ a t σt τ a 2.85 we have w Δ t Qt w 2 t rt μtwt The rest of the proof s the same as that of Theorem 2.6 and hence t s omtted. Corollary 2.5. Suppose that for any gven arbtrarly large) T t 0 there exst subntervals a b and a 2 b 2 of T wheret a <b and T a 2 <b 2 such that p t 0 for t a b a 2 b n l et > 0 for t a l b l l where a l mn{τ j a l : j n} holds. If there exst a functon H H R postve numbers λ and ν satsfyng m λ ν m 2.88 and numbers c ν b ν such that cν [ QtH 2 t a H 2 ν rth 2 c ν t dt bν [ QtH 2 b H 2 ν t rth 2 2 b ν c ν b νt dt > 0 c ν 2.89

17 Advances n Dfference Equatons 7 for ν 2 where Qt p 0 t τ 0t τ 0 t τ 0 m ) μ λ et /α p /α τ t τ t t τ ) β ν et /α /α p τ t τ t t τ m 2.90 wth μ α α /α β α α /α p max { p t 0 } 2.9 then.3 s oscllatory. Corollary 2.6. Suppose that for any gven arbtrarly large) T t 0 there exst a b a 2 b 2 Z wth T a <b and T a 2 <b 2 such that for each n p t 0 for t {a a...b } {a 2 a 2...b 2 } l et > 0 for t {a l a l...b l } l where a l mn{τ j a l : j n} holds. If there exst a functon H H Z postve numbers λ and ν satsfyng m λ ν m 2.93 and numbers c ν { 2...b ν } such that c ν [ QtH 2 t a H 2 ν rth 2 c ν t t b ν [ QtH 2 b H 2 ν t rth 2 2 b ν c ν b νt > 0 tc ν 2.94 for ν 2 where H t : Ht Ht H 2 b ν t : Hb ν t Hb ν t Qt p 0 t τ 0t τ 0 m ) t τ 0 μ λ et /α p /α τ t τ t t τ ) β ν et /α /α p τ t τ t t τ m 2.95

18 8 Advances n Dfference Equatons wth μ α α /α β α α /α p max { p t 0 } 2.96 then.4 s oscllatory. Corollary 2.7. Suppose that for any gven arbtrarly large) T t 0 there exst a b a 2 b 2 N wth T a <b and T a 2 <b 2 such that for each n p t 0 for t l et > 0 { } { } q a q a...q b q a 2 q a2...q b 2 for t { } q a l q al...q b l l where q a l mn{τ j q a l : j n} holds. If there exst a functon H H q postve numbers λ and ν satsfyng m λ ν m 2.98 and numbers q c ν {q aν q aν2...q bν } such that H 2 ) q c ν q c ν q m m H 2 ) q b ν q c ν [ Q q m) H 2 q m q b ν q m mc ν ) rth 2 q m q a ) ν [ Q q m) H 2 q b ν q m) rth 2 2 q b ν q m) > for ν 2 where H q m q a ) ν : H ) q m q H q m q ν) a ) H q q m 2 q b ν q m) : H q b ν q m) H q b ν q m) ) q q m Qt p 0 t τ 0t τ 0 q ) qt τ 0 q ) m μ λ et /α p /α t )) β ν et /α /α τ p t τ q t ) qt τ q m )) τ t τ q qt τ q ) 2.00 wth μ α α /α β α α /α p max { p t 0 } 2.0 then.5 s oscllatory.

19 Advances n Dfference Equatons 9 3. Examples In ths secton we gve three examples when n 2 and α 2 α 2 /2 n.. That s we consder x ΔΔ t p 0 txτ 0 t p t xτ t xτ t p 2 t xτ t /2 xτ 2 t For smplcty we take Ht s t s thush t s H 2 t s. Note that η /3 and η 2 2/3 bylemma 2.2. Example 3.. Let A 0andB C > 0 be constants. Consder the dfferental equaton x t Axt B xt 2 xt 2 C xt /2 xt Let a j b j 2 and c j j N. We calculate ) t j Qt A 3 ) t j t j 3 4 B /3 C 2/3 ) 2/3 ) /3 3.3 t j 2 t j and see that 2.6 holds f 4A 9 BC 2) /3 > Snce all condtons of Corollary 2. are satsfed we conclude that 3.2 s oscllatory when 3.4 holds. Example 3.2. Let A 0andB C > 0 be constants. Defne p 0 t A p t B andp 2 t C for t 0j k k j ; otherwse the functons are defned arbtrarly. Consder the dfference equaton Δ 2 xt p 0 txt p t xt 2 xt 2 p 2 t xt /2 xt Let a 0j b 0j 3 and c 0j. We derve Qt A t 0j t 0j BC 2) /3 t 0j ) 4 2/3 ) /3 3.6 t 3j 3 t 0j 4 and see that postvty n 2.64 satsfes f A 9 BC 2) / > Snce all condtons of Corollary 2.2 are satsfed we conclude that 3.5 s oscllatory f 3.7 holds.

20 20 Advances n Dfference Equatons Example 3.3. Let A 0andB C > 0 be constants. Defne p 0 t A p t B and p 2 t C for t 2 0jk k j ; otherwse the functons are defned arbtrarly. Consder the q-dfference equaton q 2 ) ) ) t Δ 2 qxt p 0 tx p t t t 2 4) x x p 2 t t /2 ) t 4 x x Let a 0j b 0j 3 and c 0j. We have Qt A t 20j 4t BC 2) /3 t 2 0j 0j ) 4 8t 2 0j 2/3 ). 6t 2 0j /3 3.9 We see that 2.67 holds for all A 0andB C > 0. Snce all condtons of Corollary 2.2 are satsfed we conclude that 3.8 s oscllatory f A 0andB C > 0arepostve. Acknowledgments The paper s supported n part by the Scentfc and Research Councl of Turkey TUBITAK under Contract 08T688. The authors would lke to thank the referees for ther valuable comments and suggestons. References M. Bohner and A. Peterson Dynamc Equatons on Tme Scales: An Introducton wth Applcatons Brkhäuser Boston Mass USA M. Bohner and A. Peterson Eds. Advances n Dynamc Equatons on Tme Scales Brkhäuser Boston Mass USA V. Lakshmkantham S. Svasundaram and B. Kaymakçalan Dynamc Systems on Measure Chans vol. 370 of Mathematcs and Its Applcatons Kluwer Academc Publshers Dordrecht The Netherlands M. A. El-Sayed An oscllaton crteron for a forced second order lnear dfferental equaton Proceedngs of the Amercan Mathematcal Socety vol. 8 no. 3 pp Y. G. Sun A note on Nasr s and Wong s papers Journal of Mathematcal Analyss and Applcatons vol. 286 no. pp R. P. Agarwal D. R. Anderson and A. Zafer Interval oscllaton crtera for second-order forced delay dynamc equatons wth mxed nonlneartes Computers and Mathematcs wth Applcatons vol. 59 no. 2 pp R. P. Agarwal and A. Zafer Oscllaton crtera for second-order forced dynamc equatons wth mxed nonlneartes Advances n Dfference Equatons vol Artcle ID pages D. R. Anderson Oscllaton of second-order forced functonal dynamc equatons wth oscllatory potentals Journal of Dfference Equatons and Applcatons vol. 3 no. 5 pp D. R. Anderson and A. Zafer Interval crtera for second-order super-half-lnear functonal dynamc equatons wth delay and advanced arguments to appear n Journal of Dfference Equatons and Applcatons. 0 A. F. Güvenlr and A. Zafer Second-order oscllaton of forced functonal dfferental equatons wth oscllatory potentals Computers & Mathematcs wth Applcatons vol. 5 no. 9-0 pp M. Bohner and C. C. Tsdell Oscllaton and nonoscllaton of forced second order dynamc equatons Pacfc Journal of Mathematcs vol. 230 no. pp M. Bohner and S. H. Saker Oscllaton of second order nonlnear dynamc equatons on tme scales The Rocky Mountan Journal of Mathematcs vol. 34 no. 4 pp

21 Advances n Dfference Equatons 2 3 O. Došlý and S. Hlger A necessary and suffcent condton for oscllaton of the Sturm-Louvlle dynamc equaton on tme scales Journal of Computatonal and Appled Mathematcs vol. 4 no. -2 pp L. Erbe A. Peterson and S. H. Saker Oscllaton crtera for second-order nonlnear delay dynamc equatons Journal of Mathematcal Analyss and Applcatons vol. 333 no. pp L. Erbe T. S. Hassan and A. Peterson Oscllaton of second order neutral delay dfferental equatons Advances n Dynamcal Systems and Applcatons vol. 3 no. pp M. Huang and W. Feng Oscllaton for forced second-order nonlnear dynamc equatons on tme scales Electronc Journal of Dfferental Equatons no. 45 pp Q. Kong Interval crtera for oscllaton of second-order lnear ordnary dfferental equatons Journal of Mathematcal Analyss and Applcatons vol. 229 no. pp A. Del Medco and Q. Kong Kamenev-type and nterval oscllaton crtera for second-order lnear dfferental equatons on a measure chan Journal of Mathematcal Analyss and Applcatons vol. 294 no. 2 pp A. Del Medco and Q. Kong New Kamenev-type oscllaton crtera for second-order dfferental equatons on a measure chan Computers & Mathematcs wth Applcatons vol. 50 no. 8-9 pp P. Řehák On certan comparson theorems for half-lnear dynamc equatons on tme scales Abstract and Appled Analyss vol no. 7 pp Y. Şahner Oscllaton of second-order delay dfferental equatons on tme scales Nonlnear Analyss: Theory Methods & Applcatons vol. 63 no. 5 7 pp. e073 e S. H. Saker Oscllaton of nonlnear dynamc equatons on tme scales Appled Mathematcs and Computaton vol. 48 no. pp A. Zafer Interval oscllaton crtera for second order super-half lnear functonal dfferental equatons wth delay and advanced arguments Mathematsche Nachrchten vol. 282 no. 9 pp Y. G. Sun and F. W. Meng Interval crtera for oscllaton of second-order dfferental equatons wth mxed nonlneartes Appled Mathematcs and Computaton vol. 98 no. pp Y. G. Sun and J. S. W. Wong Oscllaton crtera for second order forced ordnary dfferental equatons wth mxed nonlneartes Journal of Mathematcal Analyss and Applcatons vol. 334 no. pp E. F. Beckenbach and R. Bellman Inequaltes Ergebnsse der Mathematk und hrer Grenzgebete 30 Sprnger Berln Germany 96.

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no.

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no. Ttle Sharp ntegral nequaltes nvolvng hgh-order partal dervatves Authors Zhao, CJ; Cheung, WS Ctaton Journal Of Inequaltes And Applcatons, 008, v. 008, artcle no. 5747 Issued Date 008 URL http://hdl.handle.net/07/569

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

Y. Guo. A. Liu, T. Liu, Q. Ma UDC

Y. Guo. A. Liu, T. Liu, Q. Ma UDC UDC 517. 9 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS WITH CONTINUOUS VARIABLES* ОСЦИЛЯЦIЯ КЛАСУ НЕЛIНIЙНИХ ЧАСТКОВО РIЗНИЦЕВИХ РIВНЯНЬ З НЕПЕРЕРВНИМИ ЗМIННИМИ Y. Guo Graduate School

More information

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations Hndaw Publshng Corporaton Advances n Dfference Equatons Volume 008, Artcle ID 695495, pages do:0.55/008/695495 Research Artcle A Generalzed Sum-Dfference Inequalty and Applcatons to Partal Dfference Equatons

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Case Study of Markov Chains Ray-Knight Compactification

Case Study of Markov Chains Ray-Knight Compactification Internatonal Journal of Contemporary Mathematcal Scences Vol. 9, 24, no. 6, 753-76 HIKAI Ltd, www.m-har.com http://dx.do.org/.2988/cms.24.46 Case Study of Marov Chans ay-knght Compactfcaton HaXa Du and

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Research Article Relative Smooth Topological Spaces

Research Article Relative Smooth Topological Spaces Advances n Fuzzy Systems Volume 2009, Artcle ID 172917, 5 pages do:10.1155/2009/172917 Research Artcle Relatve Smooth Topologcal Spaces B. Ghazanfar Department of Mathematcs, Faculty of Scence, Lorestan

More information

Research Article The Solution of Two-Point Boundary Value Problem of a Class of Duffing-Type Systems with Non-C 1 Perturbation Term

Research Article The Solution of Two-Point Boundary Value Problem of a Class of Duffing-Type Systems with Non-C 1 Perturbation Term Hndaw Publshng Corporaton Boundary Value Problems Volume 9, Artcle ID 87834, 1 pages do:1.1155/9/87834 Research Artcle The Soluton of Two-Pont Boundary Value Problem of a Class of Duffng-Type Systems wth

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Existence results for a fourth order multipoint boundary value problem at resonance

Existence results for a fourth order multipoint boundary value problem at resonance Avalable onlne at www.scencedrect.com ScenceDrect Journal of the Ngeran Mathematcal Socety xx (xxxx) xxx xxx www.elsever.com/locate/jnnms Exstence results for a fourth order multpont boundary value problem

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal Markov chans M. Veeraraghavan; March 17, 2004 [Tp: Study the MC, QT, and Lttle s law lectures together: CTMC (MC lecture), M/M/1 queue (QT lecture), Lttle s law lecture (when dervng the mean response tme

More information

arxiv: v2 [math.ca] 24 Sep 2010

arxiv: v2 [math.ca] 24 Sep 2010 A Note on the Weghted Harmonc-Geometrc-Arthmetc Means Inequaltes arxv:0900948v2 [mathca] 24 Sep 200 Gérard Maze, Urs Wagner e-mal: {gmaze,uwagner}@mathuzhch Mathematcs Insttute Unversty of Zürch Wnterthurerstr

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers Türkmen and Gökbaş Journal of Inequaltes and Applcatons (06) 06:65 DOI 086/s3660-06-0997-0 R E S E A R C H Open Access On the spectral norm of r-crculant matrces wth the Pell and Pell-Lucas numbers Ramazan

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Research Article An Extension of Stolarsky Means to the Multivariable Case

Research Article An Extension of Stolarsky Means to the Multivariable Case Internatonal Mathematcs and Mathematcal Scences Volume 009, Artcle ID 43857, 14 pages do:10.1155/009/43857 Research Artcle An Extenson of Stolarsky Means to the Multvarable Case Slavko Smc Mathematcal

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Research Article Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

Research Article Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem Mathematcal Problems n Engneerng Volume 2012, Artcle ID 871741, 16 pages do:10.1155/2012/871741 Research Artcle Global Suffcent Optmalty Condtons for a Specal Cubc Mnmzaton Problem Xaome Zhang, 1 Yanjun

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function A Local Varatonal Problem of Second Order for a Class of Optmal Control Problems wth Nonsmooth Objectve Functon Alexander P. Afanasev Insttute for Informaton Transmsson Problems, Russan Academy of Scences,

More information

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016)

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016) nd Internatonal Conference on Electroncs, Network and Computer Engneerng (ICENCE 6) Postve solutons of the fourth-order boundary value problem wth dependence on the frst order dervatve YuanJan Ln, a, Fe

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation Appled Mathematcal Scences, vol. 8, 204, no. 46, 7259 7276 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/ams.204.47554 Monotonc Interpolatng Curves by Usng Ratonal Cubc Ball Interpolaton Samsul Arffn

More information

On the average number of divisors of the sum of digits of squares

On the average number of divisors of the sum of digits of squares Notes on Number heory and Dscrete Mathematcs Prnt ISSN 30 532, Onlne ISSN 2367 8275 Vol. 24, 208, No. 2, 40 46 DOI: 0.7546/nntdm.208.24.2.40-46 On the average number of dvsors of the sum of dgts of squares

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

CALCULUS CLASSROOM CAPSULES

CALCULUS CLASSROOM CAPSULES CALCULUS CLASSROOM CAPSULES SESSION S86 Dr. Sham Alfred Rartan Valley Communty College salfred@rartanval.edu 38th AMATYC Annual Conference Jacksonvlle, Florda November 8-, 202 2 Calculus Classroom Capsules

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

A Solution of Porous Media Equation

A Solution of Porous Media Equation Internatonal Mathematcal Forum, Vol. 11, 016, no. 15, 71-733 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/mf.016.6669 A Soluton of Porous Meda Equaton F. Fonseca Unversdad Naconal de Colomba Grupo

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

A Note on Bound for Jensen-Shannon Divergence by Jeffreys

A Note on Bound for Jensen-Shannon Divergence by Jeffreys OPEN ACCESS Conference Proceedngs Paper Entropy www.scforum.net/conference/ecea- A Note on Bound for Jensen-Shannon Dvergence by Jeffreys Takuya Yamano, * Department of Mathematcs and Physcs, Faculty of

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

Geometry of Müntz Spaces

Geometry of Müntz Spaces WDS'12 Proceedngs of Contrbuted Papers, Part I, 31 35, 212. ISBN 978-8-7378-224-5 MATFYZPRESS Geometry of Müntz Spaces P. Petráček Charles Unversty, Faculty of Mathematcs and Physcs, Prague, Czech Republc.

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Layer Potentials. Chapter Fundamental and Singular Solutions

Layer Potentials. Chapter Fundamental and Singular Solutions Chapter Layer Potentals We solve boundary value problems assocated wth system (1.1) (or, rather, ts homogeneous verson) by means of potental-type functons wth a sutably chosen kernel. In ths chapter we

More information

DONALD M. DAVIS. 1. Main result

DONALD M. DAVIS. 1. Main result v 1 -PERIODIC 2-EXPONENTS OF SU(2 e ) AND SU(2 e + 1) DONALD M. DAVIS Abstract. We determne precsely the largest v 1 -perodc homotopy groups of SU(2 e ) and SU(2 e +1). Ths gves new results about the largest

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially Open Journal of Flud Dynamcs, 2015, 5, 183-187 Publshed Onlne June 2015 n ScRes. http://www.scrp.org/journal/ojfd http://dx.do.org/10.4236/ojfd.2015.52020 The Tangental Force Dstrbuton on Inner Cylnder

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

On some variants of Jensen s inequality

On some variants of Jensen s inequality On some varants of Jensen s nequalty S S DRAGOMIR School of Communcatons & Informatcs, Vctora Unversty, Vc 800, Australa EMMA HUNT Department of Mathematcs, Unversty of Adelade, SA 5005, Adelade, Australa

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information