LANZHE LIU. Changsha University of Science and Technology Changsha , China

Size: px
Start display at page:

Download "LANZHE LIU. Changsha University of Science and Technology Changsha , China"

Transcription

1 Известия НАН Армении. Математика, том 45, н. 3, 200, стр SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS OF PSEUDO-DIFFERENTIAL OPERATORS ON MORREY SPACE LANZHE LIU Chagsha Uiversity of Sciece ad Techology Chagsha 40077, Chia Abstract. The paper proves boudedess of the multiliear operators related to some pseudo-differetial operators o the geeralized weighted Morrey spaces usig the sharp estimate of the multiliear operators. MSC2000 umber: 42B20, 42B25 Keywords: multiliear operator; pseudo-differetial operator; Morrey space; BMO; A -weight.. Prelimiaries ad statemets of mai results Throughout this paper, φ deotes a positive, icreasig fuctio o R + ad it is assumed that there exists a costat D > 0 such that φ2t) Dφt) for t 0. Let w be a weight fuctio o, that is a oegative locally itegrable fuctio, ad f be a locally itegrable fuctio o. Defie that, for p <, /p f L p,φ w) = fy) wy)dy) p, φd) sup x, d>0 Bx,d) where Bx, d) = {y : x y < d}. The geeralized weighted Morrey spaces are defied by L p,φ, w) = {f L loc ) : f L p,φ w) < }. If φd) = d δ, δ > 0, the L p,φ, w) = L p,δ, w), which is the classical Morrey space see [6], [7]). As the developmet of the Calderó-Zygmud sigular itegral operators, their commutators ad multiliear operators have bee well studied see [3] - [6], [9]). I [4], Hu ad Yag proved a versio sharp estimate for the multiliear sigular itegral operators. I [8], [9], C. Pérez, G. Pradolii ad R. Trujillo-Gozalez obtaied a sharp weighted estimates for the sigular itegral operators ad their commutators. The boudedess of the pseudo-differetial operators was studied by may authors 57

2 58 LANZHE LIU see [], [7], [2], [5], [20] - [2]). I [20], the boudedess of the commutators associated to the pseudo-differetial operators are obtaied. The mai purpose of this paper is to study the multiliear pseudo-differetial operators as follows. We say a symbol σx, ξ) belogs to the class Sρ,δ m, if µ ν x µ σx, ξ) ξν µ,ν + ξ ) m ρ ν +δ µ, x, ξ, where µ, ν are multi-idices ad µ = µ µ. A pseudo-differetial operator with symbol σx, ξ) Sρ,δ m is defied by T f)x) = e 2πix ξ σx, ξ) ˆfξ)dξ, where f is a Schwartz fuctio ad ˆf deotes the Fourier trasform of f. It is kow see []) that there exists a kerel Kx, y) such that T f)x) = Kx, x y)fy)dy, where Kx, y) = e 2πix y) ξ σx, ξ)dξ. I [2] the boudedess of the pseudo-differetial operators with symbol σ S β θ,δ β < θ/2, 0 δ < θ) are obtaied. I [5] the boudedess of the pseudodifferetial operators with symbol of orders 0 ad is proved. I [] some sharp estimate of the pseudo-differetial operators with symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ) are obtaied. I [20] the boudedess of the pseudo-differetial operators ad their commutators with symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ) are obtaied. Our study are motivated by these papers. Assumig that T is a pseudo-differetial operator with symbol σx, ξ) S m ρ,δ that m j j =,..., l) are some positive itegers such that m m l = m ad b j are fuctios give o, we set R mj+b j ; x, y) = b j x) α! Dα b j y)x y) α, j m. α m j The multiliear operator associated to T is defied by l j= T b f)x) = R m j+b j ; x, y) x y m Kx, x y)fy) dy. Note that for m = 0, T b is just the multiliear commutator geerated by T ad b see [8], [9]), while for m > 0, T b is otrivial geeralizatios of the commutator. It is well kow that multiliear operators are of great iterest i harmoic aalysis ad have bee widely studied by may authors see [3] - [6]). Besides, the Morrey space ca be cosidered as a extesio of the Lebesgue space, sice the Morrey

3 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS space L p,λ becomes Lebesgue space L p for λ = 0). Hece, it is atural ad importat to study the boudedess of multiliear sigular itegral operators o the Morrey spaces L p,λ with λ > 0 see [2], [0], []). The purpose of this paper is twofold. First, we establish a sharp iequality for multiliear pseudo-differetial operator T b with symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ). The, we use this sharp iequality to prove the boudedess for the multiliear operators o the geeralized weighted Morrey spaces. Now, we itroduce some otatios. Deote by a cube i with sides parallel to the coordiate axes. For ay locally itegrable fuctio f, its sharp fuctio is defied by f # x) = sup fy) f dy, x where, ad i what follows, f = fx) dx. It is well-kow see [3]) that f # x) sup if fy) c dy. x c C We say that f belogs to BMO ) if f # L ) ad deote f BMO = f # L. Let M be the Hardy-Littlewood maximal operator Mf)x) = sup fy) dy, 0 < p <. x We set M p f) = Mf p )) /p ad deote by A the class of Muckehoupt weights see [3]): A = {0 < w L loc ) : Mw)x) wx), a.e.}. The followig theorem is the mai result of this paper. Theorem. Let T be a pseudo-differetial operator with a symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ) ad let 2 < p <, 0 < D < 2, w A, ad D α b j BMO ) for all α with α = m j ad j =,..., l. The l T b f) L p,φ w) f L p,φ w). j= α j =m j 2. Proof of the Theorem To prove the theorem, we eed the followig lemmas.

4 60 LANZHE LIU Lemma. [3]) Let b be a fuctio o ad D α b L q ) for all α with α = m ad some q >. The, for ay x y, R m b; x, y) x y m α =m x, y) /q D α bz) dz) q, x,y) where is the cube cetered at x with the side legth 5 x y. Lemma 2. []) Let T be a pseudo-differetial operator with a symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ). The, for every p, < p <, T f) L p p f L p, f L p ). Lemma 3. []) Let σ S θ/2 θ,δ 0 < θ <, 0 δ < θ) ad K be the kerel of a pseudo-differetial operator T with a symbol σ. The, for x 0 x d < ad k, ) /2 Kx, x y) Kx 0, x 0 y) 2 dy 2 k d) θ y x 0 <2 k+ d) θ x 0 x θ)m /2) 2 k d) m θ), provided m is a iteger such that /2 < m < /2 + / θ). Lemma 4. []) Let σ Sρ,δ 0 0 < ρ < ) ad Kx, w) = e 2πiw ξ σx, ξ) dξ. The, for w /4 ad ay iteger N, Kx, w) N w 2N. Lemma 5. Let < p <, 0 < D < 2, w A. The, for ay fuctio f L p,φ, w) a) Mf) L p,φ w) f # L p,φ w); b) M q f) L p,φ w) f L p,φ w) for < q < p. Proof. a) Let f L p,φ, w). The Mwχ B ) A for ay ball B = Bx, d) see [8]). Therefore, usig the iequality see [3]) Mf)y) p uy)dy f # y) p uy)dy, which is true for ay u A, we get Mf)y) p wy)dy Mf)y) p Mwχ B )y)dy B R f # y) p Mwχ B )y)dy

5 [ [ SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS... 6 B B f # y) p Mw)y)dy + f # y) p Mw)y)dy + [ B [ f # y) p wy)dy + B f # y) p wy)dy + 2 k+ B\2 k B 2 k+ B\2 k B ) ] f # y) sup p wz)dz dy y B ) ] f # y) p 2 k+ wz)dz dy B B ] f # y) p Mw)y) dy 2k+) ] f # y) p wy) dy 2k 2 k+ B 2 k+ B f # p L p,φ w) 2 k φ2 k+ d) f # p L p,φ w) 2 D) k φd) f # p L p,φ w) φd). Thus, Mf) L p,φ w) f # L p,φ w). The iequality b) is proved by a argumet similar to that i the proof of a), ad we omit the details. Key Lemma. Let T be a pseudo-differetial operator with a symbol σ S θ/2 θ,δ 0 < θ <, 0 δ < θ) ad let D α b j BMO ) for all α with α = m j j =,, l). The there exists a costat C > 0 such that for ay f C0 ), 2 < r < ad x, T b f)) # x) l M r f) x). α j =m j j= Proof. It suffices to prove that for ay f C 0 ) ad some costat C 0, the followig iequality holds: T b f)x) C 0 dx l M r f) x). α j =m j j= Without loss of geerality, we ca assume l = 2. Fix a cube = x 0, d) ad x. We cosider two cases. Case. d. Let be the cocetric with cube with side legth d θ, = 5 ad bj x) = b j x) α! Dα b j ) x α. α =m j

6 62 LANZHE LIU The R mj b j ; x, y) = R mj b j ; x, y) ad D α b j = D α b j D α b j ) for α = m j. Cosequetly, for f = fχ + fχ R \ = f + f 2 we obtai 2 j= T b f)x) = R m j+ b j ; x, y) R x y m Kx, x y)fy)dy = 2 j= = R m j b j ; x, y) R x y m Kx, x y)f y)dy R m2 b 2 ; x, y)x y) α D α b y) α! α R x y m Kx, x y)f y)dy =m α 2! α 2 =m 2 + α!α 2! α =m, α 2 =m 2 Therefore, + C + C + C + α =m, α 2 =m 2 R m b ; x, y)x y) α2 D α2 b2 y) x y m Kx, x y)f y)dy+ x y) α+α2 D α b y)d α2 b2 y) x y m Kx, x y)f y)dy+ 2 j= R m j+ b j ; x, y) x y m Kx, x y)f 2 y) dy. T b f)x) T bf 2 )x 0 ) dx 2 j= R m j b j ; x, y) R x y m Kx, x y)f y)dy dx+ R m2 b 2 ; x, y)x y) α α R x y m D α b y)kx, x y)f y)dy =m dx+ R m b ; x, y)x y) α2 α R x y m D α 2 b2 y)kx, x y)f y)dy 2 =m 2 dx+ x y) α+α2 D α b y)d α2 b2 y) R x y m Kx, x y)f y)dy dx+ + T bf 2 )x) T bf 2 )x 0 ) dx =: I + I 2 + I 3 + I 4 + I 5. To estimate the quatities I, I 2, I 3, I 4 ad I 5, first, for x ad y, we use Lemma ad obtai R m b j ; x, y) x y m α j =m. Now, we suppose σx, ξ) = σx, ξ) ξ θ/2 ξ θ/2 = qx, ξ) ξ θ/2. The qx, ξ) S θ,δ 0. Therefore, deotig the pseudo-differetial operator with symbol qx, ξ) by S

7 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS ad applyig the Hardy-Littlewood-Soboleve fractioal itegratio theorem ad the L 2 -boudedess of S see []), we obtai that for /p = /2 θ/2, I T f )x) dx j= α j =m j ) /p T f )x) p dx j= α j =m j /p Sf )x) j= α R 2 dx j =m j ) /2 /p f x) j= α R 2 dx j =m j /2 ) /2 /p fx) 2 dx j= α j =m j ) /r fx) r dx j= α j =m j M r f) x). j= α j =m j ) /2 For I 2, we use Lemma ad Hölder s iequality ad obtai that for /r +/r = /2, I 2 α 2 =m 2 D α2 b 2 BMO α 2 =m 2 D α2 b 2 BMO α 2 =m 2 D α2 b 2 BMO α =m α =m /p α =m /p D α2 b 2 /2 BMO /p α 2 =m 2 fx) r dx) /r α =m j= T D α b /p f )x) dx) p SD α b ) /2 f )x) 2 dx ) /2 D α b x)f x) 2 dx ) /r D α b x) D α b j ) r dx M r f) x). α =m j

8 64 LANZHE LIU Similarly, for I 3, we get I 3 M r f) x). α =m j j= For I 4, takig r, r 2 > such that /r + /r + /r 2 = /2, we obtai /p I 4 T D α b D α 2 b2 f )x) dx) p α =m, α 2 =m 2 α =m, α 2 =m 2 /p α =m, α 2 =m 2 /p /2 /p α =m, α 2 =m 2 j= fx) r dx) /r To estimate I 5, observe that T bf 2 )x) T bf 2 )x 0 ) = + ) /2 SD α b D α 2 b2 f )x) 2 dx D α b x)d α2 b ) /2 2 x)f x) 2 dx j= /rj D α j bj x) r j dx) M r f) x). α =m j ) Rm2 b 2 ; x, y) R m b ; x, y) R m b ; x 0, y) Kx, x y) x y m Kx ) 0, x 0 y) x 0 y m R mj b j ; x, y)f 2 y)dy j= R x 0 y m Kx 0, x 0 y)f 2 y)dy ) Rm b ; x 0, y) + R m2 b 2 ; x, y) R m2 b 2 ; x 0, y) R x 0 y m Kx 0, x 0 y)f 2 y)dy α! α R =m D α b y)f 2 y)dy α 2! α 2 =m 2 D α2 b 2 y)f 2 y)dy + α!α 2! α =m, α 2 =m 2 D α b y)d α 2 b2 y)f 2 y)dy [ R m2 b 2 ; x, y)x y) α x y m Kx, x y) R m 2 b 2 ; x 0, y)x 0 y) α x 0 y m Kx 0, x 0 y) [ R m b ; x, y)x y) α2 x y m Kx, x y) R m b ; x 0, y)x 0 y) α2 x 0 y m Kx 0, x 0 y) =: I ) 5 + I 2) 5 + I 3) 5 + I 4) 5 + I 5) 5 + I 6) 5. [ x y) α +α 2 x y m Kx, x y) x ] 0 y) α+α2 x 0 y m Kx 0, x 0 y) ] ]

9 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS By Lemma ad the followig iequality see [3]) b b 2 log 2 / ) b BMO, which is true whe 2, imply R m b; x, y) x y m D α b BMO + D α b) x,y) D α b) ) α =m k x y m α =m D α b BMO, for x ad y x 0, 2 k+ d) θ )\x 0, 2 k d) θ ). Therefore, otig that x y x 0 y for x ad y \, we obtai I ) 5 k 2 2 Kx, x y) Kx 0, x 0 y) k d) θ y x 0 <2 k+ d) θ x y m + k 2 R mj b j ; x, y) fy) dy j= Kx 0, x 0 y) 2 k d) θ y x 0 <2 k+ d) θ R mj b j ; x, y) fy) dy j= x y m x 0 y m C k 2 fy) 2 dy j= α =m j y x 0 <2 k+ d) θ Kx, x y) Kx 0, x 0 y) 2 dy 2 k d) θ y x 0 <2 k+ d) θ +C k 2 fy) 2 dy j= α =m j y x 0 <2 k+ d) θ ) /2 x 0 x 2 2 k d) θ y x 0 <2 k+ d) x θ 0 y 2 Kx 0, x 0 y) 2 dy, ) /2 ) /2 ) /2 for the secod term above, arguig as i the proof of Lemma 2. of [], we obtai ) /2 x 0 x 2 2 k d) θ y x 0 <2 k+ d) x θ 0 y 2 Kx 0, x 0 y) 2 dy x 0 x θ)m /2), 2 k d) m θ)

10 66 LANZHE LIU thus, by Lemma 3 ad for /2 < m, we get I ) 5 j= α =m j ) /2 k 2 d θ)m /2) fy) 2 dy 2 k d) m θ) y x 0 <2 k+ d) θ k 2 2 k θ)/2 m) j= α =m j k= ) /r x 0, 2 k d) θ fy) r dy ) x 0,2 k d) θ ) k 2 2 k θ)/2 m) M r f) x) j= α =m j k= M r f) x). j= α =m j To estimate I 2) 5, by the equality see [3]): R m b; x, y) R m b; x 0, y) = ad Lemma, we get thus R m b; x, y) R m b; x 0, y) β <m β <m α =m β! R m β D β b; x, x0 )x y) β x x 0 m β x y β D α b BMO, I 2) 5 j= α =m j k x x 0 2 k d) θ y x 0 <2 k+ d) x θ 0 y Kx 0, x 0 y) fy) dy k2 k θ)/2 m) j= α =m j k= /r x 0, 2 k d) θ fy) dy) r ) x 0,2 k d) θ ) M r f) x). j= α =m j

11 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS Similarly, we obtai I 3) 5 M r f) x). j= α =m j For I 4) 5, as for I) 5 ad I 2) 5, we get that for /r + /r = /2 I 4) 5 x y) α α =m R x y m x 0 y) α x 0 y m R m 2 b 2 ; x, y) Kx, x y) D α b y) f 2 y) dy+ +C R m2 b 2 ; x, y) R m2 b 2 ; x 0, y) x 0 y) α α R x =m 0 y m Kx, x y) Dα b y) f 2 y) dy+ +C Kx, x y) Kx 0, x 0 y) x 0 y) α α =m R x 0 y m R m 2 b 2 ; x 0, y) D α b y) f 2 y) dy D α b 2 BMO k2 k θ)/2 m) α =m 2 α =m k= /2 x 0, 2 k d) θ fy)d α b y) dy) 2 ) x 0,2 k d) θ ) /r D α b 2 BMO k2 k θ)/2 m) x 0, 2 k d) θ fy) dy) r ) α =m 2 k= x 0,2 k d) θ ) ) /r x 0, 2 k d) θ D α b y) D α b ) ) r dy ) α =m x 0,2 k d) θ ) k 2 2 k θ)/2 m) M r f) x) j= α =m j k= M r f) x). j= α =m j Similarly, I 5) 5 M r f) x). j= α =m j For I 6) 5, as for I) +C 5, we get, that for /r + /r + /r 2 = /2, x y) α+α2 x y m x 0 y) α+α2 x 0 y m I 6) 5 α =m, α 2 =m 2 Kx, x y) D α b y) D α 2 b2 y) f 2 y) dy+ Kx, x y) Kx 0, x 0 y) x 0 y) α+α2 R x 0 y m α =m, α 2 =m 2

12 68 LANZHE LIU Thus x 0, 2 k d) θ ) α =m, α 2 =m 2 k= j= D α b y) D α 2 b2 y) f 2 y) dy 2 k θ)/2 m) α =m, α 2 =m 2 k= x 0,2 k d) θ ) 2 k θ)/2 m) x 0, 2 k d) θ ) fy)d α b y)d α 2 b2 y) 2 dy) /2 x 0,2 k d) θ ) /rj x 0, 2 k d) θ D αj b j y) D αj b j ) ) dy) rj x 0,2 k d) θ ) M r f) x). j= α =m j I 5 M r f) x). α =m j j= Case 2. d >. I this case, let = 5 ad bj x) = b j x) α =m j α! Dα b j ) x α. The R mj b j ; x, y) = R mj b j ; x, y) ad D α bj = D α b j D α b j ), α = m j. fy) r dy) /r Hece, for f = fχ + fχ R \ = f + f 2, we have T b f)x) dx 2 j= R m j b j ; x, y) R x y m Kx, x y)f y)dy dx + C R m2 b 2 ; x, y)x y) α α =m R x y m D α b y)kx, x y)f y)dy dx + C R m b ; x, y)x y) α2 α R x y m D α 2 b2 y)kx, x y)f y)dy 2 =m 2 dx + C x y) α+α2 D α b y)d α2 b2 y) R x y m Kx, x y)f y)dy dx α =m, α 2 =m 2

13 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS T bf 2 )x) dx =: J + J 2 + J 3 + J 4 + J 5. As for I, I 2, I 3 ad I 4, by the L p < p < )-boudedess of T see Lemma 2), we get J ) /r T f )x) r dx j= α j =m j ) /r /r f x) j= α j =m R r dx j ) /r fx) r dx j= α j =m j M r f) x); j= α j =m j J 2 D α2 b 2 BMO T D α b ) /p f )x) p dx α 2 =m 2 α =m D α2 b 2 BMO /r D α b ) /p x)f x) p dx α 2 =m 2 α =m ) /r D α2 b 2 BMO D α b x) D α b ) r dx α 2 =m 2 α =m /r fx) dx) r M r f) x); j= α =m j J 3 M r f) x); j= α =m j J 4 T D α b D α2 b ) /r 2 f )x) r dx α =m, α 2 =m 2 /r α =m, α 2 =m 2 /r α =m, α 2 =m 2 j= j= D α b x)d α 2 b2 x)f x) r dx ) /rj D α j bj x) r j dx M r f) x). α =m j ) /r ) /r fx) r dx

14 70 LANZHE LIU To estimate J 5, observe that 2 T bf j= 2 )x) = R m j b j ; x, y) R x y m Kx, x y)f 2 y)dy R m2 b 2 ; x, y)x y) α α! α R x y m Kx, x y)d α b y)f 2 y)dy =m R m b ; x, y)x y) α2 α 2! α R x y m Kx, x y)d α 2 b2 y)f 2 y)dy 2 =m 2 x y) α+α2 + α!α 2! α =m, α 2 =m R x y m Kx, x y)dα b y)d α 2 b2 y)f 2 y)dy. 2 Hece, we use Lemma 4 ad similar to I 5, we get T bf 2 )x) k 2 j= α =m j +C α =m 2 D α b 2 BMO +C +C α =m D α b BMO α =m, α 2 =m 2 α =m α 2 =m 2 2k+ \2 k d α =m j j= +C α =m 2 D α b 2 BMO d +C α =m 2 k 2 k α =m D α b BMO d +C α 2 =m 2 2 k 2 k α =m, α 2 =m 2 d 2k+ \2 k x y 2 fy) dy k x y 2 D α b y) fy) dy 2k+ \2 k k x y 2 D α 2 b2 y) fy) dy 2k+ \2 k k= x y 2 D α b y) D α2 b 2 y) fy) dy k= ) /r k 2 2 k 2 k fy) r dy 2 k k2 k 2 k 2 k D α b y) D α b ) ) r dy k= ) /r fy) r dy ) /r ) /r k2 k 2 k fy) r dy 2 k D α2 b 2 y) D α b 2 ) ) r dy k= ) /r ) /r 2 k 2 k fy) r dy 2 k

15 SHARP AND WEIGHTED BOUNDEDNESS FOR MULTILINEAR OPERATORS... 7 ) /rj 2 j= k D α j b j y) D α j b j ) r j dy 2 k k 2 2 k M r f) x) j= α =m j k= M r f) x). j= α =m j Thus, J 5 M r f) x). j= α =m j This completes the proof of Key Lemma. Proof of Theorem. Takig 2 < r < p i Key Lemma, by Lemma 5, we obtai T b f) L p,φ w) MT b f)) L p,φ w) T b f)) # L p,φ w) M r f) L p,φ w) j= α =m j f L p,φ w). j= α =m j This fiishes the proof. Ackowledgemet. The author would like to express gratitude to the referee for his commets ad suggestios. Список литературы [] S. Chaillo ad A.Torchisky, Sharp fuctio ad weighted L p estimates for a class of pseudodifferetial operators, Ark. Math., 24, ). [2] F. Chiareza ad M. Frasca, Morrey spaces ad Hardy-Littlewood maximal fuctio, Red. Mat., 7, ). [3] J. Cohe, A sharp estimate for a multiliear sigular itegral o, Idiaa Uiv. Math. J., 30, ). [4] J. Cohe ad J. Gosseli, O multiliear sigular itegral operators o, Studia Math., 72, ). [5] J. Cohe, J. Gosseli, A BMO estimate for multiliear sigular itegral operators, Illiois J. Math., 30, ). [6] R. Coifma, Y. Meyer, Wavelets, Calderó-Zygmud ad Multiliear Operators, Cambridge Studies i Advaced Math. 48, Cambridge Uiversity Press, Cambridge 997). [7] R. Coifma, Y. Meyer, Au delá des opérateurs pseudo-différetiels, Astérisque, ). [8] R. Coifma, R. Rochberg, Aother characterizatio of BMO, Proc. Amer. Math. Soc., 79, ). [9] Y. Dig, S. Z. Lu, Weighted boudedess for a class rough multiliear operators, Acta Math. Siica, 7, ). [0] G. Di FaZio, M. A. Ragusa, Commutators ad Morrey spaces, Boll. U. Mat. Ital., 7)5-A, ).

16 72 LANZHE LIU [] G. Di Fazio, M. A. Ragusa, Iterior estimates i Morrey spaces for strog solutios to odivergece form equatios with discotiuous coefficiets, J. Fuc. Aal., 2, ). [2] C. Fefferma, L p bouds for pseudo-differetial operators, Israel J. Math., 4, ). [3] J. Garcia-Cuerva, J. L. Rubio de Fracia, Weighted orm iequalities ad related topics, North-Hollad Math.6, Amsterdam 985). [4] G. Hu, D. C. Yag, A variat sharp estimate for multiliear sigular itegral operators, Studia Math., 4, ). [5] N. Miller, Weighted Sobolev spaces ad pseudo-differetial operators with smooth symbols, Tras. Amer. Math. Soc., 269, ). [6] J. Peetre, O covolutio operators leavig L p,λ -spaces ivariat, A. Mat. Pura. Appl., 72, ). [7] J. Peetre, O the theory of L p,λ -spaces, J. Fuc. Aal., 4, ). [8] C. Pérez, G. Pradolii, Sharp weighted edpoit estimates for commutators of sigular itegral operators, Michiga Math. J., 49, ). [9] C. Pérez, R. Trujillo-Gozalez, Sharp weighted estimates for multiliear commutators, J. Lodo Math. Soc., 65, ). [20] M. Saidai, A. Lahmar-Beberou, S. Gala, Pseudo-differetial operators ad commutators i multiplier spaces, Africa Diaspora J. of Math., 6, ). [2] M. Sugimoto, N. Tomita, Boudedess properties of pseudo-differetial ad Calderó-Zygmud operators o modulatio spaces, J. of Fourier Aal. Appl., 4, ). [22] M. E. Taylor, Pseudo-differetial Operators ad Noliear PDE, Birkhauser, Bosto 99). Поступила 7 апреля 2009

Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey spaces

Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey spaces Available o lie at www.rac.es/racsam Applied Mathematics REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FISICAS Y NATURALES. SERIE A: MATEMATICAS Madrid (España / Spai) RACSAM 04 (), 200, 5 27. DOI:0.5052/RACSAM.200.

More information

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ S e MR ISSN 1813-3304 СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ Siberia Electroic Mathematical Reports http://semr.math.sc.ru Том 2, стр. 156 166 (2005) УДК 517.968.23 MSC 42B20 THE CONTINUITY OF MULTILINEAR

More information

Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator with variable Calderón-Zygmund kernel

Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator with variable Calderón-Zygmund kernel Fuctioal Aalysis, Approximatio ad omputatio 7 3) 205), 25 38 Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/faac Weighted sharp maximal fuctio

More information

M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe

M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe Acta Universitatis Apulensis ISSN: 582-5329 No. 33/203 pp. 3-43 M K -TYPE ESTIMATES FOR MULTILINEAR OMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL Guo Sheng, Huang huangxia and Liu Lanzhe

More information

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES. Martha Guzmán-Partida. 1. Introduction

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES. Martha Guzmán-Partida. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 70, 2 (208), 55 60 Jue 208 research paper origiali auqi rad A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES Martha Guzmá-Partida Abstract. We prove boudedess

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australia Joural of Mathematical Aalysis ad Applicatios Volume 13, Issue 1, Article 9, pp 1-10, 2016 THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON GENERALIZED MORREY SPACES MOCHAMMAD IDRIS, HENDRA GUNAWAN

More information

DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES

DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES Scietiae Mathematicae Japoicae Olie, Vol. 10, (2004), 39 45 39 DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES EIICHI NAKAI, NAOHITO TOMITA

More information

Boundedness for multilinear commutator of singular integral operator with weighted Lipschitz functions

Boundedness for multilinear commutator of singular integral operator with weighted Lipschitz functions Aal of the Uiverity of raiova, Matheatic ad oputer Sciece Serie Volue 40), 203, Page 84 94 ISSN: 223-6934 Boudede for ultiliear coutator of igular itegral operator with weighted Lipchitz fuctio Guo Sheg,

More information

446 EIICHI NAKAI where The f p;f = 8 >< sup sup f(r) f(r) L ;f (R )= jb(a; r)j jf(x)j p dx! =p ; 0 <p<; ess sup jf(x)j; p = : x2 ( f0g; if 0<r< f(r) =

446 EIICHI NAKAI where The f p;f = 8 >< sup sup f(r) f(r) L ;f (R )= jb(a; r)j jf(x)j p dx! =p ; 0 <p<; ess sup jf(x)j; p = : x2 ( f0g; if 0<r< f(r) = Scietiae Mathematicae Vol. 3, No. 3(2000), 445 454 445 A CHARACTERIATION OF POINTWISE MULTIPLIERS ON THE MORREY SPACES EIICHI NAKAI Received April 28, 2000; revised October 4, 2000 Dedicated to the memory

More information

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS LOUKAS GRAFAKOS AND RICHARD G. LYNCH 2 Abstract. We exted a theorem by Grafakos ad Tao [5] o multiliear iterpolatio betwee adjoit operators

More information

ON MULTILINEAR FRACTIONAL INTEGRALS. Loukas Grafakos Yale University

ON MULTILINEAR FRACTIONAL INTEGRALS. Loukas Grafakos Yale University ON MULTILINEAR FRACTIONAL INTEGRALS Loukas Grafakos Yale Uiversity Abstract. I R, we prove L p 1 L p K boudedess for the multiliear fractioal itegrals I α (f 1,...,f K )(x) = R f 1 (x θ 1 y)...f K (x θ

More information

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan ON WEIGHTED ESTIMATES FO STEIN S MAXIMAL FUNCTION Hedra Guawa Abstract. Let φ deote the ormalized surface measure o the uit sphere S 1. We shall be iterested i the weighted L p estimate for Stei s maximal

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

ON SINGULAR INTEGRAL OPERATORS

ON SINGULAR INTEGRAL OPERATORS ON SINGULAR INTEGRAL OPERATORS DEJENIE ALEMAYEHU LAKEW Abstract. I this paper we study sigular itegral operators which are hyper or weak over Lipscitz/Hölder spaces ad over weighted Sobolev spaces de ed

More information

arxiv: v1 [math.ap] 17 Mar 2017

arxiv: v1 [math.ap] 17 Mar 2017 The effect of the smoothess of fractioal type operators over arxiv:703.06200v [math.ap] 7 Mar 207 their commutators with Lipschitz symbols o weighted spaces Estefaía Dalmasso, Gladis Pradolii 2 ad Wilfredo

More information

Weighted norm inequalities for singular integral operators

Weighted norm inequalities for singular integral operators Weighted norm inequalities for singular integral operators C. Pérez Journal of the London mathematical society 49 (994), 296 308. Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid,

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

The minimum value and the L 1 norm of the Dirichlet kernel

The minimum value and the L 1 norm of the Dirichlet kernel The miimum value ad the L orm of the Dirichlet kerel For each positive iteger, defie the fuctio D (θ + ( cos θ + cos θ + + cos θ e iθ + + e iθ + e iθ + e + e iθ + e iθ + + e iθ which we call the (th Dirichlet

More information

Some Tauberian theorems for weighted means of bounded double sequences

Some Tauberian theorems for weighted means of bounded double sequences A. Ştiiţ. Uiv. Al. I. Cuza Iaşi. Mat. N.S. Tomul LXIII, 207, f. Some Tauberia theorems for weighted meas of bouded double sequeces Cemal Bele Received: 22.XII.202 / Revised: 24.VII.203/ Accepted: 3.VII.203

More information

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES Bulleti of Mathematical Aalysis ad Applicatios ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 8 Issue 42016), Pages 91-97. A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES ŞEBNEM YILDIZ Abstract.

More information

Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator

Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator DOI: 0.2478/v0324-02-008-z Analele Universităţii de Vest, Timişoara Seria Matematică Informatică L, 2, 202), 97 5 Sharp Maximal Function Estimates Boundedness for Commutator Related to Generalized Fractional

More information

Existence of viscosity solutions with asymptotic behavior of exterior problems for Hessian equations

Existence of viscosity solutions with asymptotic behavior of exterior problems for Hessian equations Available olie at www.tjsa.com J. Noliear Sci. Appl. 9 (2016, 342 349 Research Article Existece of viscosity solutios with asymptotic behavior of exterior problems for Hessia equatios Xiayu Meg, Yogqiag

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES Publ. Math. Debrece 8504, o. 3-4, 85 95. ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES QING-HU HOU*, ZHI-WEI SUN** AND HAOMIN WEN Abstract. We cofirm Su s cojecture that F / F 4 is strictly decreasig

More information

BIRKHOFF ERGODIC THEOREM

BIRKHOFF ERGODIC THEOREM BIRKHOFF ERGODIC THEOREM Abstract. We will give a proof of the poitwise ergodic theorem, which was first proved by Birkhoff. May improvemets have bee made sice Birkhoff s orgial proof. The versio we give

More information

The Poisson Summation Formula and an Application to Number Theory Jason Payne Math 248- Introduction Harmonic Analysis, February 18, 2010

The Poisson Summation Formula and an Application to Number Theory Jason Payne Math 248- Introduction Harmonic Analysis, February 18, 2010 The Poisso Summatio Formula ad a Applicatio to Number Theory Jaso Paye Math 48- Itroductio Harmoic Aalysis, February 8, This talk will closely follow []; however some material has bee adapted to a slightly

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS Electroic Joural of Differetial Equatios, Vol. 214 214), No. 113, pp. 1 5. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.ut.edu ftp ejde.math.txstate.edu LOWER BOUNDS FOR THE BLOW-UP

More information

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces IOSR Joural of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:319-765x Volume 10, Issue 3 Ver II (May-Ju 014), PP 69-77 Commo Coupled Fixed Poit of Mappigs Satisfyig Ratioal Iequalities i Ordered Complex

More information

Some vector-valued statistical convergent sequence spaces

Some vector-valued statistical convergent sequence spaces Malaya J. Mat. 32)205) 6 67 Some vector-valued statistical coverget sequece spaces Kuldip Raj a, ad Suruchi Padoh b a School of Mathematics, Shri Mata Vaisho Devi Uiversity, Katra-82320, J&K, Idia. b School

More information

Generalized weighted composition operators on Bloch-type spaces

Generalized weighted composition operators on Bloch-type spaces Zhu Joural of Iequalities ad Applicatios 2015) 2015:59 DOI 10.1186/s13660-015-0580-0 R E S E A R C H Ope Access Geeralized weighted compositio operators o Bloch-type spaces Xiaglig Zhu * * Correspodece:

More information

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2 Joural of Advaced Research i Pure Mathematics Olie ISSN: 1943-2380 Vol. 3, Issue. 1, 2010, pp. 104-110 doi: 10.5373/jarpm.473.061810 O Orlicz N-frames Reu Chugh 1,, Shashak Goel 2 1 Departmet of Mathematics,

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

A note on the p-adic gamma function and q-changhee polynomials

A note on the p-adic gamma function and q-changhee polynomials Available olie at wwwisr-publicatioscom/jmcs J Math Computer Sci, 18 (2018, 11 17 Research Article Joural Homepage: wwwtjmcscom - wwwisr-publicatioscom/jmcs A ote o the p-adic gamma fuctio ad q-chaghee

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

A REMARK ON A PROBLEM OF KLEE

A REMARK ON A PROBLEM OF KLEE C O L L O Q U I U M M A T H E M A T I C U M VOL. 71 1996 NO. 1 A REMARK ON A PROBLEM OF KLEE BY N. J. K A L T O N (COLUMBIA, MISSOURI) AND N. T. P E C K (URBANA, ILLINOIS) This paper treats a property

More information

A Quantitative Lusin Theorem for Functions in BV

A Quantitative Lusin Theorem for Functions in BV A Quatitative Lusi Theorem for Fuctios i BV Adrás Telcs, Vicezo Vespri November 19, 013 Abstract We exted to the BV case a measure theoretic lemma previously proved by DiBeedetto, Giaazza ad Vespri ([1])

More information

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

ON SOME INEQUALITIES IN NORMED LINEAR SPACES ON SOME INEQUALITIES IN NORMED LINEAR SPACES S.S. DRAGOMIR Abstract. Upper ad lower bouds for the orm of a liear combiatio of vectors are give. Applicatios i obtaiig various iequalities for the quatities

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Weighted Approximation by Videnskii and Lupas Operators

Weighted Approximation by Videnskii and Lupas Operators Weighted Approximatio by Videsii ad Lupas Operators Aif Barbaros Dime İstabul Uiversity Departmet of Egieerig Sciece April 5, 013 Aif Barbaros Dime İstabul Uiversity Departmet Weightedof Approximatio Egieerig

More information

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions A Asymptotic Expasio for the Number of Permutatios with a Certai Number of Iversios Lae Clark Departmet of Mathematics Souther Illiois Uiversity Carbodale Carbodale, IL 691-448 USA lclark@math.siu.edu

More information

On n-dimensional Hilbert transform of weighted distributions

On n-dimensional Hilbert transform of weighted distributions O -dimesioal Hilbert trasform of weighted distributios MARTHA GUMÁN-PARTIDA Departameto de Matemáticas, Uiversidad de Soora, Hermosillo, Soora 83000, México Abstract We de e a family of cougate Poisso

More information

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + )

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + ) Electroic Joural of Mathematical Aalysis ad Applicatios, Vol. 3(2) July 2015, pp. 92-99. ISSN: 2090-729(olie) http://fcag-egypt.com/jourals/ejmaa/ INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R +

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Mi-Hwa Ko and Tae-Sung Kim

Mi-Hwa Ko and Tae-Sung Kim J. Korea Math. Soc. 42 2005), No. 5, pp. 949 957 ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES Mi-Hwa Ko ad Tae-Sug Kim Abstract. For weighted sum of a sequece

More information

MATH 31B: MIDTERM 2 REVIEW

MATH 31B: MIDTERM 2 REVIEW MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate x (x ) (x 3).. Partial Fractios Solutio: The umerator has degree less tha the deomiator, so we ca use partial fractios. Write x (x ) (x 3) = A x + A (x ) +

More information

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

Bounds for the Extreme Eigenvalues Using the Trace and Determinant ISSN 746-7659, Eglad, UK Joural of Iformatio ad Computig Sciece Vol 4, No, 9, pp 49-55 Bouds for the Etreme Eigevalues Usig the Trace ad Determiat Qi Zhog, +, Tig-Zhu Huag School of pplied Mathematics,

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE + / NECDET BATIR Abstract. Several ew ad sharp iequalities ivolvig the costat e ad the sequece + / are proved.. INTRODUCTION The costat e or

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Computation of Error Bounds for P-matrix Linear Complementarity Problems

Computation of Error Bounds for P-matrix Linear Complementarity Problems Mathematical Programmig mauscript No. (will be iserted by the editor) Xiaoju Che Shuhuag Xiag Computatio of Error Bouds for P-matrix Liear Complemetarity Problems Received: date / Accepted: date Abstract

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information

Berry-Esseen bounds for self-normalized martingales

Berry-Esseen bounds for self-normalized martingales Berry-Essee bouds for self-ormalized martigales Xiequa Fa a, Qi-Ma Shao b a Ceter for Applied Mathematics, Tiaji Uiversity, Tiaji 30007, Chia b Departmet of Statistics, The Chiese Uiversity of Hog Kog,

More information

Several properties of new ellipsoids

Several properties of new ellipsoids Appl. Math. Mech. -Egl. Ed. 008 9(7):967 973 DOI 10.1007/s10483-008-0716-y c Shaghai Uiversity ad Spriger-Verlag 008 Applied Mathematics ad Mechaics (Eglish Editio) Several properties of ew ellipsoids

More information

The natural exponential function

The natural exponential function The atural expoetial fuctio Attila Máté Brookly College of the City Uiversity of New York December, 205 Cotets The atural expoetial fuctio for real x. Beroulli s iequality.....................................2

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Sh. Al-sharif - R. Khalil

Sh. Al-sharif - R. Khalil Red. Sem. Mat. Uiv. Pol. Torio - Vol. 62, 2 (24) Sh. Al-sharif - R. Khalil C -SEMIGROUP AND OPERATOR IDEALS Abstract. Let T (t), t

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients Proof of a cojecture of Amdeberha ad Moll o a divisibility property of biomial coefficiets Qua-Hui Yag School of Mathematics ad Statistics Najig Uiversity of Iformatio Sciece ad Techology Najig, PR Chia

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

SPECTRAL PROPERTIES OF THE OPERATOR OF RIESZ POTENTIAL TYPE

SPECTRAL PROPERTIES OF THE OPERATOR OF RIESZ POTENTIAL TYPE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 6, Number 8, August 998, Pages 9 97 S -993998435- SPECTRAL PROPERTIES OF THE OPERATOR OF RIESZ POTENTIAL TYPE MILUTIN R DOSTANIĆ Commuicated by Palle

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Minimal surface area position of a convex body is not always an M-position

Minimal surface area position of a convex body is not always an M-position Miimal surface area positio of a covex body is ot always a M-positio Christos Saroglou Abstract Milma proved that there exists a absolute costat C > 0 such that, for every covex body i R there exists a

More information

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES Commu Korea Math Soc 26 20, No, pp 5 6 DOI 0434/CKMS20265 MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES Wag Xueju, Hu Shuhe, Li Xiaoqi, ad Yag Wezhi Abstract Let {X, } be a sequece

More information

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES TOSHIO OSHIMA Abstract. We examie the covergece of q-hypergeometric series whe q =. We give a coditio so that the radius of the covergece is positive ad get

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

On Weak and Strong Convergence Theorems for a Finite Family of Nonself I-asymptotically Nonexpansive Mappings

On Weak and Strong Convergence Theorems for a Finite Family of Nonself I-asymptotically Nonexpansive Mappings Mathematica Moravica Vol. 19-2 2015, 49 64 O Weak ad Strog Covergece Theorems for a Fiite Family of Noself I-asymptotically Noexpasive Mappigs Birol Güdüz ad Sezgi Akbulut Abstract. We prove the weak ad

More information

Holder Means, Lehmer Means, and x 1 log cosh x

Holder Means, Lehmer Means, and x 1 log cosh x Ž. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0, 810 818 1996 ARTICLE NO. 0349 Holder Meas, Lehmer Meas, ad x 1 log cosh x Keeth B. Stolarsky Departmet of Mathematics, Ui ersity of Illiois, 1409

More information

A General Iterative Scheme for Variational Inequality Problems and Fixed Point Problems

A General Iterative Scheme for Variational Inequality Problems and Fixed Point Problems A Geeral Iterative Scheme for Variatioal Iequality Problems ad Fixed Poit Problems Wicha Khogtham Abstract We itroduce a geeral iterative scheme for fidig a commo of the set solutios of variatioal iequality

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

A Note on Sums of Independent Random Variables

A Note on Sums of Independent Random Variables Cotemorary Mathematics Volume 00 XXXX A Note o Sums of Ideedet Radom Variables Pawe l Hitczeko ad Stehe Motgomery-Smith Abstract I this ote a two sided boud o the tail robability of sums of ideedet ad

More information

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of

More information

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space It Joural of Math Aalyi, Vol 6, 202, o 3, 50-5 Fractioal Itegral Oerator ad Ole Ieuality i the No-Homogeeou Claic Morrey Sace Mohammad Imam Utoyo Deartmet of Mathematic Airlagga Uiverity, Camu C, Mulyorejo

More information

ON CONVERGENCE OF SINGULAR SERIES FOR A PAIR OF QUADRATIC FORMS

ON CONVERGENCE OF SINGULAR SERIES FOR A PAIR OF QUADRATIC FORMS ON CONVEGENCE OF SINGULA SEIES FO A PAI OF QUADATIC FOMS THOMAS WIGHT Abstract. Examiig the system of Diohatie equatios { f (x) x 2 +...x2 ν, f 2 (x) λ x 2 +...λx2 ν 2, with λ i λ j ad ν i, λ i Z, we show

More information

SPECTRUM OF THE DIRECT SUM OF OPERATORS

SPECTRUM OF THE DIRECT SUM OF OPERATORS Electroic Joural of Differetial Equatios, Vol. 202 (202), No. 20, pp. 8. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.ut.edu ftp ejde.math.txstate.edu SPECTRUM OF THE DIRECT SUM

More information

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo Opuscula Mathematica Vol. 32 No. 2 2012 http://dx.doi.org/10.7494/opmath.2012.32.2.227 ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII Hugo Arizmedi-Peimbert, Agel Carrillo-Hoyo, ad Jairo Roa-Fajardo

More information

FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225)

FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225) Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Page of 7 Cotact durig exam: Eugeia Maliikova (735) 52 57 FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225) Moday, December

More information

A Negative Result. We consider the resolvent problem for the scalar Oseen equation

A Negative Result. We consider the resolvent problem for the scalar Oseen equation O Osee Resolvet Estimates: A Negative Result Paul Deurig Werer Varhor 2 Uiversité Lille 2 Uiversität Kassel Laboratoire de Mathématiques BP 699, 62228 Calais cédex Frace paul.deurig@lmpa.uiv-littoral.fr

More information

Moment-entropy inequalities for a random vector

Moment-entropy inequalities for a random vector 1 Momet-etropy iequalities for a radom vector Erwi Lutwak, Deae ag, ad Gaoyog Zhag Abstract The p-th momet matrix is defied for a real radom vector, geeralizig the classical covariace matrix. Sharp iequalities

More information

Pointwise inequalities in variable Sobolev spaces and applications

Pointwise inequalities in variable Sobolev spaces and applications Zeitschrift für Aalysis ud ihre Aweduge Society Joural for Aalysis ad its Applicatios Volume 00 (900), 000 000 c Europea Mathematical Poitwise iequalities i variable Sobolev spaces ad applicatios Alexadre

More information

SHARP BOUNDS FOR m-linear HARDY AND HILBERT OPERATORS

SHARP BOUNDS FOR m-linear HARDY AND HILBERT OPERATORS SHARP BOUNDS FOR m-linear HARDY AND HILBERT OPERATORS ZUNWEI FU, LOUKAS GRAFAKOS, SHANZHEN LU, AND FAYOU ZHAO Abstract The recise orms of m-liear Hardy oerators ad m-liear Hilbert oerators o Lebesgue saces

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS ARCHIVU ATHEATICU BRNO Tomus 40 2004, 33 40 SOE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS E. SAVAŞ AND R. SAVAŞ Abstract. I this paper we itroduce a ew cocept of λ-strog covergece with respect to a Orlicz

More information

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems McGill Uiversity Math 354: Hoors Aalysis 3 Fall 212 Assigmet 3 Solutios to selected problems Problem 1. Lipschitz fuctios. Let Lip K be the set of all fuctios cotiuous fuctios o [, 1] satisfyig a Lipschitz

More information

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS S. S. DRAGOMIR Abstract. A discrete iequality of Grüss type i ormed liear spaces ad applicatios for the discrete

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

Period Function of a Lienard Equation

Period Function of a Lienard Equation Joural of Mathematical Scieces (4) -5 Betty Joes & Sisters Publishig Period Fuctio of a Lieard Equatio Khalil T Al-Dosary Departmet of Mathematics, Uiversity of Sharjah, Sharjah 77, Uited Arab Emirates

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc Abstract ad Applied Aalysis Volume 200, Article ID 603968, 7 pages doi:0.55/200/603968 Research Article arleso Measure i Bergma-Orlicz Space of Polydisc A-Jia Xu, 2 ad Zou Yag 3 Departmet of Mathematics,

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

ON STATISTICAL CONVERGENCE AND STATISTICAL MONOTONICITY

ON STATISTICAL CONVERGENCE AND STATISTICAL MONOTONICITY Aales Uiv. Sci. Budapest., Sect. Comp. 39 (203) 257 270 ON STATISTICAL CONVERGENCE AND STATISTICAL MONOTONICITY E. Kaya (Mersi, Turkey) M. Kucukasla (Mersi, Turkey) R. Wager (Paderbor, Germay) Dedicated

More information

<, if ε > 0 2nloglogn. =, if ε < 0.

<, if ε > 0 2nloglogn. =, if ε < 0. GLASNIK MATEMATIČKI Vol. 52(72)(207), 35 360 THE DAVIS-GUT LAW FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED BANACH SPACE VALUED RANDOM ELEMENTS Pigya Che, Migyag Zhag ad Adrew Rosalsky Jia Uversity, P.

More information

Lecture 3: Convergence of Fourier Series

Lecture 3: Convergence of Fourier Series Lecture 3: Covergece of Fourier Series Himashu Tyagi Let f be a absolutely itegrable fuctio o T : [ π,π], i.e., f L (T). For,,... defie ˆf() f(θ)e i θ dθ. π T The series ˆf()e i θ is called the Fourier

More information